Articles | Volume 11, issue 7
https://doi.org/10.5194/amt-11-4153-2018
https://doi.org/10.5194/amt-11-4153-2018
Research article
 | 
17 Jul 2018
Research article |  | 17 Jul 2018

Correction of CCI cloud data over the Swiss Alps using ground-based radiation measurements

Fanny Jeanneret, Giovanni Martucci, Simon Pinnock, and Alexis Berne

Related authors

Distinct secondary ice production processes observed in radar Doppler spectra: insights from a case study
Anne-Claire Billault-Roux, Paraskevi Georgakaki, Josué Gehring, Louis Jaffeux, Alfons Schwarzenboeck, Pierre Coutris, Athanasios Nenes, and Alexis Berne
EGUsphere, https://doi.org/10.5194/egusphere-2023-478,https://doi.org/10.5194/egusphere-2023-478, 2023
Short summary
Radar and ground-level measurements of clouds and precipitation collected during the POPE 2020 campaign at Princess Elisabeth Antarctica
Alfonso Ferrone and Alexis Berne
Earth Syst. Sci. Data, 15, 1115–1132, https://doi.org/10.5194/essd-15-1115-2023,https://doi.org/10.5194/essd-15-1115-2023, 2023
Short summary
Dual-frequency spectral radar retrieval of snowfall microphysics: a physics-driven deep-learning approach
Anne-Claire Billault-Roux, Gionata Ghiggi, Louis Jaffeux, Audrey Martini, Nicolas Viltard, and Alexis Berne
Atmos. Meas. Tech., 16, 911–940, https://doi.org/10.5194/amt-16-911-2023,https://doi.org/10.5194/amt-16-911-2023, 2023
Short summary
Snowfall in Northern Finland derives mostly from ice clouds
Claudia Mignani, Lukas Zimmermann, Rigel Kivi, Alexis Berne, and Franz Conen
Atmos. Chem. Phys., 22, 13551–13568, https://doi.org/10.5194/acp-22-13551-2022,https://doi.org/10.5194/acp-22-13551-2022, 2022
Short summary
Ice fog observed at cirrus temperatures at Dome C, Antarctic Plateau
Étienne Vignon, Lea Raillard, Christophe Genthon, Massimo Del Guasta, Andrew J. Heymsfield, Jean-Baptiste Madeleine, and Alexis Berne
Atmos. Chem. Phys., 22, 12857–12872, https://doi.org/10.5194/acp-22-12857-2022,https://doi.org/10.5194/acp-22-12857-2022, 2022
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
The Education and Research 3D Radiative Transfer Toolbox (EaR3T) – towards the mitigation of 3D bias in airborne and spaceborne passive imagery cloud retrievals
Hong Chen, K. Sebastian Schmidt, Steven T. Massie, Vikas Nataraja, Matthew S. Norgren, Jake J. Gristey, Graham Feingold, Robert E. Holz, and Hironobu Iwabuchi
Atmos. Meas. Tech., 16, 1971–2000, https://doi.org/10.5194/amt-16-1971-2023,https://doi.org/10.5194/amt-16-1971-2023, 2023
Short summary
Retrieval of microphysical parameters of monsoonal rain using X-band dual-polarization radar: their seasonal dependence and evaluation
Kumar Abhijeet, Thota Narayana Rao, Nidamanuri Rama Rao, and Kasimahanthi Amar Jyothi
Atmos. Meas. Tech., 16, 871–888, https://doi.org/10.5194/amt-16-871-2023,https://doi.org/10.5194/amt-16-871-2023, 2023
Short summary
Validation of the Cloud_CCI cloud products in the Arctic
Kameswara S. Vinjamuri, Marco Vountas, Luca Lelli, Martin Stengel, Matthew D. Shupe, Kerstin Ebell, and John P. Burrows
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-312,https://doi.org/10.5194/amt-2022-312, 2023
Revised manuscript accepted for AMT
Short summary
Consistency test of precipitating ice cloud retrieval properties obtained from the observations of different instruments operating at Dome C (Antarctica)
Gianluca Di Natale, David D. Turner, Giovanni Bianchini, Massimo Del Guasta, Luca Palchetti, Alessandro Bracci, Luca Baldini, Tiziano Maestri, William Cossich, Michele Martinazzo, and Luca Facheris
Atmos. Meas. Tech., 15, 7235–7258, https://doi.org/10.5194/amt-15-7235-2022,https://doi.org/10.5194/amt-15-7235-2022, 2022
Short summary
Sizing ice hydrometeor populations using the dual-wavelength radar ratio
Sergey Y. Matrosov, Alexei Korolev, Mengistu Wolde, and Cuong Nguyen
Atmos. Meas. Tech., 15, 6373–6386, https://doi.org/10.5194/amt-15-6373-2022,https://doi.org/10.5194/amt-15-6373-2022, 2022
Short summary

Cited articles

Barbaro, S., Cannata, G., Coppolino, S., Leone, C., and Sinagra, E.: Correlation between relative sunshine and state of the sky, Sol. Energy, 26, 537–550, https://doi.org/10.1016/0038-092X(81)90166-3, 1981. a
Barnes, W., Pagano, T., and Salomonson, V.: Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1, IEEE T. Geosci. Remote, 36, 1088–1100, https://doi.org/10.1109/36.700993, 1998. a
Bojanowski, J., Stöckli, R., Tetzlaff, A., and Kunz, H.: The Impact of Time Difference between Satellite Overpass and Ground Observation on Cloud Cover Performance Statistics, Remote Sens.-Basel, 6, 12866–12884, https://doi.org/10.3390/rs61212866, 2014. a
Breiman, L.: Classification and regression trees, Chapman & Hall/CRC, New York, NY, available at: http://lib.myilibrary.com?id=1043565 (last access: 18 May 2018), 1984. a
Cracknell, A. P.: The advanced very high resolution radiometer (AVHRR), Taylor & Francis, London, Bristol, PA, 1997. a
Download
Short summary
Above mountainous regions, satellites may have difficulty in discriminating snow from clouds: this study proposes a new method that combines different ground-based measurements to assess the sky cloudiness with high temporal resolution. The method's output is used as input to a model capable of identifying false satellite cloud detections. Results show that 62 ± 13 % of these false detections can be identified by the model when applied to the AVHRR-PM and MODIS Aqua data sets of the Cloud_cci.