Articles | Volume 11, issue 7
https://doi.org/10.5194/amt-11-4153-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-11-4153-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Correction of CCI cloud data over the Swiss Alps using ground-based radiation measurements
Fanny Jeanneret
CORRESPONDING AUTHOR
ESA ECSAT, Harwell Campus, Didcot, Oxfordshire, OX11 0FD, UK
Giovanni Martucci
Federal Office of Meteorology and Climatology MeteoSwiss, Ch. de l'Aérologie, Payerne, Switzerland
Simon Pinnock
ESA ECSAT, Harwell Campus, Didcot, Oxfordshire, OX11 0FD, UK
Alexis Berne
EPFL, EPFL-ENAC-IIE-LTE, Lausanne, Switzerland
Related authors
No articles found.
Alfonso Ferrone, Jérôme Kopp, Martin Lainer, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 17, 7143–7168, https://doi.org/10.5194/amt-17-7143-2024, https://doi.org/10.5194/amt-17-7143-2024, 2024
Short summary
Short summary
Estimates of hail size have been collected by a network of hail sensors, installed in three regions of Switzerland, since September 2018. In this study, we use a technique called “double-moment normalization” to model the distribution of diameter sizes. The parameters of the method have been defined over 70 % of the dataset and tested over the remaining 30 %. An independent distribution of hail sizes, collected by a drone, has also been used to evaluate the method.
Kunfeng Gao, Franziska Vogel, Romanos Foskinis, Stergios Vratolis, Maria I. Gini, Konstantinos Granakis, Anne-Claire Billault-Roux, Paraskevi Georgakaki, Olga Zografou, Prodromos Fetfatzis, Alexis Berne, Alexandros Papayannis, Konstantinos Eleftheridadis, Ottmar Möhler, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9939–9974, https://doi.org/10.5194/acp-24-9939-2024, https://doi.org/10.5194/acp-24-9939-2024, 2024
Short summary
Short summary
Ice nucleating particle (INP) concentrations are required for correct predictions of clouds and precipitation in a changing climate, but they are poorly constrained in climate models. We unravel source contributions to INPs in the eastern Mediterranean and find that biological particles are important, regardless of their origin. The parameterizations developed exhibit superior performance and enable models to consider biological-particle effects on INPs.
Vasura Jayaweera, Robert J. Sica, Giovanni Martucci, and Alexander Haefele
EGUsphere, https://doi.org/10.5194/egusphere-2024-1081, https://doi.org/10.5194/egusphere-2024-1081, 2024
Short summary
Short summary
Our study presents a new method, the solar background calibration method, which improves temperature determinations in rotational Raman lidar systems. By utilizing backgrounds solar radiation, this technique offers more continuous and reliable temperatures independent of external measuring instruments. This new method enhances our ability to monitor and understand atmospheric trends and their association to climate change with greater accuracy.
Valentin Wiener, Marie-Laure Roussel, Christophe Genthon, Étienne Vignon, Jacopo Grazioli, and Alexis Berne
Earth Syst. Sci. Data, 16, 821–836, https://doi.org/10.5194/essd-16-821-2024, https://doi.org/10.5194/essd-16-821-2024, 2024
Short summary
Short summary
This paper presents 7 years of data from a precipitation radar deployed at the Dumont d'Urville station in East Antarctica. The main characteristics of the dataset are outlined in a short statistical study. Interannual and seasonal variability are also investigated. Then, we extensively describe the processing method to retrieve snowfall profiles from the radar data. Lastly, a brief comparison is made with two climate models as an application example of the dataset.
Sophie Erb, Elias Graf, Yanick Zeder, Simone Lionetti, Alexis Berne, Bernard Clot, Gian Lieberherr, Fiona Tummon, Pascal Wullschleger, and Benoît Crouzy
Atmos. Meas. Tech., 17, 441–451, https://doi.org/10.5194/amt-17-441-2024, https://doi.org/10.5194/amt-17-441-2024, 2024
Short summary
Short summary
In this study, we focus on an automatic bioaerosol measurement instrument and investigate the impact of using its fluorescence measurement for pollen identification. The fluorescence signal is used together with a pair of images from the same instrument to identify single pollen grains via neural networks. We test whether considering fluorescence as a supplementary input improves the pollen identification performance by comparing three different neural networks.
Alfonso Ferrone, Étienne Vignon, Andrea Zonato, and Alexis Berne
The Cryosphere, 17, 4937–4956, https://doi.org/10.5194/tc-17-4937-2023, https://doi.org/10.5194/tc-17-4937-2023, 2023
Short summary
Short summary
In austral summer 2019/2020, three K-band Doppler profilers were deployed across the Sør Rondane Mountains, south of the Belgian base Princess Elisabeth Antarctica. Their measurements, along with atmospheric simulations and reanalyses, have been used to study the spatial variability in precipitation over the region, as well as investigate the interaction between the complex terrain and the typical flow associated with precipitating systems.
Anne-Claire Billault-Roux, Paraskevi Georgakaki, Josué Gehring, Louis Jaffeux, Alfons Schwarzenboeck, Pierre Coutris, Athanasios Nenes, and Alexis Berne
Atmos. Chem. Phys., 23, 10207–10234, https://doi.org/10.5194/acp-23-10207-2023, https://doi.org/10.5194/acp-23-10207-2023, 2023
Short summary
Short summary
Secondary ice production plays a key role in clouds and precipitation. In this study, we analyze radar measurements from a snowfall event in the Jura Mountains. Complex signatures are observed, which reveal that ice crystals were formed through various processes. An analysis of multi-sensor data suggests that distinct ice multiplication processes were taking place. Both the methods used and the insights gained through this case study contribute to a better understanding of snowfall microphysics.
Alfonso Ferrone and Alexis Berne
Earth Syst. Sci. Data, 15, 1115–1132, https://doi.org/10.5194/essd-15-1115-2023, https://doi.org/10.5194/essd-15-1115-2023, 2023
Short summary
Short summary
This article presents the datasets collected between November 2019 and February 2020 in the vicinity of the Belgian research base Princess Elisabeth Antarctica. Five meteorological radars, a multi-angle snowflake camera, three weather stations, and two radiometers have been deployed at five sites, up to a maximum distance of 30 km from the base. Their varied locations allow the study of spatial variability in snowfall and its interaction with the complex terrain in the region.
Anne-Claire Billault-Roux, Gionata Ghiggi, Louis Jaffeux, Audrey Martini, Nicolas Viltard, and Alexis Berne
Atmos. Meas. Tech., 16, 911–940, https://doi.org/10.5194/amt-16-911-2023, https://doi.org/10.5194/amt-16-911-2023, 2023
Short summary
Short summary
Better understanding and modeling snowfall properties and processes is relevant to many fields, ranging from weather forecasting to aircraft safety. Meteorological radars can be used to gain insights into the microphysics of snowfall. In this work, we propose a new method to retrieve snowfall properties from measurements of radars with different frequencies. It relies on an original deep-learning framework, which incorporates knowledge of the underlying physics, i.e., electromagnetic scattering.
Claudia Mignani, Lukas Zimmermann, Rigel Kivi, Alexis Berne, and Franz Conen
Atmos. Chem. Phys., 22, 13551–13568, https://doi.org/10.5194/acp-22-13551-2022, https://doi.org/10.5194/acp-22-13551-2022, 2022
Short summary
Short summary
We determined over the course of 8 winter months the phase of clouds associated with snowfall in Northern Finland using radiosondes and observations of ice particle habits at ground level. We found that precipitating clouds were extending from near ground to at least 2.7 km altitude and approximately three-quarters of them were likely glaciated. Possible moisture sources and ice formation processes are discussed.
Étienne Vignon, Lea Raillard, Christophe Genthon, Massimo Del Guasta, Andrew J. Heymsfield, Jean-Baptiste Madeleine, and Alexis Berne
Atmos. Chem. Phys., 22, 12857–12872, https://doi.org/10.5194/acp-22-12857-2022, https://doi.org/10.5194/acp-22-12857-2022, 2022
Short summary
Short summary
The near-surface atmosphere over the Antarctic Plateau is cold and pristine and resembles to a certain extent the high troposphere where cirrus clouds form. In this study, we use innovative humidity measurements at Concordia Station to study the formation of ice fogs at temperatures <−40°C. We provide observational evidence that ice fogs can form through the homogeneous freezing of solution aerosols, a common nucleation pathway for cirrus clouds.
Fernando Chouza, Thierry Leblanc, Mark Brewer, Patrick Wang, Giovanni Martucci, Alexander Haefele, Hélène Vérèmes, Valentin Duflot, Guillaume Payen, and Philippe Keckhut
Atmos. Meas. Tech., 15, 4241–4256, https://doi.org/10.5194/amt-15-4241-2022, https://doi.org/10.5194/amt-15-4241-2022, 2022
Short summary
Short summary
The comparison of water vapor lidar measurements with co-located radiosondes and aerosol backscatter profiles indicates that laser-induced aerosol fluorescence in smoke layers injected into the stratosphere can introduce very large and chronic wet biases above 15 km, thus impacting the ability of these systems to accurately estimate long-term water vapor trends. The proposed correction method presented in this work is able to reduce this fluorescence-induced bias from 75 % to under 5 %.
Alfonso Ferrone, Anne-Claire Billault-Roux, and Alexis Berne
Atmos. Meas. Tech., 15, 3569–3592, https://doi.org/10.5194/amt-15-3569-2022, https://doi.org/10.5194/amt-15-3569-2022, 2022
Short summary
Short summary
The Micro Rain Radar PRO (MRR-PRO) is a meteorological radar, with a relevant set of features for deployment in remote locations. We developed an algorithm, named ERUO, for the processing of its measurements of snowfall. The algorithm addresses typical issues of the raw spectral data, such as interference lines, but also improves the quality and sensitivity of the radar variables. ERUO has been evaluated over four different datasets collected in Antarctica and in the Swiss Jura.
Jeong-Su Ko, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, Gregory Thompson, and Alexis Berne
Geosci. Model Dev., 15, 4529–4553, https://doi.org/10.5194/gmd-15-4529-2022, https://doi.org/10.5194/gmd-15-4529-2022, 2022
Short summary
Short summary
This study evaluates the performance of the four microphysics parameterizations, the WDM6, WDM7, Thompson, and Morrison schemes, in simulating snowfall events during the ICE-POP 2018 field campaign. Eight snowfall events are selected and classified into three categories (cold-low, warm-low, and air–sea interaction cases). The evaluation focuses on the simulated hydrometeors, microphysics budgets, wind fields, and precipitation using the measurement data.
Paraskevi Georgakaki, Georgia Sotiropoulou, Étienne Vignon, Anne-Claire Billault-Roux, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 22, 1965–1988, https://doi.org/10.5194/acp-22-1965-2022, https://doi.org/10.5194/acp-22-1965-2022, 2022
Short summary
Short summary
The modelling study focuses on the importance of ice multiplication processes in orographic mixed-phase clouds, which is one of the least understood cloud types in the climate system. We show that the consideration of ice seeding and secondary ice production through ice–ice collisional breakup is essential for correct predictions of precipitation in mountainous terrain, with important implications for radiation processes.
Monika Feldmann, Urs Germann, Marco Gabella, and Alexis Berne
Weather Clim. Dynam., 2, 1225–1244, https://doi.org/10.5194/wcd-2-1225-2021, https://doi.org/10.5194/wcd-2-1225-2021, 2021
Short summary
Short summary
Mesocyclones are the rotating updraught of supercell thunderstorms that present a particularly hazardous subset of thunderstorms. A first-time characterisation of the spatiotemporal occurrence of mesocyclones in the Alpine region is presented, using 5 years of Swiss operational radar data. We investigate parallels to hailstorms, particularly the influence of large-scale flow, daily cycles and terrain. Improving understanding of mesocyclones is valuable for risk assessment and warning purposes.
Jussi Leinonen, Jacopo Grazioli, and Alexis Berne
Atmos. Meas. Tech., 14, 6851–6866, https://doi.org/10.5194/amt-14-6851-2021, https://doi.org/10.5194/amt-14-6851-2021, 2021
Short summary
Short summary
Measuring the shape, size and mass of a large number of snowflakes is a challenging task; it is hard to achieve in an automatic and instrumented manner. We present a method to retrieve these properties of individual snowflakes using as input a triplet of images/pictures automatically collected by a multi-angle snowflake camera (MASC) instrument. Our method, based on machine learning, is trained on artificially generated snowflakes and evaluated on 3D-printed snowflake replicas.
