Articles | Volume 11, issue 9
https://doi.org/10.5194/amt-11-5087-2018
https://doi.org/10.5194/amt-11-5087-2018
Research article
 | 
07 Sep 2018
Research article |  | 07 Sep 2018

Real-time measurements of gas-phase organic acids using SF6 chemical ionization mass spectrometry

Theodora Nah, Yi Ji, David J. Tanner, Hongyu Guo, Amy P. Sullivan, Nga Lee Ng, Rodney J. Weber, and L. Gregory Huey

Related authors

Roles of pH, ionic strength, and sulfate in the aqueous nitrate-mediated photooxidation of green leaf volatiles
Yuting Lyu, Taekyu Joo, Ruihan Ma, Mark Kristan Espejo Cabello, Tianye Zhou, Shun Yeung, Cheuk Ki Wong, Yifang Gu, Yiming Qin, and Theodora Nah
EGUsphere, https://doi.org/10.5194/egusphere-2025-570,https://doi.org/10.5194/egusphere-2025-570, 2025
Short summary
Seasonal variations in the production of singlet oxygen and organic triplet excited states in aqueous PM2.5 in Hong Kong SAR, South China
Yuting Lyu, Yin Hau Lam, Yitao Li, Nadine Borduas-Dedekind, and Theodora Nah
Atmos. Chem. Phys., 23, 9245–9263, https://doi.org/10.5194/acp-23-9245-2023,https://doi.org/10.5194/acp-23-9245-2023, 2023
Short summary
Effects of pH and light exposure on the survival of bacteria and their ability to biodegrade organic compounds in clouds: implications for microbial activity in acidic cloud water
Yushuo Liu, Chee Kent Lim, Zhiyong Shen, Patrick K. H. Lee, and Theodora Nah
Atmos. Chem. Phys., 23, 1731–1747, https://doi.org/10.5194/acp-23-1731-2023,https://doi.org/10.5194/acp-23-1731-2023, 2023
Short summary
Measurement report: Abundance and fractional solubilities of aerosol metals in urban Hong Kong – insights into factors that control aerosol metal dissolution in an urban site in South China
Junwei Yang, Lan Ma, Xiao He, Wing Chi Au, Yanhao Miao, Wen-Xiong Wang, and Theodora Nah
Atmos. Chem. Phys., 23, 1403–1419, https://doi.org/10.5194/acp-23-1403-2023,https://doi.org/10.5194/acp-23-1403-2023, 2023
Short summary
Aqueous secondary organic aerosol formation from the direct photosensitized oxidation of vanillin in the absence and presence of ammonium nitrate
Brix Raphael Go, Yan Lyu, Yan Ji, Yong Jie Li, Dan Dan Huang, Xue Li, Theodora Nah, Chun Ho Lam, and Chak K. Chan
Atmos. Chem. Phys., 22, 273–293, https://doi.org/10.5194/acp-22-273-2022,https://doi.org/10.5194/acp-22-273-2022, 2022
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Instruments and Platforms
Simple water vapor sampling for stable isotope analysis using affordable valves and bags
Adrian Dahlmann, John D. Marshall, David Dubbert, Mathias Hoffmann, and Maren Dubbert
Atmos. Meas. Tech., 18, 2607–2618, https://doi.org/10.5194/amt-18-2607-2025,https://doi.org/10.5194/amt-18-2607-2025, 2025
Short summary
On path length, beam divergence, and retroreflector array size in open-path FTIR spectroscopy
Cameron E. N. Power and Aldona Wiacek
Atmos. Meas. Tech., 18, 2537–2552, https://doi.org/10.5194/amt-18-2537-2025,https://doi.org/10.5194/amt-18-2537-2025, 2025
Short summary
A modular approach to volatile organic compound samplers for tethered balloon and drone platforms
Meghan Guagenti, Darielle Dexheimer, Alexandra Ulinksi, Paul Walter, James H. Flynn III, and Sascha Usenko
Atmos. Meas. Tech., 18, 2125–2136, https://doi.org/10.5194/amt-18-2125-2025,https://doi.org/10.5194/amt-18-2125-2025, 2025
Short summary
Performance validation and calibration conditions for novel dynamic baseline tracking air sensors in long-term field monitoring
Han Mei, Peng Wei, Meisam Ahmadi Ghadikolaei, Nirmal Kumar Gali, Ya Wang, and Zhi Ning
Atmos. Meas. Tech., 18, 1771–1785, https://doi.org/10.5194/amt-18-1771-2025,https://doi.org/10.5194/amt-18-1771-2025, 2025
Short summary
Observation of greenhouse gas vertical profiles in the boundary layer of the Mount Qomolangma region using a multirotor UAV
Ying Zhou, Congcong Qiao, Minqiang Zhou, Yilong Wang, Xiangjun Tian, Yinghong Wang, and Minzheng Duan
Atmos. Meas. Tech., 18, 1609–1619, https://doi.org/10.5194/amt-18-1609-2025,https://doi.org/10.5194/amt-18-1609-2025, 2025
Short summary

Cited articles

Acree, W. and Chickos, J. S.: Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2010, J. Phys. Chem. Ref. Data, 39, 043101, https://doi.org/10.1063/1.3309507, 2010. 
Aljawhary, D., Lee, A. K. Y., and Abbatt, J. P. D.: High-resolution chemical ionization mass spectrometry (ToF-CIMS): application to study SOA composition and processing, Atmos. Meas. Tech., 6, 3211–3224, https://doi.org/10.5194/amt-6-3211-2013, 2013. 
Andreae, M. O., Talbot, R. W., Andreae, T. W., and Harriss, R. C.: Formic amd Acetic Acid over the Cental Amazon Region, Brazil. 1. Dry Season, J. Geophys. Res.-Atmos., 93, 1616–1624, https://doi.org/10.1029/JD093iD02p01616, 1988. 
Arnold, S. T. and Viggiano, A. A.: Turbulent ion flow tube study of the cluster-mediated reactions of SF6- with H2O, CH3OH, and C2H5OH from 50 to 500 torr, J. Phys. Chem. A, 105, 3527–3531, https://doi.org/10.1021/jp003967y, 2001. 
Baasandorj, M., Millet, D. B., Hu, L., Mitroo, D., and Williams, B. J.: Measuring acetic and formic acid by proton-transfer-reaction mass spectrometry: sensitivity, humidity dependence, and quantifying interferences, Atmos. Meas. Tech., 8, 1303–1321, https://doi.org/10.5194/amt-8-1303-2015, 2015. 
Download
Short summary
The sources and atmospheric chemistry of gas-phase organic acids are currently poorly understood, due in part to the limited range of measurement techniques available. We evaluated the use of SF6 as a sensitive and selective chemical ionization reagent ion for real-time measurements of gas-phase organic acids at a rural site in Yorkville, Georgia. We found that ambient concentrations of organic acids ranged from a few ppt to several ppb, and are dependent on ambient temperature.
Share