Articles | Volume 7, issue 1
https://doi.org/10.5194/amt-7-95-2014
https://doi.org/10.5194/amt-7-95-2014
Research article
 | 
14 Jan 2014
Research article |  | 14 Jan 2014

A fast and easy-to-implement inversion algorithm for mobility particle size spectrometers considering particle number size distribution information outside of the detection range

S. Pfeifer, W. Birmili, A. Schladitz, T. Müller, A. Nowak, and A. Wiedensohler

Related authors

Application of linear polarized light for the discrimination of frozen and liquid droplets in ice nucleation experiments
T. Clauss, A. Kiselev, S. Hartmann, S. Augustin, S. Pfeifer, D. Niedermeier, H. Wex, and F. Stratmann
Atmos. Meas. Tech., 6, 1041–1052, https://doi.org/10.5194/amt-6-1041-2013,https://doi.org/10.5194/amt-6-1041-2013, 2013

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Spatial analysis of PM2.5 using a Concentration Similarity Index applied to air quality sensor networks
Rósín Byrne, John C. Wenger, and Stig Hellebust
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-38,https://doi.org/10.5194/amt-2024-38, 2024
Revised manuscript accepted for AMT
Short summary
A novel probabilistic source apportionment approach: Bayesian auto-correlated matrix factorization
Anton Rusanen, Anton Björklund, Manousos I. Manousakas, Jianhui Jiang, Markku T. Kulmala, Kai Puolamäki, and Kaspar R. Daellenbach
Atmos. Meas. Tech., 17, 1251–1277, https://doi.org/10.5194/amt-17-1251-2024,https://doi.org/10.5194/amt-17-1251-2024, 2024
Short summary
Towards a hygroscopic growth calibration for low-cost PM2.5 sensors
Milan Y. Patel, Pietro F. Vannucci, Jinsol Kim, William M. Berelson, and Ronald C. Cohen
Atmos. Meas. Tech., 17, 1051–1060, https://doi.org/10.5194/amt-17-1051-2024,https://doi.org/10.5194/amt-17-1051-2024, 2024
Short summary
Enhancing characterization of organic nitrogen components in aerosols and droplets using high-resolution aerosol mass spectrometry
Xinlei Ge, Yele Sun, Justin Trousdell, Mindong Chen, and Qi Zhang
Atmos. Meas. Tech., 17, 423–439, https://doi.org/10.5194/amt-17-423-2024,https://doi.org/10.5194/amt-17-423-2024, 2024
Short summary
Machine learning approaches for automatic classification of single-particle mass spectrometry data
Guanzhong Wang, Heinrich Ruser, Julian Schade, Johannes Passig, Thomas Adam, Günther Dollinger, and Ralf Zimmermann
Atmos. Meas. Tech., 17, 299–313, https://doi.org/10.5194/amt-17-299-2024,https://doi.org/10.5194/amt-17-299-2024, 2024
Short summary

Cited articles

Alofs, D. J. and Balakumar, P.: Inversion to obtain aerosol size distributions from measurements with a differential mobility analyzer, J. Aerosol Sci., 13, 513–527, 1982.
Birmili, W., Stratmann, F., Wiedensohler, A., Covert, D., Russel, L. M., and Berg, O.: Determination of differential mobility analyzer transfer functions using identical instruments in series, Aerosol Sci. Technol., 27, 215–223, 1997.
Birmili, W., Schepanski, K., Ansmann, A., Spindler, G., Tegen, I., Wehner, B., Nowak, A., Reimer, E., Mattis, I., Müller, K., Brüggemann, E., Gnauk, T., Herrmann, H., Wiedensohler, A., Althausen, D., Schladitz, A., Tuch, T., and Löschau, G.: A case of extreme particulate matter concentrations over Central Europe caused by dust emitted over the southern Ukraine, Atmos. Chem. Phys., 8, 997–1016, https://doi.org/10.5194/acp-8-997-2008, 2008.
Brunner, J.: Particle measurements (size distribution and number) with a SMPS – T}echnical basis and evaluation procedures (translated from "Partikelmessungen (Grössenverteilung und Anzahl) mit einem SMPS – {Grundlagen und Auswerteverfahren"), Tech. Rep. No. 20051105, Stadt Zürich, Umwelt- und Gesundheitsschutz Zürich UGZ, 8021 Zürich, Revision 2.1, 2007.
Fiebig, M., Stein, C., Schröder, F., Feldpausch, P., and Petzold, A.: Inversion of data containing information on the aerosol particle size distribution using multiple instruments, J. Aerosol Sci., 36, 1353–1372, 2005.