Marc Schwaerzel, Dominik Brunner, Fabian Jakub, Claudia Emde, Brigitte Buchmann, Alexis Berne, and Gerrit Kuhlmann
Atmos. Meas. Tech., 14, 6469–6482, https://doi.org/10.5194/amt-14-6469-2021, https://doi.org/10.5194/amt-14-6469-2021, 2021
Short summary
Short summary
NO2 maps from airborne imaging remote sensing often appear much smoother than one would expect from high-resolution model simulations of NO2 over cities, despite the small ground-pixel size of the sensors. Our case study over Zurich, using the newly implemented building module of the MYSTIC radiative transfer solver, shows that the 3D effect can explain part of the smearing and that building shadows cause a noticeable underestimation and noise in the measured NO2 columns.
Anna Špačková, Vojtěch Bareš, Martin Fencl, Marc Schleiss, Joël Jaffrain, Alexis Berne, and Jörg Rieckermann
Earth Syst. Sci. Data, 13, 4219–4240, https://doi.org/10.5194/essd-13-4219-2021, https://doi.org/10.5194/essd-13-4219-2021, 2021
Short summary
Short summary
An original dataset of microwave signal attenuation and rainfall variables was collected during 1-year-long field campaign. The monitored 38 GHz dual-polarized commercial microwave link with a short sampling resolution (4 s) was accompanied by five disdrometers and three rain gauges along its path. Antenna radomes were temporarily shielded for approximately half of the campaign period to investigate antenna wetting impacts.
Paraskevi Georgakaki, Aikaterini Bougiatioti, Jörg Wieder, Claudia Mignani, Fabiola Ramelli, Zamin A. Kanji, Jan Henneberger, Maxime Hervo, Alexis Berne, Ulrike Lohmann, and Athanasios Nenes
Atmos. Chem. Phys., 21, 10993–11012, https://doi.org/10.5194/acp-21-10993-2021, https://doi.org/10.5194/acp-21-10993-2021, 2021
Short summary
Short summary
Aerosol and cloud observations coupled with a droplet activation parameterization was used to investigate the aerosol–cloud droplet link in alpine mixed-phase clouds. Predicted droplet number, Nd, agrees with observations and never exceeds a characteristic “limiting droplet number”, Ndlim, which depends solely on σw. Nd becomes velocity limited when it is within 50 % of Ndlim. Identifying when dynamical changes control Nd variability is central for understanding aerosol–cloud interactions.
Noémie Planat, Josué Gehring, Étienne Vignon, and Alexis Berne
Atmos. Meas. Tech., 14, 4543–4564, https://doi.org/10.5194/amt-14-4543-2021, https://doi.org/10.5194/amt-14-4543-2021, 2021
Short summary
Short summary
We implement a new method to identify microphysical processes during cold precipitation events based on the sign of the vertical gradient of polarimetric radar variables. We analytically asses the meteorological conditions for this vertical analysis to hold, apply it on two study cases and successfully compare it with other methods informing about the microphysics. Finally, we are able to obtain the main vertical structure and characteristics of the different processes during these study cases.
Daniel Wolfensberger, Marco Gabella, Marco Boscacci, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 14, 3169–3193, https://doi.org/10.5194/amt-14-3169-2021, https://doi.org/10.5194/amt-14-3169-2021, 2021
Short summary
Short summary
In this work, we present a novel quantitative precipitation estimation method for Switzerland that uses random forests, an ensemble-based machine learning technique. The estimator has been trained with a database of 4 years of ground and radar observations. The results of an in-depth evaluation indicate that, compared with the more classical method in use at MeteoSwiss, this novel estimator is able to reduce both the average error and bias of the predictions.
Anne-Claire Billault-Roux and Alexis Berne
Atmos. Meas. Tech., 14, 2749–2769, https://doi.org/10.5194/amt-14-2749-2021, https://doi.org/10.5194/amt-14-2749-2021, 2021
Short summary
Short summary
In the context of climate studies, understanding the role of clouds on a global and local scale is of paramount importance. One aspect is the quantification of cloud liquid water, which impacts the Earth’s radiative balance. This is routinely achieved with radiometers operating at different frequencies. In this study, we propose an approach that uses a single-frequency radiometer and that can be applied at any location to retrieve vertically integrated quantities of liquid water and water vapor.
Giovanni Martucci, Francisco Navas-Guzmán, Ludovic Renaud, Gonzague Romanens, S. Mahagammulla Gamage, Maxime Hervo, Pierre Jeannet, and Alexander Haefele
Atmos. Meas. Tech., 14, 1333–1353, https://doi.org/10.5194/amt-14-1333-2021, https://doi.org/10.5194/amt-14-1333-2021, 2021
Short summary
Short summary
This article presents a validation of 1.5 years of pure rotational temperature data measured by the Raman lidar RALMO installed at the MeteoSwiss station of Payerne. The statistical results are in terms of bias and standard deviation with respect to two well-established radiosounding systems. The statistics are divided into daytime (bias = 0.28 K, SD = 0.62±0.03 K) and nighttime (bias = 0.29 K, SD = 0.66±0.06 K). The lidar temperature profiles are applied to cloud supersaturation studies.
Simone Brunamonti, Giovanni Martucci, Gonzague Romanens, Yann Poltera, Frank G. Wienhold, Maxime Hervo, Alexander Haefele, and Francisco Navas-Guzmán
Atmos. Chem. Phys., 21, 2267–2285, https://doi.org/10.5194/acp-21-2267-2021, https://doi.org/10.5194/acp-21-2267-2021, 2021
Short summary
Short summary
Lidar (light detection and ranging) is a class of remote-sensing instruments that are widely used for the monitoring of aerosol properties in the lower levels of the atmosphere, yet their measurements are affected by several sources of uncertainty. Here we present the first comparison of two lidar systems against a fully independent instrument carried by meteorological balloons. We show that both lidars achieve a good agreement with the high-precision balloon measurements up to 6 km altitude.
Josué Gehring, Alfonso Ferrone, Anne-Claire Billault-Roux, Nikola Besic, Kwang Deuk Ahn, GyuWon Lee, and Alexis Berne
Earth Syst. Sci. Data, 13, 417–433, https://doi.org/10.5194/essd-13-417-2021, https://doi.org/10.5194/essd-13-417-2021, 2021
Short summary
Short summary
This article describes a dataset of precipitation and cloud measurements collected from November 2017 to March 2018 in Pyeongchang, South Korea. The dataset includes weather radar data and images of snowflakes. It allows for studying the snowfall intensity; wind conditions; and shape, size and fall speed of snowflakes. Classifications of the types of snowflakes show that aggregates of ice crystals were dominant. This dataset represents a unique opportunity to study snowfall in this region.
Georgia Sotiropoulou, Étienne Vignon, Gillian Young, Hugh Morrison, Sebastian J. O'Shea, Thomas Lachlan-Cope, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 21, 755–771, https://doi.org/10.5194/acp-21-755-2021, https://doi.org/10.5194/acp-21-755-2021, 2021
Short summary
Short summary
Summer clouds have a significant impact on the radiation budget of the Antarctic surface and thus on ice-shelf melting. However, these are poorly represented in climate models due to errors in their microphysical structure, including the number of ice crystals that they contain. We show that breakup from ice particle collisions can substantially magnify the ice crystal number concentration with significant implications for surface radiation. This process is currently missing in climate models.
Martine Collaud Coen, Elisabeth Andrews, Alessandro Bigi, Giovanni Martucci, Gonzague Romanens, Frédéric P. A. Vogt, and Laurent Vuilleumier
Atmos. Meas. Tech., 13, 6945–6964, https://doi.org/10.5194/amt-13-6945-2020, https://doi.org/10.5194/amt-13-6945-2020, 2020
Short summary
Short summary
The Mann–Kendall trend test requires prewhitening in the presence of serially correlated data. The effects of five prewhitening methods and time granularity, autocorrelation, temporal segmentation and length of the time series on the statistical significance and the slope are studies for seven atmospheric datasets. Finally, a new algorithm using three prewhitening methods is proposed in order to optimize the power of the test, the amount of erroneous false positive trends and the slope estimate.
Shannon Hicks-Jalali, Robert J. Sica, Giovanni Martucci, Eliane Maillard Barras, Jordan Voirin, and Alexander Haefele
Atmos. Chem. Phys., 20, 9619–9640, https://doi.org/10.5194/acp-20-9619-2020, https://doi.org/10.5194/acp-20-9619-2020, 2020
Short summary
Short summary
We have calculated an 11.5-year water vapour climatology using the Raman Lidar for Meteorological Observations (RALMO), located in Payerne, Switzerland. The climatology shows that the highest water vapour concentrations are in the summer months and the lowest in the winter months. We present for the first time height-resolved water vapour trends, which show that water vapour increases specific humidity by between 5 % and 15 % per decade depending on the altitude.
Marc Schwaerzel, Claudia Emde, Dominik Brunner, Randulph Morales, Thomas Wagner, Alexis Berne, Brigitte Buchmann, and Gerrit Kuhlmann
Atmos. Meas. Tech., 13, 4277–4293, https://doi.org/10.5194/amt-13-4277-2020, https://doi.org/10.5194/amt-13-4277-2020, 2020
Short summary
Short summary
Horizontal homogeneity is often assumed for trace gases remote sensing, although it is not valid where trace gas concentrations have high spatial variability, e.g., in cities. We show the importance of 3D effects for MAX-DOAS and airborne imaging spectrometers using 3D-box air mass factors implemented in the MYSTIC radiative transfer solver. In both cases, 3D information is invaluable for interpreting the measurements, as not considering 3D effects can lead to misinterpretation of measurements.
Duane Waliser, Peter J. Gleckler, Robert Ferraro, Karl E. Taylor, Sasha Ames, James Biard, Michael G. Bosilovich, Otis Brown, Helene Chepfer, Luca Cinquini, Paul J. Durack, Veronika Eyring, Pierre-Philippe Mathieu, Tsengdar Lee, Simon Pinnock, Gerald L. Potter, Michel Rixen, Roger Saunders, Jörg Schulz, Jean-Noël Thépaut, and Matthias Tuma
Geosci. Model Dev., 13, 2945–2958, https://doi.org/10.5194/gmd-13-2945-2020, https://doi.org/10.5194/gmd-13-2945-2020, 2020
Short summary
Short summary
This paper provides an update to an international research activity whose objective is to facilitate access to satellite and other types of regional and global datasets for evaluating global models used to produce 21st century climate projections.
Josué Gehring, Annika Oertel, Étienne Vignon, Nicolas Jullien, Nikola Besic, and Alexis Berne
Atmos. Chem. Phys., 20, 7373–7392, https://doi.org/10.5194/acp-20-7373-2020, https://doi.org/10.5194/acp-20-7373-2020, 2020
Short summary
Short summary
In this study, we analyse how large-scale meteorological conditions influenced the local enhancement of snowfall during an intense precipitation event in Korea. We used atmospheric models, weather radars and snowflake images. We found out that a rising airstream in the warm sector of the low pressure system associated to this event influenced the evolution of snowfall. This study highlights the importance of interactions between large and local scales in this intense precipitation event.
Jussi Leinonen and Alexis Berne
Atmos. Meas. Tech., 13, 2949–2964, https://doi.org/10.5194/amt-13-2949-2020, https://doi.org/10.5194/amt-13-2949-2020, 2020
Short summary
Short summary
The appearance of snowflakes provides a signature of the atmospheric processes that created them. To get this information from large numbers of snowflake images, automated analysis using computer image recognition is needed. In this work, we use a neural network that learns the structure of the snowflake images to divide a snowflake dataset into classes corresponding to different sizes and structures. Unlike with most comparable methods, only minimal input from a human expert is needed.
Nicolas Jullien, Étienne Vignon, Michael Sprenger, Franziska Aemisegger, and Alexis Berne
The Cryosphere, 14, 1685–1702, https://doi.org/10.5194/tc-14-1685-2020, https://doi.org/10.5194/tc-14-1685-2020, 2020
Short summary
Short summary
Although snowfall is the main input of water to the Antarctic ice sheet, snowflakes are often evaporated by dry and fierce winds near the surface of the continent. The amount of snow that actually reaches the ground is therefore considerably reduced. By analyzing the position of cyclones and fronts as well as by back-tracing the atmospheric moisture pathway towards Antarctica, this study explains in which meteorological conditions snowfall is either completely evaporated or reaches the ground.
Floor van den Heuvel, Loris Foresti, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 13, 2481–2500, https://doi.org/10.5194/amt-13-2481-2020, https://doi.org/10.5194/amt-13-2481-2020, 2020
Short summary
Short summary
In areas with reduced visibility at the ground level, radar precipitation measurements higher up in the atmosphere need to be extrapolated to the ground and be corrected for the vertical change (i.e. growth and transformation) of precipitation. This study proposes a method based on hydrometeor proportions and machine learning (ML) to apply these corrections at smaller spatiotemporal scales. In comparison with existing techniques, the ML methods can make predictions from higher altitudes.
