Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Download
Short summary
Low-cost particulate matter sensors are promising tools for supplementing existing air quality monitoring networks but their performance under field conditions is not well understood. We characterized how well Plantower PMS3003 sensors measure PM2.5 in a wide range of ambient conditions against different reference sensors. When a more precise reference method is used for calibration and proper RH corrections are made, our work suggests PMS3003's can measure PM2.5 within ~ 10 % of ambient values.
AMT | Articles | Volume 11, issue 8
Atmos. Meas. Tech., 11, 4823–4846, 2018
https://doi.org/10.5194/amt-11-4823-2018
Atmos. Meas. Tech., 11, 4823–4846, 2018
https://doi.org/10.5194/amt-11-4823-2018

Research article 22 Aug 2018

Research article | 22 Aug 2018

Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments

Tongshu Zheng et al.

Related authors

Gaussian process regression model for dynamically calibrating and surveilling a wireless low-cost particulate matter sensor network in Delhi
Tongshu Zheng, Michael H. Bergin, Ronak Sutaria, Sachchida N. Tripathi, Robert Caldow, and David E. Carlson
Atmos. Meas. Tech., 12, 5161–5181, https://doi.org/10.5194/amt-12-5161-2019,https://doi.org/10.5194/amt-12-5161-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Instruments and Platforms
Continuous online monitoring of ice-nucleating particles: development of the automated Horizontal Ice Nucleation Chamber (HINC-Auto)
Cyril Brunner and Zamin A. Kanji
Atmos. Meas. Tech., 14, 269–293, https://doi.org/10.5194/amt-14-269-2021,https://doi.org/10.5194/amt-14-269-2021, 2021
Short summary
Evaluation of optical particulate matter sensors under realistic conditions of strong and mild urban pollution
Adnan Masic, Dzevad Bibic, Boran Pikula, Almir Blazevic, Jasna Huremovic, and Sabina Zero
Atmos. Meas. Tech., 13, 6427–6443, https://doi.org/10.5194/amt-13-6427-2020,https://doi.org/10.5194/amt-13-6427-2020, 2020
Short summary
Optimizing the detection, ablation, and ion extraction efficiency of a single-particle laser ablation mass spectrometer for application in environments with low aerosol particle concentrations
Hans-Christian Clemen, Johannes Schneider, Thomas Klimach, Frank Helleis, Franziska Köllner, Andreas Hünig, Florian Rubach, Stephan Mertes, Heike Wex, Frank Stratmann, André Welti, Rebecca Kohl, Fabian Frank, and Stephan Borrmann
Atmos. Meas. Tech., 13, 5923–5953, https://doi.org/10.5194/amt-13-5923-2020,https://doi.org/10.5194/amt-13-5923-2020, 2020
Short summary
Measurements of PM2.5 with PurpleAir under atmospheric conditions
Karin Ardon-Dryer, Yuval Dryer, Jake N. Williams, and Nastaran Moghimi
Atmos. Meas. Tech., 13, 5441–5458, https://doi.org/10.5194/amt-13-5441-2020,https://doi.org/10.5194/amt-13-5441-2020, 2020
Short summary
Development and application of a mass closure PM2.5 composition online monitoring system
Cui-Ping Su, Xing Peng, Xiao-Feng Huang, Li-Wu Zeng, Li-Ming Cao, Meng-Xue Tang, Yao Chen, Bo Zhu, Yishi Wang, and Ling-Yan He
Atmos. Meas. Tech., 13, 5407–5422, https://doi.org/10.5194/amt-13-5407-2020,https://doi.org/10.5194/amt-13-5407-2020, 2020
Short summary

Cited articles

Austin, E., Novosselov, I., Seto, E., and Yost, M. G.: Laboratory evaluation of the Shinyei PPD42NS low-cost particulate matter sensor, PLoS One, 10, 1–17, https://doi.org/10.1371/journal.pone.0137789, 2015. 
Bergin, M. H., Tripathi, S. N., Jai Devi, J., Gupta, T., Mckenzie, M., Rana, K. S., Shafer, M. M., Villalobos, A. M., and Schauer, J. J.: The discoloration of the Taj Mahal due to particulate carbon and dust deposition, Environ. Sci. Technol., 49, 808–812, https://doi.org/10.1021/es504005q, 2015. 
Bran, S. H. and Srivastava, R.: Investigation of PM2.5 mass concentration over India using a regional climate model, Environ. Pollut., 224, 484–493, https://doi.org/10.1016/j.envpol.2017.02.030, 2017. 
Breen, M. S., Long, T. C., Schultz, B. D., Williams, R. W., Richmond-Bryant, J., Breen, M., Langstaff, J. E., Devlin, R. B., Schneider, A., Burke, J. M., Batterman, S. A., and Meng, Q. Y.: Air Pollution Exposure Model for Individuals (EMI) in Health Studies: Evaluation for Ambient PM 2.5 in Central North Carolina, Environ. Sci. Technol., 49, 14184–14194, https://doi.org/10.1021/acs.est.5b02765, 2015. 
Chakrabarti, B., Fine, P. M., Delfino, R., and Sioutas, C.: Performance evaluation of the active-flow personal DataRAM PM2.5 mass monitor (Thermo Anderson pDR-1200) designed for continuous personal exposure measurements, Atmos. Environ., 38, 3329–3340, https://doi.org/10.1016/j.atmosenv.2004.03.007, 2004. 
Publications Copernicus
Download
Short summary
Low-cost particulate matter sensors are promising tools for supplementing existing air quality monitoring networks but their performance under field conditions is not well understood. We characterized how well Plantower PMS3003 sensors measure PM2.5 in a wide range of ambient conditions against different reference sensors. When a more precise reference method is used for calibration and proper RH corrections are made, our work suggests PMS3003's can measure PM2.5 within ~ 10 % of ambient values.
Citation