Articles | Volume 9, issue 8
https://doi.org/10.5194/amt-9-4141-2016
https://doi.org/10.5194/amt-9-4141-2016
Research article
 | 
30 Aug 2016
Research article |  | 30 Aug 2016

Estimates of Mode-S EHS aircraft-derived wind observation errors using triple collocation

Siebren de Haan

Related authors

EMADDC: high quality, quickly available and high volume wind and temperature observations from aircraft using the Mode-S EHS infrastructure
Siebren de Haan, Paul de Jong, Michal Koutek, and Jan Sondij
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-110,https://doi.org/10.5194/amt-2024-110, 2024
Preprint under review for AMT
Short summary
Characterizing and correcting the warm bias observed in Aircraft Meteorological Data Relay (AMDAR) temperature observations
Siebren de Haan, Paul M. A. de Jong, and Jitze van der Meulen
Atmos. Meas. Tech., 15, 811–818, https://doi.org/10.5194/amt-15-811-2022,https://doi.org/10.5194/amt-15-811-2022, 2022
Short summary
Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe
Guergana Guerova, Jonathan Jones, Jan Douša, Galina Dick, Siebren de Haan, Eric Pottiaux, Olivier Bock, Rosa Pacione, Gunnar Elgered, Henrik Vedel, and Michael Bender
Atmos. Meas. Tech., 9, 5385–5406, https://doi.org/10.5194/amt-9-5385-2016,https://doi.org/10.5194/amt-9-5385-2016, 2016
Short summary
Retrieving atmospheric turbulence information from regular commercial aircraft using Mode-S and ADS-B
Jacek M. Kopeć, Kamil Kwiatkowski, Siebren de Haan, and Szymon P. Malinowski
Atmos. Meas. Tech., 9, 2253–2265, https://doi.org/10.5194/amt-9-2253-2016,https://doi.org/10.5194/amt-9-2253-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
Method development and application for the analysis of chiral organic marker species in ice cores
Johanna Schäfer, Anja Beschnitt, François Burgay, Thomas Singer, Margit Schwikowski, and Thorsten Hoffmann
Atmos. Meas. Tech., 18, 421–430, https://doi.org/10.5194/amt-18-421-2025,https://doi.org/10.5194/amt-18-421-2025, 2025
Short summary
The ratio of transverse to longitudinal turbulent velocity statistics for aircraft measurements
Jakub L. Nowak, Marie Lothon, Donald H. Lenschow, and Szymon P. Malinowski
Atmos. Meas. Tech., 18, 93–114, https://doi.org/10.5194/amt-18-93-2025,https://doi.org/10.5194/amt-18-93-2025, 2025
Short summary
A Novel Assessment of the Vertical Velocity Correction for Non-orthogonal Sonic Anemometers
Kyaw Tha Paw U, Mary Rose Mangan, Jilmarie Stephens, Kosana Suvočarev, Jenae' Clay, Olmo Guerrero Medina, Emma Ware, Amanda Kerr-Munslow, James McGregor, John Kochendorfer, Megan McAuliffe, and Megan Metz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-152,https://doi.org/10.5194/amt-2024-152, 2024
Revised manuscript accepted for AMT
Short summary
High-resolution wind speed measurements with quadcopter uncrewed aerial systems: calibration and verification in a wind tunnel with an active grid
Johannes Kistner, Lars Neuhaus, and Norman Wildmann
Atmos. Meas. Tech., 17, 4941–4955, https://doi.org/10.5194/amt-17-4941-2024,https://doi.org/10.5194/amt-17-4941-2024, 2024
Short summary
High-altitude balloon-launched uncrewed aircraft system measurements of atmospheric turbulence and qualitative comparison with infrasound microphone response
Anisa N. Haghighi, Ryan D. Nolin, Gary D. Pundsack, Nick Craine, Aliaksei Stratsilatau, and Sean C. C. Bailey
Atmos. Meas. Tech., 17, 4863–4889, https://doi.org/10.5194/amt-17-4863-2024,https://doi.org/10.5194/amt-17-4863-2024, 2024
Short summary

Cited articles

Benjamin, S. G., Schwartz, B. E., and Cole, R. E.: Accuracy of ACARS Wind and Temperature Observations Determined by Collocation, Weather Forecast., 14, 1032–1038, https://doi.org/10.1175/1520-0434(1999)014<1032:AOAWAT>2.0.CO;2, 1999.
Brousseau, P., Berre, L., Bouttier, F., and Desroziers, G.: Background-error covariances for a convective-scale data-assimilation system: AROME–France 3D-Var, Q. J. Roy. Meteor. Soc., 137, 409–422, https://doi.org/10.1002/qj.750, 2011.
de Haan, S.: High-resolution wind and temperature observations from aircraft tracked by Mode-S air traffic control radar, J. Geophys. Res., 116, D10111, https://doi.org/10.1029/2010JD015264, 2011.
de Haan, S.: An improved correction method for high quality wind and temperature observations derived from Mode-S EHS, Tech. Rep. TR338, KNMI, 2013.
Draper, C., Reichle, R., de Jeu, R., Naeimi, V., Parinussa, R., and Wagner, W.: Estimating root mean square errors in remotely sensed soil moisture over continental scale domains, Remote Sens. Environ., 137, 288–298, 2013.
Download
Short summary
The paper presents estimates of aircraft-derived wind observations obtained using Mode-S EHS method by applying the triple-collocation technique. Triple-collocated data sets were constructed using sodar (at Schiphol airport) and Doppler radar wind observation (from two radars in the Netherlands) in combination with numerical weather model data. It was found that the wind error near the surface is around 1.4 m s−1, while at 500 hPa the error is estimated to be around 1.1 m s−1.
Share