Mathieu Schaer, Christophe Praz, and Alexis Berne
The Cryosphere, 14, 367–384, https://doi.org/10.5194/tc-14-367-2020, https://doi.org/10.5194/tc-14-367-2020, 2020
Short summary
Short summary
Wind and precipitation often occur together, making the distinction between particles coming from the atmosphere and those blown by the wind difficult. This is however a crucial task to accurately close the surface mass balance. We propose an algorithm based on Gaussian mixture models to separate blowing snow and precipitation in images collected by a Multi-Angle Snowflake Camera (MASC). The algorithm is trained and (positively) evaluated using data collected in the Swiss Alps and in Antarctica.
Shayamila Mahagammulla Gamage, Robert J. Sica, Giovanni Martucci, and Alexander Haefele
Atmos. Meas. Tech., 12, 5801–5816, https://doi.org/10.5194/amt-12-5801-2019, https://doi.org/10.5194/amt-12-5801-2019, 2019
Short summary
Short summary
We present a new method for retrieving temperature from pure rotational Raman (PRR) lidar measurements using an optimal estimation method. We show that the error due to calibration can be reduced significantly using our method. The new method is tested on PRR temperature measurements from the MeteoSwiss Raman Lidar for Meteorological Observations system in different sky conditions. The next step is to assimilate the temperature profiles into models to help improve weather forecasts.
Stephan Nyeki, Stefan Wacker, Christine Aebi, Julian Gröbner, Giovanni Martucci, and Laurent Vuilleumier
Atmos. Chem. Phys., 19, 13227–13241, https://doi.org/10.5194/acp-19-13227-2019, https://doi.org/10.5194/acp-19-13227-2019, 2019
Short summary
Short summary
The trends of meteorological parameters and surface downward shortwave radiation (DSR) and downward longwave radiation (DLR) were analysed at four stations (between 370 and 3580 m a. s. l.) in Switzerland for the 1996–2015 period. Trends in DSR and DLR were positive during cloudy as well as clear conditions. The trend due to the influence of clouds decreased in magnitude, which implies a reduction in cloud cover and/or a change towards a different cloud type over the four Swiss sites.
Francisco Navas-Guzmán, Giovanni Martucci, Martine Collaud Coen, María José Granados-Muñoz, Maxime Hervo, Michael Sicard, and Alexander Haefele
Atmos. Chem. Phys., 19, 11651–11668, https://doi.org/10.5194/acp-19-11651-2019, https://doi.org/10.5194/acp-19-11651-2019, 2019
Short summary
Short summary
The present study demonstrates the capability of a Raman lidar to monitor aerosol hygroscopic processes. The results showed a higher hygroscopicity and wavelength dependency for smoke particles than for mineral dust. The higher sensitivity of the shortest wavelength to hygroscopic growth found for smoke particles was qualitatively reproduced using Mie simulations. The impact of aerosol hygroscopicity on the Earth's radiative balance has been evaluated using a radiative transfer model.
Shannon Hicks-Jalali, Robert J. Sica, Alexander Haefele, and Giovanni Martucci
Atmos. Meas. Tech., 12, 3699–3716, https://doi.org/10.5194/amt-12-3699-2019, https://doi.org/10.5194/amt-12-3699-2019, 2019
Short summary
Short summary
Water vapour trend calculations with lidars require rigorous calibrations. Here, we improve water vapour lidar calibrations using GCOS Reference Upper Air Network (GRUAN) radiosondes and a new trajectory method. The trajectory method improved the lidar calibration and more consistently agreed with the radiosonde measurement compared to the traditional method. Using GRUAN radiosondes enabled the calculation, for the first time, of a complete uncertainty budget of the calibration constant.
Étienne Vignon, Olivier Traullé, and Alexis Berne
Atmos. Chem. Phys., 19, 4659–4683, https://doi.org/10.5194/acp-19-4659-2019, https://doi.org/10.5194/acp-19-4659-2019, 2019
Short summary
Short summary
The future sea-level rise will depend on how much the Antarctic ice sheet gain – via precipitation – or loose mass. The simulation of precipitation by numerical models used for projections depends on the representation of the atmospheric circulation over and around Antarctica. Using daily measurements from balloon soundings at nine Antarctic stations, this study characterizes the structure of the atmosphere over the Antarctic coast and its representation in atmospheric simulations.
Florentin Lemonnier, Jean-Baptiste Madeleine, Chantal Claud, Christophe Genthon, Claudio Durán-Alarcón, Cyril Palerme, Alexis Berne, Niels Souverijns, Nicole van Lipzig, Irina V. Gorodetskaya, Tristan L'Ecuyer, and Norman Wood
The Cryosphere, 13, 943–954, https://doi.org/10.5194/tc-13-943-2019, https://doi.org/10.5194/tc-13-943-2019, 2019
Short summary
Short summary
Evaluation of the vertical precipitation rate profiles of CloudSat radar by comparison with two surface-based micro-rain radars (MRR) located at two antarctic stations gives a near-perfect correlation between both datasets, even though climatic and geographic conditions are different for the stations. A better understanding and reassessment of CloudSat uncertainties ranging from −13 % up to +22 % confirms the robustness of the CloudSat retrievals of snowfall over Antarctica.
Claudio Durán-Alarcón, Brice Boudevillain, Christophe Genthon, Jacopo Grazioli, Niels Souverijns, Nicole P. M. van Lipzig, Irina V. Gorodetskaya, and Alexis Berne
The Cryosphere, 13, 247–264, https://doi.org/10.5194/tc-13-247-2019, https://doi.org/10.5194/tc-13-247-2019, 2019
Short summary
Short summary
Precipitation is the main input in the surface mass balance of the Antarctic ice sheet, but it is still poorly understood due to a lack of observations in this region. We analyzed the vertical structure of the precipitation using multiyear observation of vertically pointing micro rain radars (MRRs) at two stations located in East Antarctica. The use of MRRs showed the potential to study the effect of climatology and hydrometeor microphysics on the vertical structure of Antarctic precipitation.
Niels Souverijns, Alexandra Gossart, Stef Lhermitte, Irina V. Gorodetskaya, Jacopo Grazioli, Alexis Berne, Claudio Duran-Alarcon, Brice Boudevillain, Christophe Genthon, Claudio Scarchilli, and Nicole P. M. van Lipzig
The Cryosphere, 12, 3775–3789, https://doi.org/10.5194/tc-12-3775-2018, https://doi.org/10.5194/tc-12-3775-2018, 2018
Short summary
Short summary
Snowfall observations over Antarctica are scarce and currently limited to information from the CloudSat satellite. Here, a first evaluation of the CloudSat snowfall record is performed using observations of ground-based precipitation radars. Results indicate an accurate representation of the snowfall climatology over Antarctica, despite the low overpass frequency of the satellite, outperforming state-of-the-art model estimates. Individual snowfall events are however not well represented.
Franziska Gerber, Nikola Besic, Varun Sharma, Rebecca Mott, Megan Daniels, Marco Gabella, Alexis Berne, Urs Germann, and Michael Lehning
The Cryosphere, 12, 3137–3160, https://doi.org/10.5194/tc-12-3137-2018, https://doi.org/10.5194/tc-12-3137-2018, 2018
Short summary
Short summary
A comparison of winter precipitation variability in operational radar measurements and high-resolution simulations reveals that large-scale variability is well captured by the model, depending on the event. Precipitation variability is driven by topography and wind. A good portion of small-scale variability is captured at the highest resolution. This is essential to address small-scale precipitation processes forming the alpine snow seasonal snow cover – an important source of water.
Floor van den Heuvel, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 11, 5181–5198, https://doi.org/10.5194/amt-11-5181-2018, https://doi.org/10.5194/amt-11-5181-2018, 2018
Short summary
Short summary
The paper aims at characterising and quantifying the spatio-temporal variability of the melting layer (ML; transition zone from solid to liquid precipitation). A method based on the Fourier transform is found to accurately describe different ML signatures. Hence, it is applied to characterise the ML variability in a relatively flat area and in an inner Alpine valley in Switzerland, where the variability at smaller spatial scales is found to be relatively more important.
Christophe Genthon, Alexis Berne, Jacopo Grazioli, Claudio Durán Alarcón, Christophe Praz, and Brice Boudevillain
Earth Syst. Sci. Data, 10, 1605–1612, https://doi.org/10.5194/essd-10-1605-2018, https://doi.org/10.5194/essd-10-1605-2018, 2018
Short summary
Short summary
Antarctica suffers from a severe shortage of in situ observations of precipitation. The APRES3 program contributes to improving observation from both the surface and from space. A field campaign with various instruments was deployed at the coast of Adélie Land, with an intensive observing period in austral summer 2015–16, then continuous radar monitoring through 2016 and beyond. This paper provides a compact presentation of the APRES3 dataset, which is now made open to the scientific community.
Nikola Besic, Josué Gehring, Christophe Praz, Jordi Figueras i Ventura, Jacopo Grazioli, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 11, 4847–4866, https://doi.org/10.5194/amt-11-4847-2018, https://doi.org/10.5194/amt-11-4847-2018, 2018
Short summary
Short summary
In this paper we propose an innovative approach for hydrometeor de-mixing, i.e., to identify and quantify the presence of mixtures of different hydrometeor types in a radar sampling volume. It is a bin-based approach, inspired by conventional decomposition methods and evaluated using C- and X-band radar measurements compared with synchronous ground observations. The paper also investigates the potential influence of incoherency in the backscattering from hydrometeor mixtures in a radar volume.
Daniel Wolfensberger and Alexis Berne
Atmos. Meas. Tech., 11, 3883–3916, https://doi.org/10.5194/amt-11-3883-2018, https://doi.org/10.5194/amt-11-3883-2018, 2018
Short summary
Short summary
This work presents a polarimetric forward operator for the COSMO weather prediction model. This tool is able to simulate radar observables from the state of the atmosphere simulated by the model, taking into account most physical aspects of radar beam propagation and backscattering. This operator was validated with a large dataset of radar observations from several instruments and it was shown that is able to simulate a realistic radar signature in liquid precipitation.
Stelios Kazadzis, Natalia Kouremeti, Henri Diémoz, Julian Gröbner, Bruce W. Forgan, Monica Campanelli, Victor Estellés, Kathleen Lantz, Joseph Michalsky, Thomas Carlund, Emilio Cuevas, Carlos Toledano, Ralf Becker, Stephan Nyeki, Panagiotis G. Kosmopoulos, Viktar Tatsiankou, Laurent Vuilleumier, Frederick M. Denn, Nozomu Ohkawara, Osamu Ijima, Philippe Goloub, Panagiotis I. Raptis, Michael Milner, Klaus Behrens, Africa Barreto, Giovanni Martucci, Emiel Hall, James Wendell, Bryan E. Fabbri, and Christoph Wehrli
Atmos. Chem. Phys., 18, 3185–3201, https://doi.org/10.5194/acp-18-3185-2018, https://doi.org/10.5194/acp-18-3185-2018, 2018
Short summary
Short summary
Aerosol optical depth measured from ground-based sun photometers is the most important parameter for studying the changes in the Earth's radiation balance due to aerosols. Representatives for various sun photometer types belonging to individual institutions or international aerosol networks gather every 5 years, for 3 weeks, in Davos, Switzerland, in order to compare their aeorosol optical depth retrievals. This work presents the results of the latest (fourth) filter radiometer intercomparison.
Daniel Wolfensberger, Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer, and Alexis Berne
Atmos. Chem. Phys., 17, 14253–14273, https://doi.org/10.5194/acp-17-14253-2017, https://doi.org/10.5194/acp-17-14253-2017, 2017
Short summary
Short summary
Precipitation intensities simulated by the COSMO weather prediction model are compared to radar observations over a range of spatial and temporal scales using the universal multifractal framework. Our results highlight the strong influence of meteorological and topographical features on the multifractal characteristics of precipitation. Moreover, the influence of the subgrid parameterizations of COSMO is clearly visible by a break in the scaling properties that is absent from the radar data.
Yann Poltera, Giovanni Martucci, Martine Collaud Coen, Maxime Hervo, Lukas Emmenegger, Stephan Henne, Dominik Brunner, and Alexander Haefele
Atmos. Chem. Phys., 17, 10051–10070, https://doi.org/10.5194/acp-17-10051-2017, https://doi.org/10.5194/acp-17-10051-2017, 2017
Short summary
Short summary
We present the PathfinderTURB algorithm for the analysis of ceilometer backscatter data and the real-time detection of the vertical structure of the planetary boundary layer. PathfinderTURB has been applied to 1 year of data measured by two ceilometers operated at two Swiss stations: the Aerological Observatory of Payerne on the Swiss plateau, and the Alpine Jungfraujoch observatory. The study shows that aerosols from the boundary layer significantly influence the air measured at Jungfraujoch.
