Articles | Volume 11, issue 10
https://doi.org/10.5194/amt-11-5687-2018
https://doi.org/10.5194/amt-11-5687-2018
Research article
 | 
18 Oct 2018
Research article |  | 18 Oct 2018

A machine learning approach to aerosol classification for single-particle mass spectrometry

Costa D. Christopoulos, Sarvesh Garimella, Maria A. Zawadowicz, Ottmar Möhler, and Daniel J. Cziczo

Related authors

Implications of Sea Breeze Circulations on Boundary Layer Aerosols in the Southern Coastal Texas Region
Tamanna Subba, Michael P. Jensen, Min Deng, Scott E. Giangrande, Mark C. Harvey, Ashish Singh, Die Wang, Maria Zawadowicz, and Chongai Kuang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2659,https://doi.org/10.5194/egusphere-2025-2659, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Ice-nucleating properties of glassy organic and organosulfate aerosol
Christopher N. Rapp, Sining Niu, N. Cazimir Armstrong, Xiaoli Shen, Thomas Berkemeier, Jason D. Surratt, Yue Zhang, and Daniel J. Cziczo
Atmos. Chem. Phys., 25, 5519–5536, https://doi.org/10.5194/acp-25-5519-2025,https://doi.org/10.5194/acp-25-5519-2025, 2025
Short summary
An improved Freezing Ice Nucleation Detection Analyzer (FINDA) for droplet immersion freezing measurement
Kaiqi Wang, Kai Bi, Shuling Chen, Markus Hartmann, Zhijun Wu, Jiyu Gao, Xiaoyu Xu, Yuhan Cheng, Mengyu Huang, Yunbo Chen, Huiwen Xue, Bingbing Wang, Yaqiong Hu, Xiongying Zhang, Xincheng Ma, Ruijie Li, Ping Tian, Ottmar Möhler, Heike Wex, Frank Startmann, Jie Chen, and Xianda Gong
EGUsphere, https://doi.org/10.5194/egusphere-2025-1873,https://doi.org/10.5194/egusphere-2025-1873, 2025
Short summary
From fine to giant: Multi-instrument assessment of the dust particle size distribution at an emission source during the J-WADI field campaign
Hannah Meyer, Konrad Kandler, Sylvain Dupont, Jerónimo Escribano, Jessica Girdwood, George Nikolich, Andrés Alastuey, Vicken Etyemezian, Cristina González Flórez, Adolfo González-Romero, Tareq Hussein, Mark Irvine, Peter Knippertz, Ottmar Möhler, Xavier Querol, Chris Stopford, Franziska Vogel, Frederik Weis, Andreas Wieser, Carlos Pérez García-Pando, and Martina Klose
EGUsphere, https://doi.org/10.5194/egusphere-2025-1531,https://doi.org/10.5194/egusphere-2025-1531, 2025
Short summary
The AquaVIT-4 intercomparison of atmospheric hygrometers
Simone Brunamonti, Harald Saathoff, Albert Hertzog, Glenn Diskin, Masatomo Fujiwara, Karen Rosenlof, Ottmar Möhler, Béla Tuzson, Lukas Emmenegger, Nadir Amarouche, Georges Durry, Fabien Frérot, Jean-Christophe Samake, Claire Cenac, Julio Lopez, Paul Monnier, and Mélanie Ghysels
EGUsphere, https://doi.org/10.5194/egusphere-2025-1029,https://doi.org/10.5194/egusphere-2025-1029, 2025
Short summary

Related subject area

Subject: Aerosols | Technique: Laboratory Measurement | Topic: Data Processing and Information Retrieval
The role of fuel and environmental conditions on the amount and composition of primary, fresh, and aged aerosol emissions originating from diesel- and gasoline-operated auxiliary heaters of passenger cars
Henri Oikarinen, Anni Hartikainen, Pauli Simonen, Miska Olin, Ukko-Ville Mäkinen, Petteri Marjanen, Laura Salo, Ville Silvonen, Sampsa Martikainen, Jussi Hoivala, Mika Ihalainen, Pasi Miettinen, Pasi Yli-Pirilä, Olli Sippula, Santtu Mikkonen, and Panu Karjalainen
EGUsphere, https://doi.org/10.5194/egusphere-2025-540,https://doi.org/10.5194/egusphere-2025-540, 2025
Short summary
Estimating errors in vehicle secondary aerosol production factors due to oxidation flow reactor response time
Pauli Simonen, Miikka Dal Maso, Pinja Prauda, Anniina Hoilijoki, Anette Karppinen, Pekka Matilainen, Panu Karjalainen, and Jorma Keskinen
Atmos. Meas. Tech., 17, 3219–3236, https://doi.org/10.5194/amt-17-3219-2024,https://doi.org/10.5194/amt-17-3219-2024, 2024
Short summary
Quantifying functional group compositions of household fuel-burning emissions
Emily Y. Li, Amir Yazdani, Ann M. Dillner, Guofeng Shen, Wyatt M. Champion, James J. Jetter, William T. Preston, Lynn M. Russell, Michael D. Hays, and Satoshi Takahama
Atmos. Meas. Tech., 17, 2401–2413, https://doi.org/10.5194/amt-17-2401-2024,https://doi.org/10.5194/amt-17-2401-2024, 2024
Short summary
A new software toolkit for optical apportionment of carbonaceous aerosol
Tommaso Isolabella, Vera Bernardoni, Alessandro Bigi, Marco Brunoldi, Federico Mazzei, Franco Parodi, Paolo Prati, Virginia Vernocchi, and Dario Massabò
Atmos. Meas. Tech., 17, 1363–1373, https://doi.org/10.5194/amt-17-1363-2024,https://doi.org/10.5194/amt-17-1363-2024, 2024
Short summary
Theoretical derivation of aerosol lidar ratio using Mie theory for CALIOP-CALIPSO and OPAC aerosol models
Radhika A. Chipade and Mehul R. Pandya
Atmos. Meas. Tech., 16, 5443–5459, https://doi.org/10.5194/amt-16-5443-2023,https://doi.org/10.5194/amt-16-5443-2023, 2023
Short summary

Cited articles

Andreae, M. and Rosenfeld, D.: Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008. 
Atkinson, J., Murray, B., Woodhouse, M., Whale, T., Baustian, K., and Carslaw, K., Dobbie, S., O'Sullivan, D., and Malkin, T. L: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds, Nature, 498, 355–358, https://doi.org/10.1038/nature12278, 2013. 
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M. , Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S.K., Sherwood, S., Stevens B., and Zhang, X. Y.: Clouds and Aerosols, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 5, Cambridge University Press, Cambridge, UK and New York, NY, USA, 571–657, 2013. 
Breiman, L.: Bagging Predictors, Mach. Learn., 24, 123–140, 1996. 
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, 2001. 
Download
Short summary
Compositional analysis of atmospheric and laboratory aerosols is often conducted with mass spectrometry. In this study, machine learning is used to automatically differentiate particles on the basis of chemistry and size. The ability of the machine learning algorithm was then tested on a data set for which the particles were not initially known to judge its ability.
Share