Articles | Volume 11, issue 2
Atmos. Meas. Tech., 11, 1233–1250, 2018
https://doi.org/10.5194/amt-11-1233-2018
Atmos. Meas. Tech., 11, 1233–1250, 2018
https://doi.org/10.5194/amt-11-1233-2018

Research article 02 Mar 2018

Research article | 02 Mar 2018

Evaluation of linear regression techniques for atmospheric applications: the importance of appropriate weighting

Cheng Wu and Jian Zhen Yu

Related authors

Measurement report: Long-term changes in black carbon and aerosol optical properties from 2012 to 2020 in Beijing, China
Jiaxing Sun, Zhe Wang, Wei Zhou, Conghui Xie, Cheng Wu, Chun Chen, Tingting Han, Qingqing Wang, Zhijie Li, Jie Li, Pingqing Fu, Zifa Wang, and Yele Sun
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-637,https://doi.org/10.5194/acp-2021-637, 2021
Revised manuscript under review for ACP
Short summary
Amplification of black carbon light absorption induced by atmospheric aging: temporal variation at seasonal and diel scales in urban Guangzhou
Jia Yin Sun, Cheng Wu, Dui Wu, Chunlei Cheng, Mei Li, Lei Li, Tao Deng, Jian Zhen Yu, Yong Jie Li, Qianni Zhou, Yue Liang, Tianlin Sun, Lang Song, Peng Cheng, Wenda Yang, Chenglei Pei, Yanning Chen, Yanxiang Cen, Huiqing Nian, and Zhen Zhou
Atmos. Chem. Phys., 20, 2445–2470, https://doi.org/10.5194/acp-20-2445-2020,https://doi.org/10.5194/acp-20-2445-2020, 2020
Short summary
Distinct diurnal variation in organic aerosol hygroscopicity and its relationship with oxygenated organic aerosol
Ye Kuang, Yao He, Wanyun Xu, Pusheng Zhao, Yafang Cheng, Gang Zhao, Jiangchuan Tao, Nan Ma, Hang Su, Yanyan Zhang, Jiayin Sun, Peng Cheng, Wenda Yang, Shaobin Zhang, Cheng Wu, Yele Sun, and Chunsheng Zhao
Atmos. Chem. Phys., 20, 865–880, https://doi.org/10.5194/acp-20-865-2020,https://doi.org/10.5194/acp-20-865-2020, 2020
Short summary
Chemical characteristics of brown carbon in atmospheric particles at a suburban site near Guangzhou, China
Yi Ming Qin, Hao Bo Tan, Yong Jie Li, Zhu Jie Li, Misha I. Schurman, Li Liu, Cheng Wu, and Chak K. Chan
Atmos. Chem. Phys., 18, 16409–16418, https://doi.org/10.5194/acp-18-16409-2018,https://doi.org/10.5194/acp-18-16409-2018, 2018
Short summary
Quantifying black carbon light absorption enhancement with a novel statistical approach
Cheng Wu, Dui Wu, and Jian Zhen Yu
Atmos. Chem. Phys., 18, 289–309, https://doi.org/10.5194/acp-18-289-2018,https://doi.org/10.5194/acp-18-289-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Data imputation in in situ-measured particle size distributions by means of neural networks
Pak Lun Fung, Martha Arbayani Zaidan, Ola Surakhi, Sasu Tarkoma, Tuukka Petäjä, and Tareq Hussein
Atmos. Meas. Tech., 14, 5535–5554, https://doi.org/10.5194/amt-14-5535-2021,https://doi.org/10.5194/amt-14-5535-2021, 2021
Short summary
Analysis of mobile monitoring data from the microAeth® MA200 for measuring changes in black carbon on the roadside in Augsburg
Xiansheng Liu, Hadiatullah Hadiatullah, Xun Zhang, L. Drew Hill, Andrew H. A. White, Jürgen Schnelle-Kreis, Jan Bendl, Gert Jakobi, Brigitte Schloter-Hai, and Ralf Zimmermann
Atmos. Meas. Tech., 14, 5139–5151, https://doi.org/10.5194/amt-14-5139-2021,https://doi.org/10.5194/amt-14-5139-2021, 2021
Short summary
New correction method for the scattering coefficient measurements of a three-wavelength nephelometer
Jie Qiu, Wangshu Tan, Gang Zhao, Yingli Yu, and Chunsheng Zhao
Atmos. Meas. Tech., 14, 4879–4891, https://doi.org/10.5194/amt-14-4879-2021,https://doi.org/10.5194/amt-14-4879-2021, 2021
Short summary
Estimating mean molecular weight, carbon number, and OM∕OC with mid-infrared spectroscopy in organic particulate matter samples from a monitoring network
Amir Yazdani, Ann M. Dillner, and Satoshi Takahama
Atmos. Meas. Tech., 14, 4805–4827, https://doi.org/10.5194/amt-14-4805-2021,https://doi.org/10.5194/amt-14-4805-2021, 2021
Short summary
Modeled source apportionment of black carbon particles coated with a light-scattering shell
Aki Virkkula
Atmos. Meas. Tech., 14, 3707–3719, https://doi.org/10.5194/amt-14-3707-2021,https://doi.org/10.5194/amt-14-3707-2021, 2021
Short summary

Cited articles

Ayers, G. P.: Comment on regression analysis of air quality data, Atmos. Environ., 35, 2423–2425, https://doi.org/10.1016/S1352-2310(00)00527-6, 2001. 
Bauer, J. J., Yu, X.-Y., Cary, R., Laulainen, N., and Berkowitz, C.: Characterization of the sunset semi-continuous carbon aerosol analyzer, J. Air Waste Manage., 59, 826–833, https://doi.org/10.3155/1047-3289.59.7.826, 2009. 
Boggs, P. T., Donaldson, J. R., and Schnabel, R. B.: Algorithm 676: ODRPACK: software for weighted orthogonal distance regression, ACM T. Math. Software, 15, 348–364, https://doi.org/10.1145/76909.76913, 1989. 
Brauers, T. and Finlayson-Pitts, B. J.: Analysis of relative rate measurements, Int. J. Chem. Kinet., 29, 665–672, https://doi.org/10.1002/(SICI)1097-4601(1997)29:9<665::AID-KIN3>3.0.CO;2-S, 1997. 
Cantrell, C. A.: Technical Note: Review of methods for linear least-squares fitting of data and application to atmospheric chemistry problems, Atmos. Chem. Phys., 8, 5477–5487, https://doi.org/10.5194/acp-8-5477-2008, 2008. 
Download
Short summary
A new data generation scheme that employs the Mersenne twister (MT) pseudorandom number generator is proposed to conduct benchmark tests on a variety of linear regression techniques. With an appropriate weighting, Deming regression (DR), weighted ODR (WODR), and York regression (YR) are recommended for atmospheric studies when both x and y data have measurement errors. An Igor-based program (Scatter Plot) is developed to facilitate the regression implementation.