Jacopo Grazioli, Christophe Genthon, Brice Boudevillain, Claudio Duran-Alarcon, Massimo Del Guasta, Jean-Baptiste Madeleine, and Alexis Berne
The Cryosphere, 11, 1797–1811, https://doi.org/10.5194/tc-11-1797-2017, https://doi.org/10.5194/tc-11-1797-2017, 2017
Short summary
Short summary
We present medium and long-term measurements of precipitation in a coastal region of Antarctica. These measurements are among the first of their kind on the Antarctic continent and combine remote sensing with in situ observations. The benefits of this synergy are demonstrated and the lessons learned from this measurements, which are still ongoing, are very important for the creation of similar observatories elsewhere on the continent.
Timothy H. Raupach and Alexis Berne
Atmos. Meas. Tech., 10, 2573–2594, https://doi.org/10.5194/amt-10-2573-2017, https://doi.org/10.5194/amt-10-2573-2017, 2017
Short summary
Short summary
The raindrop size distribution (DSD) describes the microstructure of rain. It is required knowledge for weather radar applications and has broad applicability to studies of rainfall processes, including weather models and rain retrieval algorithms. We present a new technique for estimating the DSD from polarimetric radar data. The new method was tested in three different domains, and its performance was found to be similar to and often better than an an existing DSD retrieval method.
Christophe Praz, Yves-Alain Roulet, and Alexis Berne
Atmos. Meas. Tech., 10, 1335–1357, https://doi.org/10.5194/amt-10-1335-2017, https://doi.org/10.5194/amt-10-1335-2017, 2017
Short summary
Short summary
The Multi-Angle Snowflake Camera (MASC) provides high-resolution pictures of individual falling snowflakes and ice crystals. A method is proposed to automatically classify these pictures into six classes of snowflakes as well to estimate the degree of riming and to detect whether or not the particles are melting. Multinomial logistic regression is used with a manually classified
reference set. The evaluation demonstrates the good and reliable performance of the proposed technique.
Guillaume Nord, Brice Boudevillain, Alexis Berne, Flora Branger, Isabelle Braud, Guillaume Dramais, Simon Gérard, Jérôme Le Coz, Cédric Legoût, Gilles Molinié, Joel Van Baelen, Jean-Pierre Vandervaere, Julien Andrieu, Coralie Aubert, Martin Calianno, Guy Delrieu, Jacopo Grazioli, Sahar Hachani, Ivan Horner, Jessica Huza, Raphaël Le Boursicaud, Timothy H. Raupach, Adriaan J. Teuling, Magdalena Uber, Béatrice Vincendon, and Annette Wijbrans
Earth Syst. Sci. Data, 9, 221–249, https://doi.org/10.5194/essd-9-221-2017, https://doi.org/10.5194/essd-9-221-2017, 2017
Short summary
Short summary
A high space–time resolution dataset linking hydrometeorological forcing and hydro-sedimentary response in a mesoscale catchment (Auzon, 116 km2) of the Ardèche region (France) is presented. This region is subject to precipitating systems of Mediterranean origin, which can result in significant rainfall amount. The data presented cover a period of 4 years (2011–2014) and aim at improving the understanding of processes triggering flash floods.
Darius Ceburnis, Matteo Rinaldi, Jurgita Ovadnevaite, Giovanni Martucci, Lara Giulianelli, and Colin D. O'Dowd
Atmos. Chem. Phys., 16, 12425–12439, https://doi.org/10.5194/acp-16-12425-2016, https://doi.org/10.5194/acp-16-12425-2016, 2016
Nikola Besic, Jordi Figueras i Ventura, Jacopo Grazioli, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 9, 4425–4445, https://doi.org/10.5194/amt-9-4425-2016, https://doi.org/10.5194/amt-9-4425-2016, 2016
Short summary
Short summary
In this paper we propose a novel semi-supervised method for hydrometeor classification, which takes into account both the specificities of acquired polarimetric radar measurements and the presumed electromagnetic behavior of different hydrometeor types. The method has been applied on three datasets, each acquired by different C-band radar from the Swiss network, and on two X-band research radar datasets. The obtained classification is found to be of high quality.
Luca Panziera, Marco Gabella, Stefano Zanini, Alessandro Hering, Urs Germann, and Alexis Berne
Hydrol. Earth Syst. Sci., 20, 2317–2332, https://doi.org/10.5194/hess-20-2317-2016, https://doi.org/10.5194/hess-20-2317-2016, 2016
Short summary
Short summary
This paper presents a novel system to issue heavy rainfall alerts for predefined geographical regions by evaluating the sum of precipitation fallen in the immediate past and expected in the near future. In order to objectively define the thresholds for the alerts, an extreme rainfall analysis for the 159 regions used for official warnings in Switzerland was developed. It is shown that the system has additional lead time with respect to thunderstorm tracking tools targeted for convective storms.
J. Grazioli, G. Lloyd, L. Panziera, C. R. Hoyle, P. J. Connolly, J. Henneberger, and A. Berne
Atmos. Chem. Phys., 15, 13787–13802, https://doi.org/10.5194/acp-15-13787-2015, https://doi.org/10.5194/acp-15-13787-2015, 2015
Short summary
Short summary
This study investigates the microphysics of winter alpine snowfall occurring in mixed-phase clouds in an inner-Alpine valley during CLACE2014. From polarimetric radar and in situ observations, riming is shown to be an important process leading to more intense snowfall. Riming is usually associated with more intense turbulence providing supercooled liquid water. Distinct features are identified in the vertical structure of polarimetric radar variables.
M. Stähli, M. Sättele, C. Huggel, B. W. McArdell, P. Lehmann, A. Van Herwijnen, A. Berne, M. Schleiss, A. Ferrari, A. Kos, D. Or, and S. M. Springman
Nat. Hazards Earth Syst. Sci., 15, 905–917, https://doi.org/10.5194/nhess-15-905-2015, https://doi.org/10.5194/nhess-15-905-2015, 2015
Short summary
Short summary
This review paper describes the state of the art in monitoring and predicting rapid mass movements for early warning. It further presents recent innovations in observation technologies and modelling to be used in future early warning systems (EWS). Finally, the paper proposes avenues towards successful implementation of next-generation EWS.
T. H. Raupach and A. Berne
Atmos. Meas. Tech., 8, 343–365, https://doi.org/10.5194/amt-8-343-2015, https://doi.org/10.5194/amt-8-343-2015, 2015
Short summary
Short summary
Using the 2-D video disdrometer (2DVD) as a reference, a technique to correct the spectra of drop size distribution (DSD) measured by Parsivel disdrometers (1st and 2nd generation) is proposed. The measured velocities and equivolume diameters are corrected to better match those from the 2DVD. The correction is evaluated using data from southern France and the Swiss Plateau. It appears to be similar for both climatologies, and to improve the consistency with colocated 2DVDs and rain gauges.
J. Grazioli, D. Tuia, and A. Berne
Atmos. Meas. Tech., 8, 149–170, https://doi.org/10.5194/amt-8-149-2015, https://doi.org/10.5194/amt-8-149-2015, 2015
Short summary
Short summary
A new approach for hydrometeor classification from polarimetric radar measurements is proposed. It takes adavantage of clustering techniques to objectively determine the number of hydrometeor classes that can be reliably identified. The proposed method is tested using observations from an X-band polarimetric radar in different regions and evaluated by comparison with existing algorithms and with measurements from a ground-based 2D video disdrometer (providing 2-D views of falling hydrometeors).
J. Grazioli, D. Tuia, S. Monhart, M. Schneebeli, T. Raupach, and A. Berne
Atmos. Meas. Tech., 7, 2869–2882, https://doi.org/10.5194/amt-7-2869-2014, https://doi.org/10.5194/amt-7-2869-2014, 2014
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Consideration of the cloud motion for aircraft-based stereographically derived cloud geometry and cloud top heights
Exploring the characteristics of Fengyun-4A Advanced Geostationary Radiation Imager (AGRI) visible reflectance using the China Meteorological Administration Mesoscale (CMA-MESO) forecasts and its implications for data assimilation
Validating global horizontal irradiance retrievals from Meteosat SEVIRI at increased spatial resolution against a dense network of ground-based observations
Factors limiting contrail detection in satellite imagery
Evaluating spectral cloud effective radius retrievals from the Enhanced MODIS Airborne Simulator (eMAS) during ORACLES
Synergistic approach of frozen hydrometeor retrievals: considerations on radiative transfer and model uncertainties in a simulated framework
An evaluation of microphysics in a numerical model using Doppler velocity measured by ground-based radar for application to the EarthCARE satellite
Investigation of cirrus cloud properties in the tropical tropopause layer using high-altitude limb-scanning near-IR spectroscopy during NASA-ATTREX
Comparing FY-2F/CTA products to ground-based manual total cloud cover observations in Xinjiang under complex underlying surfaces and different weather conditions
Model-based evaluation of cloud geometry and droplet size retrievals from two-dimensional polarized measurements of specMACS
Improved RepVGG ground-based cloud image classification with attention convolution
An intercomparison of EarthCARE cloud, aerosol, and precipitation retrieval products
First results of cloud retrieval from the Geostationary Environmental Monitoring Spectrometer
Thundercloud structures detected and analyzed based on coherent Doppler wind lidar
Assessing Arctic low-level clouds and precipitation from above – a radar perspective
What CloudSat cannot see: liquid water content profiles inferred from MODIS and CALIOP observations
Validation of the Cloud_CCI (Cloud Climate Change Initiative) cloud products in the Arctic
The Education and Research 3D Radiative Transfer Toolbox (EaR3T) – towards the mitigation of 3D bias in airborne and spaceborne passive imagery cloud retrievals
Retrieval of microphysical parameters of monsoonal rain using X-band dual-polarization radar: their seasonal dependence and evaluation
Consistency test of precipitating ice cloud retrieval properties obtained from the observations of different instruments operating at Dome C (Antarctica)
Sizing ice hydrometeor populations using the dual-wavelength radar ratio
Impact of the revisit frequency on cloud climatology for CALIPSO, EarthCARE, Aeolus, and ICESat-2 satellite lidar missions
The impact of sampling strategy on the cloud droplet number concentration estimated from satellite data
Horizontal geometry of trade wind cumuli – aircraft observations from a shortwave infrared imager versus a radar profiler
Evaluating the consistency and continuity of pixel-scale cloud property data records from Aqua and SNPP (Suomi National Polar-orbiting Partnership)
Quality assessment of Second-generation Global Imager (SGLI)-observed cloud properties using SKYNET surface observation data
Comparison of scattering ratio profiles retrieved from ALADIN/Aeolus and CALIOP/CALIPSO observations and preliminary estimates of cloud fraction profiles
Evaluation of convective cloud microphysics in numerical weather prediction models with dual-wavelength polarimetric radar observations: methods and examples
Synergistic radar and sub-millimeter radiometer retrievals of ice hydrometeors in mid-latitude frontal cloud systems
Evaluation of satellite retrievals of liquid clouds from the GOES-13 imager and MODIS over the midlatitude North Atlantic during the NAAMES campaign
Evaluation of Visible Infrared Imaging Radiometer Suite (VIIRS) neural network cloud detection against current operational cloud masks
The effect of low-level thin arctic clouds on shortwave irradiance: evaluation of estimates from spaceborne passive imagery with aircraft observations
Validation of the Sentinel-5 Precursor TROPOMI cloud data with Cloudnet, Aura OMI O2–O2, MODIS, and Suomi-NPP VIIRS
Dissecting effects of orbital drift of polar-orbiting satellites on accuracy and trends of climate data records of cloud fractional cover
Calibration of global MODIS cloud amount using CALIOP cloud profiles
Evaluation of the MODIS Collection 6 multilayer cloud detection algorithm through comparisons with CloudSat Cloud Profiling Radar and CALIPSO CALIOP products
An extended radar relative calibration adjustment (eRCA) technique for higher-frequency radars and range–height indicator (RHI) scans
Comparing lightning observations of the ground-based European lightning location system EUCLID and the space-based Lightning Imaging Sensor (LIS) on the International Space Station (ISS)
Microwave and submillimeter wave scattering of oriented ice particles
Shallow cumuli cover and its uncertainties from ground-based lidar–radar data and sky images
Using passive and active observations at microwave and sub-millimetre wavelengths to constrain ice particle models
Comparison of the cloud top heights retrieved from MODIS and AHI satellite data with ground-based Ka-band radar
Cross-comparison of cloud liquid water path derived from observations by two space-borne and one ground-based instrument in northern Europe
The impact of neglecting ice phase on cloud optical depth retrievals from AERONET cloud mode observations
Diurnal and nocturnal cloud segmentation of all-sky imager (ASI) images using enhancement fully convolutional networks
Can liquid cloud microphysical processes be used for vertically pointing cloud radar calibration?
