Articles | Volume 10, issue 3
Atmos. Meas. Tech., 10, 783–809, 2017
https://doi.org/10.5194/amt-10-783-2017
Atmos. Meas. Tech., 10, 783–809, 2017
https://doi.org/10.5194/amt-10-783-2017
Research article
08 Mar 2017
Research article | 08 Mar 2017

An exploratory study on the aerosol height retrieval from OMI measurements of the 477  nm O2 − O2 spectral band using a neural network approach

Julien Chimot et al.

Related authors

Monitoring multiple satellite Aerosol Optical Depth (AOD) products within the Copernicus Atmosphere Monitoring Service (CAMS) data assimilation system
Sebastien Garrigues, Samuel Remy, Julien Chimot, Melanie Ades, Antje Inness, Johannes Flemming, Zak Kipling, Istvan laszlo, Angela Benedetti, Roberto Ribas, Soheila Jafariserajehlou, Bertrand Fougnie, Shobha Kondragunta, Richard Engelen, Vincent-Henri Peuch, Mark Parrington, Nicolas Bousserez, Margarita Vazquez Navarro, and Anna Agusti-Panareda
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-176,https://doi.org/10.5194/acp-2022-176, 2022
Revised manuscript accepted for ACP
Short summary
Defining aerosol layer height for UVAI interpretation using aerosol vertical distributions characterized by MERRA-2
Jiyunting Sun, J. Pepijn Veefkind, Peter van Velthoven, L. Gijsbert Tilstra, Julien Chimot, Swadhin Nanda, and Pieternel F. Levelt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-39,https://doi.org/10.5194/acp-2020-39, 2020
Revised manuscript not accepted
Short summary
Minimizing aerosol effects on the OMI tropospheric NO2 retrieval – An improved use of the 477 nm O2 − O2 band and an estimation of the aerosol correction uncertainty
Julien Chimot, J. Pepijn Veefkind, Johan F. de Haan, Piet Stammes, and Pieternel F. Levelt
Atmos. Meas. Tech., 12, 491–516, https://doi.org/10.5194/amt-12-491-2019,https://doi.org/10.5194/amt-12-491-2019, 2019
Short summary
Improved aerosol correction for OMI tropospheric NO2 retrieval over East Asia: constraint from CALIOP aerosol vertical profile
Mengyao Liu, Jintai Lin, K. Folkert Boersma, Gaia Pinardi, Yang Wang, Julien Chimot, Thomas Wagner, Pinhua Xie, Henk Eskes, Michel Van Roozendael, François Hendrick, Pucai Wang, Ting Wang, Yingying Yan, Lulu Chen, and Ruijing Ni
Atmos. Meas. Tech., 12, 1–21, https://doi.org/10.5194/amt-12-1-2019,https://doi.org/10.5194/amt-12-1-2019, 2019
Short summary
Spatial distribution analysis of the OMI aerosol layer height: a pixel-by-pixel comparison to CALIOP observations
Julien Chimot, J. Pepijn Veefkind, Tim Vlemmix, and Pieternel F. Levelt
Atmos. Meas. Tech., 11, 2257–2277, https://doi.org/10.5194/amt-11-2257-2018,https://doi.org/10.5194/amt-11-2257-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Atmospheric visibility inferred from continuous-wave Doppler wind lidar
Manuel Queißer, Michael Harris, and Steven Knoop
Atmos. Meas. Tech., 15, 5527–5544, https://doi.org/10.5194/amt-15-5527-2022,https://doi.org/10.5194/amt-15-5527-2022, 2022
Short summary
Identification of smoke and sulfuric acid aerosol in SAGE III/ISS extinction spectra
Travis N. Knepp, Larry Thomason, Mahesh Kovilakam, Jason Tackett, Jayanta Kar, Robert Damadeo, and David Flittner
Atmos. Meas. Tech., 15, 5235–5260, https://doi.org/10.5194/amt-15-5235-2022,https://doi.org/10.5194/amt-15-5235-2022, 2022
Short summary
Combining Mie–Raman and fluorescence observations: a step forward in aerosol classification with lidar technology
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Boris Barchunov, and Mikhail Korenskii
Atmos. Meas. Tech., 15, 4881–4900, https://doi.org/10.5194/amt-15-4881-2022,https://doi.org/10.5194/amt-15-4881-2022, 2022
Short summary
Effective uncertainty quantification for multi-angle polarimetric aerosol remote sensing over ocean
Meng Gao, Kirk Knobelspiesse, Bryan A. Franz, Peng-Wang Zhai, Andrew M. Sayer, Amir Ibrahim, Brian Cairns, Otto Hasekamp, Yongxiang Hu, Vanderlei Martins, P. Jeremy Werdell, and Xiaoguang Xu
Atmos. Meas. Tech., 15, 4859–4879, https://doi.org/10.5194/amt-15-4859-2022,https://doi.org/10.5194/amt-15-4859-2022, 2022
Short summary
Employing relaxed smoothness constraints on imaginary part of refractive index in AERONET aerosol retrieval algorithm
Alexander Sinyuk, Brent N. Holben, Thomas F. Eck, David M. Giles, Ilya Slutsker, Oleg Dubovik, Joel S. Schafer, Alexander Smirnov, and Mikhail Sorokin
Atmos. Meas. Tech., 15, 4135–4151, https://doi.org/10.5194/amt-15-4135-2022,https://doi.org/10.5194/amt-15-4135-2022, 2022
Short summary

Cited articles

Acarreta, J. R., de Haan, J. F., and Stammes, P.: Cloud pressure retrieval using the O2 − O2 absorption band at 477 nm, J. Geophys. Res.-Atmos., 109, D05204, https://doi.org/10.1029/2003JD003915, 2004.
Ahn, C., Torres, O., and Jethva, H.: Assessment of OMI near-UV aerosol optical depth over land, J. Geophys. Res.-Atmos., 119, 2457–2473, 2013JD020188, https://doi.org/10.1002/2013JD020188, 2014.
Atkinson, P. M. and Tatnall, A. R. L.: Introduction Neural networks in remote sensing, Int. J. Remote Sens., 18, 699–709, https://doi.org/10.1080/014311697218700, 1997.
Barkley, M. P., Kurosu, T. P., Chance, K., De Smedt, I., Van Roozendael, M., Arneth, A., Hagberg, D., and Guenther, A.: Assessing sources of uncertainty in formaldehyde air mass factors over tropical South America: Implications for top-down isoprene emission estimates, J. Geophys. Res.-Atmos., 117, D13304, https://doi.org/10.1029/2011JD016827, 2012.
Download
Short summary
We have developed artificial neural network algorithms to retrieve aerosol layer height from satellite OMI observations of the 477 nm O2–O2 spectral band. Based on 3-year (2005–2007) cloud-free scenes over north-east Asia, the results show uncertainties of 260–800 m when aerosol optical thickness is larger than 1. These algorithms also enable aerosol optical thickness retrievals by exploring the OMI continuum reflectance. These results may be used for future trace gas retrievals from TROPOMI.