Calibration of a 35 GHz airborne cloud radar: lessons learned and intercomparisons with 94 GHz cloud radars
Airborne validation of radiative transfer modelling of ice clouds at millimetre and sub-millimetre wavelengths
Assessing the impact of different liquid water permittivity models on the fit between model and observations
Cloud liquid water path in the sub-Arctic region of Europe as derived from ground-based and space-borne remote observations
Lea Volkmer, Tobias Kölling, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6807–6817, https://doi.org/10.5194/amt-17-6807-2024, https://doi.org/10.5194/amt-17-6807-2024, 2024
Short summary
Short summary
The importance of the consideration of cloud motion for the stereographic determination of cloud top height from aircraft observations is demonstrated using measurements of the airborne spectrometer of the Munich Aerosol Cloud Scanner (specMACS). A method for cloud motion correction using model winds from the European Centre for Medium-Range Weather Forecasts is presented and validated using both real measurements and realistic radiative transfer simulations.
Yongbo Zhou, Yubao Liu, Wei Han, Yuefei Zeng, Haofei Sun, Peilong Yu, and Lijian Zhu
Atmos. Meas. Tech., 17, 6659–6675, https://doi.org/10.5194/amt-17-6659-2024, https://doi.org/10.5194/amt-17-6659-2024, 2024
Short summary
Short summary
The study explored differences between the visible reflectance provided by the Fengyun-4A satellite and its equivalent derived from the China Meteorological Administration Mesoscale model using a forward operator. The observation-minus-simulation biases were able to monitor the performance of the satellite visible instrument. The biases were corrected based on a first-order approximation method, which promotes the data assimilation of satellite visible reflectance in real-world cases.
Job I. Wiltink, Hartwig Deneke, Yves-Marie Saint-Drenan, Chiel C. van Heerwaarden, and Jan Fokke Meirink
Atmos. Meas. Tech., 17, 6003–6024, https://doi.org/10.5194/amt-17-6003-2024, https://doi.org/10.5194/amt-17-6003-2024, 2024
Short summary
Short summary
Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) global horizontal irradiance (GHI) retrievals are validated at standard and increased spatial resolution against a network of 99 pyranometers. GHI accuracy is strongly dependent on the cloud regime. Days with variable cloud conditions show significant accuracy improvements when retrieved at higher resolution. We highlight the benefits of dense network observations and a cloud-regime-resolved approach in validating GHI retrievals.
Oliver G. A. Driver, Marc E. J. Stettler, and Edward Gryspeerdt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2198, https://doi.org/10.5194/egusphere-2024-2198, 2024
Short summary
Short summary
Contrails (clouds caused by planes) cause a large part of the climate warming due to aviation. Satellites are a good tool to validate modelled impact estimates. Many contrails are either too narrow or too disperse to detect. This work shows that only around half of contrails are observable, but the most climatically important are easier to detect. It supports the use of satellites for contrail observation, but highlights the need for observability considerations for specific applications.
Kerry Meyer, Steven Platnick, G. Thomas Arnold, Nandana Amarasinghe, Daniel Miller, Jennifer Small-Griswold, Mikael Witte, Brian Cairns, Siddhant Gupta, Greg McFarquhar, and Joseph O'Brien
EGUsphere, https://doi.org/10.5194/egusphere-2024-2021, https://doi.org/10.5194/egusphere-2024-2021, 2024
Short summary
Short summary
Satellite remote sensing retrievals of cloud droplet size are used to understand clouds and their interactions with aerosols and radiation but require many simplifying assumptions. Evaluation of these retrievals typically is done by comparing against direct measurements of droplets from airborne cloud probes. This paper details an evaluation of proxy airborne remote sensing droplet size retrievals against several cloud probes and explores the impact of key assumptions on retrieval agreement.
Ethel Villeneuve, Philippe Chambon, and Nadia Fourrié
Atmos. Meas. Tech., 17, 3567–3582, https://doi.org/10.5194/amt-17-3567-2024, https://doi.org/10.5194/amt-17-3567-2024, 2024
Short summary
Short summary
In cloudy situations, infrared and microwave observations are complementary, with infrared being sensitive to cloud tops and microwave sensitive to precipitation. However, infrared satellite observations are underused. This study aims to quantify if the inconsistencies in the modelling of clouds prevent the use of cloudy infrared observations in the process of weather forecasting. It shows that the synergistic use of infrared and microwave observations is beneficial, despite inconsistencies.
Woosub Roh, Masaki Satoh, Yuichiro Hagihara, Hiroaki Horie, Yuichi Ohno, and Takuji Kubota
Atmos. Meas. Tech., 17, 3455–3466, https://doi.org/10.5194/amt-17-3455-2024, https://doi.org/10.5194/amt-17-3455-2024, 2024
Short summary
Short summary
The advantage of the use of Doppler velocity in the categorization of the hydrometeors is that Doppler velocities suffer less impact from the attenuation of rain and wet attenuation on an antenna. The ground Cloud Profiling Radar observation of the radar reflectivity for the precipitation case is limited because of wet attenuation on an antenna. We found the main contribution to Doppler velocities is the terminal velocity of hydrometeors by analysis of simulation results.
Santo Fedele Colosimo, Nathaniel Brockway, Vijay Natraj, Robert Spurr, Klaus Pfeilsticker, Lisa Scalone, Max Spolaor, Sarah Woods, and Jochen Stutz
Atmos. Meas. Tech., 17, 2367–2385, https://doi.org/10.5194/amt-17-2367-2024, https://doi.org/10.5194/amt-17-2367-2024, 2024
Short summary
Short summary
Cirrus clouds are poorly understood components of the climate system, in part due to the challenge of observing thin, sub-visible ice clouds. We address this issue with a new observational approach that uses the remote sensing of near-infrared ice water absorption features from a high-altitude aircraft. We describe the underlying principle of this approach and present a new procedure to retrieve ice concentration in cirrus clouds. Our retrievals compare well with in situ observations.
Shuai Li, Hua Zhang, Yonghang Chen, Zhili Wang, Xiangyu Li, Yuan Li, and Yuanyuan Xue
Atmos. Meas. Tech., 17, 2011–2024, https://doi.org/10.5194/amt-17-2011-2024, https://doi.org/10.5194/amt-17-2011-2024, 2024
Short summary
Short summary
In this paper, Xinjiang was the test area, and nine evaluation indexes of FY-2F/CTA, including precision rate, false rate, missing rate, consistency rate, strong rate, weak rate, bias, AE, and RMSE, were calculated and analyzed under complex underlying surface (subsurface types, temperature and altitude conditions) and different weather conditions (dust effects and different cloud cover levels). The precision, consistency, and error indexes of FY-2F/CTA were tested and evaluated.
Lea Volkmer, Veronika Pörtge, Fabian Jakub, and Bernhard Mayer
Atmos. Meas. Tech., 17, 1703–1719, https://doi.org/10.5194/amt-17-1703-2024, https://doi.org/10.5194/amt-17-1703-2024, 2024
Short summary
Short summary
Three-dimensional radiative transfer simulations are used to evaluate the performance of retrieval algorithms in the derivation of cloud geometry (cloud top heights) and cloud droplet size distributions from two-dimensional polarized radiance measurements of the airborne spectrometer of the Munich Aerosol Cloud Scanner. The cloud droplet size distributions are derived for the effective radius and variance. The simulations are based on cloud data from highly resolved large-eddy simulations.
Chaojun Shi, Leile Han, Ke Zhang, Hongyin Xiang, Xingkuan Li, Zibo Su, and Xian Zheng
Atmos. Meas. Tech., 17, 979–997, https://doi.org/10.5194/amt-17-979-2024, https://doi.org/10.5194/amt-17-979-2024, 2024
Short summary
Short summary
This article mainly studies the problem of ground cloud classification and significantly improves the accuracy of ground cloud classification by applying an improved deep-learning method. The research results show that the method proposed in this article has a significant impact on the classification results of ground cloud images. These conclusions have important implications for providing new insights and future research directions in the field of ground cloud classification.
Shannon L. Mason, Howard W. Barker, Jason N. S. Cole, Nicole Docter, David P. Donovan, Robin J. Hogan, Anja Hünerbein, Pavlos Kollias, Bernat Puigdomènech Treserras, Zhipeng Qu, Ulla Wandinger, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 17, 875–898, https://doi.org/10.5194/amt-17-875-2024, https://doi.org/10.5194/amt-17-875-2024, 2024
Short summary
Short summary
When the EarthCARE mission enters its operational phase, many retrieval data products will be available, which will overlap both in terms of the measurements they use and the geophysical quantities they report. In this pre-launch study, we use simulated EarthCARE scenes to compare the coverage and performance of many data products from the European Space Agency production model, with the intention of better understanding the relation between products and providing a compact guide to users.
Bo-Ram Kim, Gyuyeon Kim, Minjeong Cho, Yong-Sang Choi, and Jhoon Kim
Atmos. Meas. Tech., 17, 453–470, https://doi.org/10.5194/amt-17-453-2024, https://doi.org/10.5194/amt-17-453-2024, 2024
Short summary
Short summary
This study introduces the GEMS cloud algorithm and validates its results using data from GEMS and other environmental satellites. The GEMS algorithm is able to detect the lowest cloud heights among the four satellites, and its effective cloud fraction and cloud centroid pressure are well reflected in the retrieval results. The study highlights the algorithm's usefulness in correcting errors in trace gases caused by clouds in the East Asian region.
Kenan Wu, Tianwen Wei, Jinlong Yuan, Haiyun Xia, Xin Huang, Gaopeng Lu, Yunpeng Zhang, Feifan Liu, Baoyou Zhu, and Weidong Ding
Atmos. Meas. Tech., 16, 5811–5825, https://doi.org/10.5194/amt-16-5811-2023, https://doi.org/10.5194/amt-16-5811-2023, 2023
Short summary
Short summary
A compact all-fiber coherent Doppler wind lidar (CDWL) working at the 1.5 µm wavelength is applied to probe the dynamics and microphysics structure of thunderstorms. It was found that thunderclouds below the 0 ℃ isotherm have significant spectrum broadening and an increase in skewness, and that lightning affects the microphysics structure of the thundercloud. It is proven that the precise spectrum of CDWL is a promising indicator for studying the charge structure of thunderstorms.
Imke Schirmacher, Pavlos Kollias, Katia Lamer, Mario Mech, Lukas Pfitzenmaier, Manfred Wendisch, and Susanne Crewell
Atmos. Meas. Tech., 16, 4081–4100, https://doi.org/10.5194/amt-16-4081-2023, https://doi.org/10.5194/amt-16-4081-2023, 2023
Short summary
Short summary
CloudSat’s relatively coarse spatial resolution, low sensitivity, and blind zone limit its assessment of Arctic low-level clouds, which affect the surface energy balance. We compare cloud fractions from CloudSat and finely resolved airborne radar observations to determine CloudSat’s limitations. Cloudsat overestimates cloud fractions above its blind zone, especially during cold-air outbreaks over open water, and misses a cloud fraction of 32 % and half of the precipitation inside its blind zone.
Richard M. Schulte, Matthew D. Lebsock, and John M. Haynes
Atmos. Meas. Tech., 16, 3531–3546, https://doi.org/10.5194/amt-16-3531-2023, https://doi.org/10.5194/amt-16-3531-2023, 2023
Short summary
Short summary
In order to constrain climate models and better understand how clouds might change in future climates, accurate satellite estimates of cloud liquid water content are important. The satellite currently best suited to this purpose, CloudSat, is not sensitive enough to detect some non-raining low clouds. In this study we show that information from two other satellite instruments, MODIS and CALIOP, can be combined to provide cloud water estimates for many of the clouds that are missed by CloudSat.
Kameswara S. Vinjamuri, Marco Vountas, Luca Lelli, Martin Stengel, Matthew D. Shupe, Kerstin Ebell, and John P. Burrows
Atmos. Meas. Tech., 16, 2903–2918, https://doi.org/10.5194/amt-16-2903-2023, https://doi.org/10.5194/amt-16-2903-2023, 2023
Short summary
Short summary
Clouds play an important role in Arctic amplification. Cloud data from ground-based sites are valuable but cannot represent the whole Arctic. Therefore the use of satellite products is a measure to cover the entire Arctic. However, the quality of such cloud measurements from space is not well known. The paper discusses the differences and commonalities between satellite and ground-based measurements. We conclude that the satellite dataset, with a few exceptions, can be used in the Arctic.
Hong Chen, K. Sebastian Schmidt, Steven T. Massie, Vikas Nataraja, Matthew S. Norgren, Jake J. Gristey, Graham Feingold, Robert E. Holz, and Hironobu Iwabuchi
Atmos. Meas. Tech., 16, 1971–2000, https://doi.org/10.5194/amt-16-1971-2023, https://doi.org/10.5194/amt-16-1971-2023, 2023
Short summary
Short summary
We introduce the Education and Research 3D Radiative Transfer Toolbox (EaR3T) and propose a radiance self-consistency approach for quantifying and mitigating 3D bias in legacy airborne and spaceborne imagery retrievals due to spatially inhomogeneous clouds and surfaces.
Kumar Abhijeet, Thota Narayana Rao, Nidamanuri Rama Rao, and Kasimahanthi Amar Jyothi
Atmos. Meas. Tech., 16, 871–888, https://doi.org/10.5194/amt-16-871-2023, https://doi.org/10.5194/amt-16-871-2023, 2023
Short summary
Short summary
The present study focuses on retrieving and validating raindrop size distribution (DSD) relations for monsoonal rainfall, which are required for retrieving DSDs with polarimetric radar measurements. The seasonal variation in DSD is quite large and significant, and as a result the coefficients also vary considerably between the seasons and from those existing elsewhere. Among the existing DSD methods, the N-gamma method performs better than the other methods.
Gianluca Di Natale, David D. Turner, Giovanni Bianchini, Massimo Del Guasta, Luca Palchetti, Alessandro Bracci, Luca Baldini, Tiziano Maestri, William Cossich, Michele Martinazzo, and Luca Facheris
Atmos. Meas. Tech., 15, 7235–7258, https://doi.org/10.5194/amt-15-7235-2022, https://doi.org/10.5194/amt-15-7235-2022, 2022
Short summary
Short summary
In this paper, we describe a new approach to test the consistency of the precipitating ice cloud optical and microphysical properties in Antarctica, Dome C, retrieved from hyperspectral measurements in the far-infrared, with the reflectivity detected by a co-located micro rain radar operating at 24 GHz. The retrieved ice crystal sizes were found in accordance with the direct measurements of an optical imager, also installed at Dome C, which can collect the falling ice particles.
Sergey Y. Matrosov, Alexei Korolev, Mengistu Wolde, and Cuong Nguyen
Atmos. Meas. Tech., 15, 6373–6386, https://doi.org/10.5194/amt-15-6373-2022, https://doi.org/10.5194/amt-15-6373-2022, 2022
Short summary
Short summary
A remote sensing method to retrieve sizes of particles in ice clouds and precipitation from radar measurements at two wavelengths is described. This method is based on relating the particle size information to the ratio of radar signals at these two wavelengths. It is demonstrated that this ratio is informative about different characteristic particle sizes. Knowing atmospheric ice particle sizes is important for many applications such as precipitation estimation and climate modeling.
Andrzej Z. Kotarba
Atmos. Meas. Tech., 15, 4307–4322, https://doi.org/10.5194/amt-15-4307-2022, https://doi.org/10.5194/amt-15-4307-2022, 2022
Short summary
Short summary
Space profiling lidars offer a unique insight into cloud properties in Earth’s atmosphere, and are considered the most reliable source of cloud information. However, lidar-based cloud climatologies are infrequently sampled: every 7 to 91 d, and only along the ground track. This study evaluated how accurate are the cloud data from existing (CALIPSO, ICESat-2, Aeolus) and planned (EarthCARE) space lidars, when compared to a cloud climatology obtained with observations taken every day.
Edward Gryspeerdt, Daniel T. McCoy, Ewan Crosbie, Richard H. Moore, Graeme J. Nott, David Painemal, Jennifer Small-Griswold, Armin Sorooshian, and Luke Ziemba
Atmos. Meas. Tech., 15, 3875–3892, https://doi.org/10.5194/amt-15-3875-2022, https://doi.org/10.5194/amt-15-3875-2022, 2022
Short summary
Short summary
Droplet number concentration is a key property of clouds, influencing a variety of cloud processes. It is also used for estimating the cloud response to aerosols. The satellite retrieval depends on a number of assumptions – different sampling strategies are used to select cases where these assumptions are most likely to hold. Here we investigate the impact of these strategies on the agreement with in situ data, the droplet number climatology and estimates of the indirect radiative forcing.
Henning Dorff, Heike Konow, and Felix Ament
Atmos. Meas. Tech., 15, 3641–3661, https://doi.org/10.5194/amt-15-3641-2022, https://doi.org/10.5194/amt-15-3641-2022, 2022
Short summary
Short summary
This study elaborates how aircraft-based horizontal geometries of trade wind cumuli differ whether a one-dimensional profiling radar or a two-dimensional imager is used. Cloud size distributions are examined in terms of sensitivity to sample size, resolution, and instrument field of view. While the radar cannot reproduce the double power law distribution due to coarse resolution and restriction to vertical transects, the imager also reveals the elliptic cloud structure enhancing with wind speed.
Qing Yue, Eric J. Fetzer, Likun Wang, Brian H. Kahn, Nadia Smith, John M. Blaisdell, Kerry G. Meyer, Mathias Schreier, Bjorn Lambrigtsen, and Irina Tkatcheva
Atmos. Meas. Tech., 15, 2099–2123, https://doi.org/10.5194/amt-15-2099-2022, https://doi.org/10.5194/amt-15-2099-2022, 2022
Short summary
Short summary
The self-consistency and continuity of cloud retrievals from infrared sounders and imagers aboard Aqua and SNPP (Suomi National Polar-orbiting Partnership) are examined at the pixel scale. Cloud products are found to be consistent with each other. Differences between sounder products are mainly due to cloud clearing and the treatment of clouds in scenes with unsuccessful atmospheric retrievals. The impact of algorithm and instrument differences is clearly seen in the imager cloud retrievals.
Pradeep Khatri, Tadahiro Hayasaka, Hitoshi Irie, Husi Letu, Takashi Y. Nakajima, Hiroshi Ishimoto, and Tamio Takamura
Atmos. Meas. Tech., 15, 1967–1982, https://doi.org/10.5194/amt-15-1967-2022, https://doi.org/10.5194/amt-15-1967-2022, 2022
Short summary
Short summary
Cloud properties observed by the Second-generation Global Imager (SGLI) onboard the Global Change Observation Mission – Climate (GCOM-C) satellite are evaluated using surface observation data. The study finds that SGLI-observed cloud properties are qualitative enough, although water cloud properties are suggested to be more qualitative, and both water and ice cloud properties can reproduce surface irradiance quite satisfactorily. Thus, SGLI cloud products are very useful for different studies.
Artem G. Feofilov, Hélène Chepfer, Vincent Noël, Rodrigo Guzman, Cyprien Gindre, Po-Lun Ma, and Marjolaine Chiriaco
Atmos. Meas. Tech., 15, 1055–1074, https://doi.org/10.5194/amt-15-1055-2022, https://doi.org/10.5194/amt-15-1055-2022, 2022
Short summary
Short summary
Space-borne lidars have been providing invaluable information of atmospheric optical properties since 2006, and new lidar missions are on the way to ensure continuous observations. In this work, we compare the clouds estimated from space-borne ALADIN and CALIOP lidar observations. The analysis of collocated data shows that the agreement between the retrieved clouds is good up to 3 km height. Above that, ALADIN detects 40 % less clouds than CALIOP, except for polar stratospheric clouds (PSCs).
Gregor Köcher, Tobias Zinner, Christoph Knote, Eleni Tetoni, Florian Ewald, and Martin Hagen
Atmos. Meas. Tech., 15, 1033–1054, https://doi.org/10.5194/amt-15-1033-2022, https://doi.org/10.5194/amt-15-1033-2022, 2022
Short summary
Short summary
We present a setup for systematic characterization of differences between numerical weather models and radar observations for convective weather situations. Radar observations providing dual-wavelength and polarimetric variables to infer information about hydrometeor shapes and sizes are compared against simulations using microphysics schemes of varying complexity. Differences are found in ice and liquid phase, pointing towards issues of some schemes in reproducing particle size distributions.
Simon Pfreundschuh, Stuart Fox, Patrick Eriksson, David Duncan, Stefan A. Buehler, Manfred Brath, Richard Cotton, and Florian Ewald
Atmos. Meas. Tech., 15, 677–699, https://doi.org/10.5194/amt-15-677-2022, https://doi.org/10.5194/amt-15-677-2022, 2022
Short summary
Short summary
We test a novel method to remotely measure ice particles in clouds. This is important because such measurements are required to improve climate and weather models. The method combines a radar with newly developed sensors measuring microwave radiation at very short wavelengths. We use observations made from aircraft flying above the cloud and compare them to real measurements from inside the cloud. This works well given that one can model the ice particles in the cloud sufficiently well.
David Painemal, Douglas Spangenberg, William L. Smith Jr., Patrick Minnis, Brian Cairns, Richard H. Moore, Ewan Crosbie, Claire Robinson, Kenneth L. Thornhill, Edward L. Winstead, and Luke Ziemba
Atmos. Meas. Tech., 14, 6633–6646, https://doi.org/10.5194/amt-14-6633-2021, https://doi.org/10.5194/amt-14-6633-2021, 2021
Short summary
Short summary
Cloud properties derived from satellite sensors are critical for the global monitoring of climate. This study evaluates satellite-based cloud properties over the North Atlantic using airborne data collected during NAAMES. Satellite observations of droplet size and cloud optical depth tend to compare well with NAAMES data. The analysis indicates that the satellite pixel resolution and the specific viewing geometry need to be taken into account in research applications.
Charles H. White, Andrew K. Heidinger, and Steven A. Ackerman
Atmos. Meas. Tech., 14, 3371–3394, https://doi.org/10.5194/amt-14-3371-2021, https://doi.org/10.5194/amt-14-3371-2021, 2021
Short summary
Short summary
Automated detection of clouds in satellite imagery is an important practice that is useful for predicting and understanding both weather and climate. Cloud detection is often difficult at night and over cold surfaces. In this paper, we discuss how a complex statistical model (a neural network) can more accurately detect clouds compared to currently used approaches. Overall, our results suggest that our approach could result in more reliable assessments of global cloud cover.
Hong Chen, Sebastian Schmidt, Michael D. King, Galina Wind, Anthony Bucholtz, Elizabeth A. Reid, Michal Segal-Rozenhaimer, William L. Smith, Patrick C. Taylor, Seiji Kato, and Peter Pilewskie
Atmos. Meas. Tech., 14, 2673–2697, https://doi.org/10.5194/amt-14-2673-2021, https://doi.org/10.5194/amt-14-2673-2021, 2021
Short summary
Short summary
In this paper, we accessed the shortwave irradiance derived from MODIS cloud optical properties by using aircraft measurements. We developed a data aggregation technique to parameterize spectral surface albedo by snow fraction in the Arctic. We found that undetected clouds have the most significant impact on the imagery-derived irradiance. This study suggests that passive imagery cloud detection could be improved through a multi-pixel approach that would make it more dependable in the Arctic.
Steven Compernolle, Athina Argyrouli, Ronny Lutz, Maarten Sneep, Jean-Christopher Lambert, Ann Mari Fjæraa, Daan Hubert, Arno Keppens, Diego Loyola, Ewan O'Connor, Fabian Romahn, Piet Stammes, Tijl Verhoelst, and Ping Wang
Atmos. Meas. Tech., 14, 2451–2476, https://doi.org/10.5194/amt-14-2451-2021, https://doi.org/10.5194/amt-14-2451-2021, 2021
Short summary
Short summary
The high-resolution satellite Sentinel-5p TROPOMI observes several atmospheric gases. To account for cloud interference with the observations, S5P cloud data products (CLOUD OCRA/ROCINN_CAL, OCRA/ROCINN_CRB, and FRESCO) provide vital input: cloud fraction, cloud height, and cloud optical thickness. Here, S5P cloud parameters are validated by comparing with other satellite sensors (VIIRS, MODIS, and OMI) and with ground-based CloudNet data. The agreement depends on product type and cloud height.
Jędrzej S. Bojanowski and Jan P. Musiał
Atmos. Meas. Tech., 13, 6771–6788, https://doi.org/10.5194/amt-13-6771-2020, https://doi.org/10.5194/amt-13-6771-2020, 2020
Short summary
Short summary
Satellites such as NOAA's Advanced Very High Resolution Radiometer can uniquely observe changes in cloud cover but are affected by orbital drift that results in shifted image acquisition times, which in turn lead to spurious trends in cloud cover detected during climatological analyses. Providing a detailed quantification of these trends, we show that climate data records must be analysed with caution, as for some periods and regions they do not comply with the requirements for climate data.
Andrzej Z. Kotarba
Atmos. Meas. Tech., 13, 4995–5012, https://doi.org/10.5194/amt-13-4995-2020, https://doi.org/10.5194/amt-13-4995-2020, 2020
Short summary
Short summary
This paper evaluates the operational approach for producing global (Level 3) cloud amount based on MODIS cloud masks (Level 2). Using CALIPSO we calculate the actual cloud fractions for each cloud mask category, which are 21.5 %, 27.7 %, 66.6 %, and 94.7 % instead of assumed 0 %, 0 %, 100 %, and 100 %. Consequently we find the operational procedure unreliable, especially on a regional/local scale. A method of how to correct and calibrate MODIS global data using CALIPSO detections is suggested.
Benjamin Marchant, Steven Platnick, Kerry Meyer, and Galina Wind
Atmos. Meas. Tech., 13, 3263–3275, https://doi.org/10.5194/amt-13-3263-2020, https://doi.org/10.5194/amt-13-3263-2020, 2020
Short summary
Short summary
Multilayer cloud scenes (such as an ice cloud overlapping a liquid cloud) are common in the Earth's atmosphere and are quite difficult to detect from space. The detection of multilayer clouds is important to better understand how they interact with the light and their impact on the climate. So, for the instrument MODIS an algorithm has been developed to detect those clouds, and this paper presents an evaluation of this algorithm by comparing it with
other instruments.
Alexis Hunzinger, Joseph C. Hardin, Nitin Bharadwaj, Adam Varble, and Alyssa Matthews
Atmos. Meas. Tech., 13, 3147–3166, https://doi.org/10.5194/amt-13-3147-2020, https://doi.org/10.5194/amt-13-3147-2020, 2020
Short summary
Short summary
The calibration of weather radars is one of the most dominant sources of errors hindering their use. This work takes a technique for tracking the changes in radar calibration using the radar clutter from the ground and extends it to higher-frequency research radars. It demonstrates that after modifications the technique is successful but that special care needs to be taken in its application at high frequencies. The technique is verified using data from multiple DOE ARM field campaigns.
Dieter R. Poelman and Wolfgang Schulz
Atmos. Meas. Tech., 13, 2965–2977, https://doi.org/10.5194/amt-13-2965-2020, https://doi.org/10.5194/amt-13-2965-2020, 2020
Short summary
Short summary
The objective of this work is to quantify the similarities and contrasts between the lightning observations from the Lightning Imaging Sensor (LIS) on the International Space Station (ISS) and the ground-based European Cooperation for Lightning Detection (EUCLID) network. This work is timely, given that the Meteosat Third Generation (MTG), which has a lightning imager (LI) on board, is going to be launched in 2 years.
Manfred Brath, Robin Ekelund, Patrick Eriksson, Oliver Lemke, and Stefan A. Buehler
Atmos. Meas. Tech., 13, 2309–2333, https://doi.org/10.5194/amt-13-2309-2020, https://doi.org/10.5194/amt-13-2309-2020, 2020
Short summary
Short summary
Microwave dual-polarization observations consistently show that larger atmospheric ice particles tend to have a preferred orientation. We provide a publicly available database of microwave and submillimeter wave scattering properties of oriented ice particles based on discrete dipole approximation scattering calculations. Detailed radiative transfer simulations, recreating observed polarization patterns, are additionally presented in this study.
Erin A. Riley, Jessica M. Kleiss, Laura D. Riihimaki, Charles N. Long, Larry K. Berg, and Evgueni Kassianov
Atmos. Meas. Tech., 13, 2099–2117, https://doi.org/10.5194/amt-13-2099-2020, https://doi.org/10.5194/amt-13-2099-2020, 2020
Short summary
Short summary
Discrepancies in hourly shallow cumuli cover estimates can be substantial. Instrument detection differences contribute to long-term bias in shallow cumuli cover estimates, whereas narrow field-of-view configurations impact measurement uncertainty as averaging time decreases. A new tool is introduced to visually assess both impacts on sub-hourly cloud cover estimates. Accurate shallow cumuli cover estimation is needed for model–observation comparisons and studying cloud-surface interactions.
Robin Ekelund, Patrick Eriksson, and Simon Pfreundschuh
Atmos. Meas. Tech., 13, 501–520, https://doi.org/10.5194/amt-13-501-2020, https://doi.org/10.5194/amt-13-501-2020, 2020
Short summary
Short summary
Atmospheric ice particles (e.g. snow and ice crystals) are an important part of weather, climate, and the hydrological cycle. This study investigates whether combined satellite measurements by radar and radiometers at microwave wavelengths can be used to find the most likely shape of such ice particles. The method was limited when using only currently operating sensors (CloudSat radar and the GPM Microwave Imager) but shows promise if the upcoming Ice Cloud Imager is also considered.
Juan Huo, Daren Lu, Shu Duan, Yongheng Bi, and Bo Liu
Atmos. Meas. Tech., 13, 1–11, https://doi.org/10.5194/amt-13-1-2020, https://doi.org/10.5194/amt-13-1-2020, 2020
Short summary
Short summary
Cloud top height (CTH) is one of the important cloud parameters providing information about the vertical structure of cloud water content. To better understand the accuracy of CTH derived from passive satellite data, 2 years of ground-based Ka-band radar measurements are compared with CTH inferred from Terra/Aqua MODIS and Himawari AHI. It is found that MODIS and AHI underestimate CTH relative to radar by −1.10 km. Both MODIS and AHI CTH retrieval accuracy depend strongly on cloud depth.
Vladimir S. Kostsov, Anke Kniffka, Martin Stengel, and Dmitry V. Ionov
Atmos. Meas. Tech., 12, 5927–5946, https://doi.org/10.5194/amt-12-5927-2019, https://doi.org/10.5194/amt-12-5927-2019, 2019
Short summary
Short summary
Cloud liquid water path (LWP) is one of the target atmospheric parameters retrieved remotely from ground-based and space-borne platforms. The LWP data delivered by the satellite instruments SEVIRI and AVHRR together with the data provided by the ground-based radiometer RPG-HATPRO near St. Petersburg, Russia, have been compared. Our study revealed considerable differences between LWP data from SEVIRI and AVHRR in winter over ice-covered relatively small water bodies in this region.
Jonathan K. P. Shonk, Jui-Yuan Christine Chiu, Alexander Marshak, David M. Giles, Chiung-Huei Huang, Gerald G. Mace, Sally Benson, Ilya Slutsker, and Brent N. Holben
Atmos. Meas. Tech., 12, 5087–5099, https://doi.org/10.5194/amt-12-5087-2019, https://doi.org/10.5194/amt-12-5087-2019, 2019
Short summary
Short summary
Retrievals of cloud optical depth made using AERONET radiometers in “cloud mode” rely on the assumption that all cloud is liquid. The presence of ice cloud therefore introduces errors in the retrieved optical depth, which can be over 25 in optically thick ice clouds. However, such clouds are not frequent and the long-term mean optical depth error is about 3 for a sample of real clouds. A correction equation could improve the retrieval further, although this would require extra instrumentation.
Chaojun Shi, Yatong Zhou, Bo Qiu, Jingfei He, Mu Ding, and Shiya Wei
Atmos. Meas. Tech., 12, 4713–4724, https://doi.org/10.5194/amt-12-4713-2019, https://doi.org/10.5194/amt-12-4713-2019, 2019
Short summary
Short summary
Cloud segmentation plays a very important role in astronomical observatory site selection. At present, few researchers segment cloud in nocturnal all-sky imager (ASI) images. We propose a new automatic cloud segmentation algorithm to segment cloud pixels from diurnal and nocturnal ASI images called an enhancement fully convolutional network (EFCN). Experiments showed that the proposed EFCN was much more accurate in cloud segmentation for diurnal and nocturnal ASI images.
Maximilian Maahn, Fabian Hoffmann, Matthew D. Shupe, Gijs de Boer, Sergey Y. Matrosov, and Edward P. Luke
Atmos. Meas. Tech., 12, 3151–3171, https://doi.org/10.5194/amt-12-3151-2019, https://doi.org/10.5194/amt-12-3151-2019, 2019
Short summary
Short summary
Cloud radars are unique instruments for observing cloud processes, but uncertainties in radar calibration have frequently limited data quality. Here, we present three novel methods for calibrating vertically pointing cloud radars. These calibration methods are based on microphysical processes of liquid clouds, such as the transition of cloud droplets to drizzle drops. We successfully apply the methods to cloud radar data from the North Slope of Alaska (NSA) and Oliktok Point (OLI) ARM sites.
Florian Ewald, Silke Groß, Martin Hagen, Lutz Hirsch, Julien Delanoë, and Matthias Bauer-Pfundstein
Atmos. Meas. Tech., 12, 1815–1839, https://doi.org/10.5194/amt-12-1815-2019, https://doi.org/10.5194/amt-12-1815-2019, 2019
Short summary
Short summary
This study gives a summary of lessons learned during the absolute calibration of the airborne, high-power Ka-band cloud radar HAMP MIRA on board the German research aircraft HALO. The first part covers the internal calibration of the instrument where individual instrument components are characterized in the laboratory. In the second part, the internal calibration is validated with external reference sources like the ocean surface backscatter and different air- and spaceborne cloud radars.
Stuart Fox, Jana Mendrok, Patrick Eriksson, Robin Ekelund, Sebastian J. O'Shea, Keith N. Bower, Anthony J. Baran, R. Chawn Harlow, and Juliet C. Pickering
Atmos. Meas. Tech., 12, 1599–1617, https://doi.org/10.5194/amt-12-1599-2019, https://doi.org/10.5194/amt-12-1599-2019, 2019
Short summary
Short summary
Airborne observations of ice clouds are used to validate radiative transfer simulations using a state-of-the-art database of cloud ice optical properties. Simulations at these wavelengths are required to make use of future satellite instruments such as the Ice Cloud Imager. We show that they can generally reproduce observed cloud signals, but for a given total ice mass there is considerable sensitivity to the cloud microphysics, including the particle shape and distribution of ice mass.
Katrin Lonitz and Alan J. Geer
Atmos. Meas. Tech., 12, 405–429, https://doi.org/10.5194/amt-12-405-2019, https://doi.org/10.5194/amt-12-405-2019, 2019
Short summary
Short summary
Permittivity models for microwave frequencies of liquid water below 0°C are poorly constrained due to limited laboratory experiments and observations, especially for high microwave frequencies. This uncertainty translates directly into errors in retrieved liquid water paths of up to 80 %. This study investigates the effect of different liquid water permittivity models including models based on the most recent observations.
Vladimir S. Kostsov, Anke Kniffka, and Dmitry V. Ionov
Atmos. Meas. Tech., 11, 5439–5460, https://doi.org/10.5194/amt-11-5439-2018, https://doi.org/10.5194/amt-11-5439-2018, 2018
Short summary
Short summary
Clouds are a very important component of the climate system and of the hydrological cycle in the Arctic and sub-Arctic. A joint analysis of the cloud parameters obtained remotely from satellite and ground-based observations near St Petersburg, Russia, has been made. Our study has revealed considerable differences between the cloud properties over land and over water areas in the region under investigation.
Cited articles
Barbaro, S., Cannata, G., Coppolino, S., Leone, C., and Sinagra, E.:
Correlation between relative sunshine and state of the sky, Sol. Energy, 26,
537–550, https://doi.org/10.1016/0038-092X(81)90166-3, 1981. a
Barnes, W., Pagano, T., and Salomonson, V.: Prelaunch characteristics of the
Moderate Resolution Imaging Spectroradiometer (MODIS) on
EOS-AM1, IEEE T. Geosci. Remote, 36,
1088–1100, https://doi.org/10.1109/36.700993, 1998. a
Bojanowski, J., Stöckli, R., Tetzlaff, A., and Kunz, H.: The Impact of
Time Difference between Satellite Overpass and Ground Observation
on Cloud Cover Performance Statistics, Remote Sens.-Basel, 6,
12866–12884, https://doi.org/10.3390/rs61212866, 2014. a
Breiman, L.: Classification and regression trees, Chapman & Hall/CRC, New
York, NY, available at: http://lib.myilibrary.com?id=1043565 (last access: 18 May 2018), 1984. a
Cracknell, A. P.: The advanced very high resolution radiometer (AVHRR),
Taylor & Francis, London, Bristol, PA, 1997. a
Davies, R., Jovanovic, V. M., and Moroney, C. M.: Cloud heights measured by
MISR from 2000 to 2015, J. Geophys. Res.-Atmos., 122,
3975–3986, https://doi.org/10.1002/2017JD026456, 2017. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Dupont, J.-C., Haeffelin, M., and Long, C. N.: Evaluation of cloudless-sky
periods detected by shortwave and longwave algorithms using lidar
measurements, Geophys. Res. Lett., 35, L10815, https://doi.org/10.1029/2008GL033658,
2008. a
Dürr, B. and Philipona, R.: Automatic cloud amount detection by surface
longwave downward radiation measurements, J. Geophys. Res.,
109, D05201, https://doi.org/10.1029/2003JD004182, , 2004. a, b, c, d
Fontana, F., Lugrin, D., Seiz, G., Meier, M., and Foppa, N.: Intercomparison of
satellite- and ground-based cloud fraction over Switzerland (2000–2012),
Atmos. Res., 128, 1–12, https://doi.org/10.1016/j.atmosres.2013.01.013, 2013. a
Heidinger, A. K., Foster, M. J., Walther, A., and Zhao, X. T.: The Pathfinder
Atmospheres – Extended AVHRR Climate Dataset, B. Am. Meteorol. Soc., 95, 909–922,
https://doi.org/10.1175/BAMS-D-12-00246.1, 2014. a, b
Herrmann, E., Weingartner, E., Henne, S., Vuilleumier, L., Bukowiecki, N.,
Steinbacher, M., Conen, F., Collaud Coen, M., Hammer, E., Jurányi, Z.,
Baltensperger, U., and Gysel, M.: Analysis of long-term aerosol size
distribution data from Jungfraujoch with emphasis on free tropospheric
conditions, cloud influence, and air mass transport, J. Geophys. Res.-Atmos., 120, 9459–9480, https://doi.org/10.1002/2015JD023660, 2015. a, b
Hollmann, R., Merchant, C. J., Saunders, R., Downy, C., Buchwitz, M., Cazenave,
A., Chuvieco, E., Defourny, P., de Leeuw, G., Forsberg, R., Holzer-Popp, T.,
Paul, F., Sandven, S., Sathyendranath, S., van Roozendael, M., and Wagner,
W.: The ESA Climate Change Initiative: Satellite Data Records
for Essential Climate Variables, B. Am. Meteorol. Soc., 94, 1541–1552, https://doi.org/10.1175/BAMS-D-11-00254.1,
2013. a
Karlsson, K.-G.: A 10 year cloud climatology over Scandinavia derived from
NOAA Advanced Very High Resolution Radiometer imagery,
Int. J. Climatol., 23, 1023–1044, https://doi.org/10.1002/joc.916,
2003. a
Lai, Y.-J., Chou, M.-D., and Lin, P.-H.: Parameterization of topographic effect
on surface solar radiation, J. Geophys. Res., 115, D01104, https://doi.org/10.1029/2009JD012305, , 2010. a
Long, C. N., Ackerman, T. P., Gaustad, K. L., and Cole, J. N. S.: Estimation of
fractional sky cover from broadband shortwave radiometer measurements,
J. Geophys. Res., 111, D11204, https://doi.org/10.1029/2005JD006475, 2006. a
Malberg, H.: Comparison of Mean Cloud Cover Obtained By Satellite
Photographs and Ground-Based Observations Over Europe and the
Atlantic, Mon. Weather Rev., 101, 893–897,
https://doi.org/10.1175/1520-0493(1973)101<0893:COMCCO>2.3.CO;2, 1973. a
Martínez-Chico, M., Batlles, F., and Bosch, J.: Cloud classification in a
mediterranean location using radiation data and sky images, Energy, 36,
4055–4062, https://doi.org/10.1016/j.energy.2011.04.043, 2011. a
Marty, C., Philipona, R., Fröhlich, C., and Ohmura, A.: Altitude dependence of
surface radiation fluxes and cloud forcing in the alps: results from the
alpine surface radiation budget network, Theor. Appl. Climatol.,
72, 137–155, https://doi.org/10.1007/s007040200019, 2002. a, b
McGarragh, G. R., Poulsen, C. A., Thomas, G. E., Povey, A. C., Sus, O.,
Stapelberg, S., Schlundt, C., Proud, S., Christensen, M. W., Stengel, M.,
Hollmann, R., and Grainger, R. G.: The Community Cloud retrieval for CLimate
(CC4CL) – Part 2: The optimal estimation approach, Atmos. Meas. Tech., 11,
3397–3431, https://doi.org/10.5194/amt-11-3397-2018, 2018. a, b
Mittermaier, M.: A critical assessment of surface cloud observations and their
use for verifying cloud forecasts, Q. J. Roy. Meteor. Soc., 138, 1794–1807, https://doi.org/10.1002/qj.1918, 2012. a
Musial, J. P., Hüsler, F., Sütterlin, M., Neuhaus, C., and Wunderle,
S.: Probabilistic approach to cloud and snow detection on Advanced Very High
Resolution Radiometer (AVHRR) imagery, Atmos. Meas. Tech., 7, 799–822,
https://doi.org/10.5194/amt-7-799-2014, 2014. a, b
Norris, J. R., Allen, R. J., Evan, A. T., Zelinka, M. D., O'Dell, C. W., and
Klein, S. A.: Evidence for climate change in the satellite cloud record,
Nature, 536, 72–75, https://doi.org/10.1038/nature18273, 2016. a
Ohmura, A., Gilgen, H., Hegner, H., Müller, G., Wild, M., Dutton, E. G.,
Forgan, B., Fröhlich, C., Philipona, R., Heimo, A., König-Langlo, G.,
McArthur, B., Pinker, R., Whitlock, C. H., and Dehne, K.: Baseline Surface
Radiation Network (BSRN/WCRP): New Precision Radiometry for
Climate Research, B. Am. Meteorol. Soc., 79,
2115–2136, https://doi.org/10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2, 1998. a
Pagès, D., Calbó, J., and González, J. A.: Using routine
meteorological data
to derive sky conditions, Ann. Geophys., 21, 649–654,
https://doi.org/10.5194/angeo-21-649-2003, 2003. a
Pavolonis, M. J. and Heidinger, A. K.: Daytime Cloud Overlap Detection
from AVHRR and VIIRS, J. Appl. Meteorol., 43, 762–778,
https://doi.org/10.1175/2099.1, 2004. a
Pavolonis, M. J., Heidinger, A. K., and Uttal, T.: Daytime Global Cloud
Typing from AVHRR and VIIRS: Algorithm Description, Validation,
and Comparisons, J. Appl. Meteorol., 44, 804–826,
https://doi.org/10.1175/JAM2236.1, 2005. a
Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe,
N., Fowler, H., Greenwood, G., Hashmi, M. Z., Liu, X. D., Miller, J. R.,
Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schöner, W., Severskiy, I.,
Shahgedanova, M., Wang, M. B., Williamson, S. N., and Yang, D. Q.:
Elevation-dependent warming in mountain regions of the world, Nat. Clim. Change, 5, 424–430, https://doi.org/10.1038/nclimate2563, 2015. a
Quaas, J.: Approaches to Observe Anthropogenic Aerosol-Cloud
Interactions, Current Climate Change Reports, 1, 297–304,
https://doi.org/10.1007/s40641-015-0028-0, 2015. a
Rangwala, I. and Miller, J. R.: Climate change in mountains: a review of
elevation-dependent warming and its possible causes, Climatic Change, 114,
527–547, https://doi.org/10.1007/s10584-012-0419-3, 2012. a
Rodgers, C. D.: Inverse methods for atmospheric sounding: theory and practice,
no. 2 in Series on atmospheric oceanic and planetary physics, World
Scientific, Singapore, reprinted edn., 2004. a
Schaaf, C. B., Liu, J., Gao, F., and Strahler, A. H.: Aqua and Terra MODIS
Albedo and Reflectance Anisotropy Products, in: Land Remote
Sensing and Global Environmental Change, edited by: Ramachandran, B.,
Justice, C. O., and Abrams, M. J., 11, 549–561, Springer New York,
New York, NY, https://doi.org/10.1007/978-1-4419-6749-7_24, 2010. a
Stapelberg, S., Stengel, M., Karlsson, K.-G., Meirink, J. F., Bojanowski, J.,
and Hollmann, R.: ESA Cloud_cci Product Validation and
Intercomparison Report (PVIR), Tech. Rep. 4.1,
available at: http://www.esa-cloud-cci.org/?q=documentation, last access:
14 July 2017. a
Stengel, M., Mieruch, S., Jerg, M., Karlsson, K.-G., Scheirer, R., Maddux, B.,
Meirink, J., Poulsen, C., Siddans, R., Walther, A., and Hollmann, R.: The
Clouds Climate Change Initiative: Assessment of state-of-the-art
cloud property retrieval schemes applied to AVHRR heritage measurements,
Remote Sens.-Basel, 162, 363–379,
https://doi.org/10.1016/j.rse.2013.10.035, 2015. a
Stengel, M., Stapelberg, S., Sus, O., Schlundt, C., Poulsen, C., Thomas, G.,
Christensen, M., Carbajal Henken, C., Preusker, R., Fischer, J., Devasthale,
A., Willén, U., Karlsson, K.-G., McGarragh, G. R., Proud, S., Povey, A.
C., Grainger, R. G., Meirink, J. F., Feofilov, A., Bennartz, R., Bojanowski,
J. S., and Hollmann, R.: Cloud property datasets retrieved from AVHRR, MODIS,
AATSR and MERIS in the framework of the Cloud_cci project, Earth Syst. Sci.
Data, 9, 881–904, https://doi.org/10.5194/essd-9-881-2017, 2017a. a, b, c, d, e, f, g, h
Stengel, M., Sus, O., Stapelberg, S., Schlundt, C., Poulsen, C., and Hollmann,
R.: ESA Cloud_cci cloud property datasets retrieved from passive
satellite sensors: AVHRR-PM L3C/L3U cloud products – Version 2.0,
https://doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V002, 2017b. a
Stengel, M., Sus, O., Stapelberg, S., Schlundt, C., Poulsen, C., and Hollmann,
R.: ESA Cloud_cci cloud property datasets retrieved from passive
satellite sensors: MODIS-Aqua L3C/L3U cloud products – Version 2.0,
https://doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Aqua/V002, 2017c. a
Sun, Z., Gebremichael, M., Wang, Q., Wang, J., Sammis, T., and Nickless, A.:
Evaluation of Clear-Sky Incoming Radiation Estimating Equations
Typically Used in Remote Sensing Evapotranspiration Algorithms,
Remote Sens.-Basel, 5, 4735–4752, https://doi.org/10.3390/rs5104735, 2013. a
Sus, O., Stengel, M., Stapelberg, S., McGarragh, G., Poulsen, C., Povey, A.
C., Schlundt, C., Thomas, G., Christensen, M., Proud, S., Jerg, M., Grainger,
R., and Hollmann, R.: The Community Cloud retrieval for CLimate (CC4CL) –
Part 1: A framework applied to multiple satellite imaging sensors, Atmos.
Meas. Tech., 11, 3373–3396, https://doi.org/10.5194/amt-11-3373-2018, 2018. a, b
Suter, S., Konzelmann, T., Mühlhäuser, C., Begert, M., and Heimo, A.:
SwissMetNet – the new automatic meteorological network of Switzerland:
transition from old to new network, data management and first results, Altis
Park Hotel, Lisbon, 2006. a
Tachikawa, T., Hato, M., Kaku, M., and Iwasaki, A.: Characteristics of ASTER
GDEM version 2, 3657–3660, Int. Geosci. Remote Se., https://doi.org/10.1109/IGARSS.2011.6050017,
2011. a
Tasumi, M., Allen, R., and Bastiaanssen, M.: The Theoretical Basis of
SEBAL, Tech. rep., Idaho Department of Water Resources, University of Idaho, Moscow, Idaho, USA, 2000. a
Trenberth, K. E.: An imperative for climate change planning: tracking Earth's
global energy, Curr. Opin. Sust., 1, 19–27,
https://doi.org/10.1016/j.cosust.2009.06.001, 2009. a
Viúdez-Mora, A., Calbó, J., González, J. A., and Jiménez,
M. A.: Modeling atmospheric longwave radiation at the surface under cloudless
skies, J. Geophys. Res., 114, D18107, https://doi.org/10.1029/2009JD011885,
2009. a
Werkmeister, A., Lockhoff, M., Schrempf, M., Tohsing, K., Liley, B., and
Seckmeyer, G.: Comparing satellite- to ground-based automated and manual
cloud coverage observations – a case study, Atmos. Meas. Tech., 8, 2001–2015,
https://doi.org/10.5194/amt-8-2001-2015, 2015. a
Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., Hunt,
W. H., and Young, S. A.: Overview of the CALIPSO Mission and CALIOP
Data Processing Algorithms, J. Atmos. Ocean. Tech., 26, 2310–2323,
https://doi.org/10.1175/2009JTECHA1281.1, 2009. a
Short summary
Above mountainous regions, satellites may have difficulty in discriminating snow from clouds: this study proposes a new method that combines different ground-based measurements to assess the sky cloudiness with high temporal resolution. The method's output is used as input to a model capable of identifying false satellite cloud detections. Results show that 62 ± 13 % of these false detections can be identified by the model when applied to the AVHRR-PM and MODIS Aqua data sets of the Cloud_cci.
Above mountainous regions, satellites may have difficulty in discriminating snow from clouds:...