Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 12, issue 2
Atmos. Meas. Tech., 12, 1207–1217, 2019
https://doi.org/10.5194/amt-12-1207-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 1207–1217, 2019
https://doi.org/10.5194/amt-12-1207-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 26 Feb 2019

Research article | 26 Feb 2019

Evaluation of cation exchange membrane performance under exposure to high Hg0 and HgBr2 concentrations

Matthieu B. Miller et al.

Related authors

Reactive mercury flux measurements using cation exchange membranes
Matthieu B. Miller, Mae S. Gustin, and Grant C. Edwards
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-360,https://doi.org/10.5194/amt-2018-360, 2018
Revised manuscript not accepted
Short summary
Aggregated particles caused by instrument artifact
Ashley M. Pierce, S. Marcela Loría-Salazar, W. Patrick Arnott, Grant C. Edwards, Matthieu B. Miller, and Mae S. Gustin
Atmos. Meas. Tech., 11, 2225–2237, https://doi.org/10.5194/amt-11-2225-2018,https://doi.org/10.5194/amt-11-2225-2018, 2018
Short summary

Related subject area

Subject: Gases | Technique: Laboratory Measurement | Topic: Validation and Intercomparisons
Optimisation of a thermal desorption–gas chromatography–mass spectrometry method for the analysis of monoterpenes, sesquiterpenes and diterpenes
Aku Helin, Hannele Hakola, and Heidi Hellén
Atmos. Meas. Tech., 13, 3543–3560, https://doi.org/10.5194/amt-13-3543-2020,https://doi.org/10.5194/amt-13-3543-2020, 2020
Short summary
SIFT-MS optimization for atmospheric trace gas measurements at varying humidity
Ann-Sophie Lehnert, Thomas Behrendt, Alexander Ruecker, Georg Pohnert, and Susan E. Trumbore
Atmos. Meas. Tech., 13, 3507–3520, https://doi.org/10.5194/amt-13-3507-2020,https://doi.org/10.5194/amt-13-3507-2020, 2020
Short summary
N2O isotopocule measurements using laser spectroscopy: analyzer characterization and intercomparison
Stephen J. Harris, Jesper Liisberg, Longlong Xia, Jing Wei, Kerstin Zeyer, Longfei Yu, Matti Barthel, Benjamin Wolf, Bryce F. J. Kelly, Dioni I. Cendón, Thomas Blunier, Johan Six, and Joachim Mohn
Atmos. Meas. Tech., 13, 2797–2831, https://doi.org/10.5194/amt-13-2797-2020,https://doi.org/10.5194/amt-13-2797-2020, 2020
Short summary
An intercomparison of CH3O2 measurements by fluorescence assay by gas expansion and cavity ring-down spectroscopy within HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)
Lavinia Onel, Alexander Brennan, Michele Gianella, James Hooper, Nicole Ng, Gus Hancock, Lisa Whalley, Paul W. Seakins, Grant A. D. Ritchie, and Dwayne E. Heard
Atmos. Meas. Tech., 13, 2441–2456, https://doi.org/10.5194/amt-13-2441-2020,https://doi.org/10.5194/amt-13-2441-2020, 2020
Photoacoustic measurement with infrared band-pass filters significantly overestimates NH3 emissions from cattle houses due to volatile organic compound (VOC) interferences
Dezhao Liu, Li Rong, Jesper Kamp, Xianwang Kong, Anders Peter S. Adamsen, Albarune Chowdhury, and Anders Feilberg
Atmos. Meas. Tech., 13, 259–272, https://doi.org/10.5194/amt-13-259-2020,https://doi.org/10.5194/amt-13-259-2020, 2020

Cited articles

Bloom, N., Prestbo, E., and VonderGeest, E.: Determination of atmospheric gaseous Hg(II) at the pg/m 3 level by collection onto cation exchange membranes, followed by dual amalgamation/cold vapor atomic fluorescence spectrometry, 4th International Conference on Mercury as a Global Pollutant, Hamburg, 1996. 
Dumarey, R., Dams, R., and Hoste, J.: Comparison of the collection and desorption efficiency of activated charcoal, silver, and gold for the determination of vapor phase atmospheric mercury, Anal. Chem., 57, 2638–2643, https://doi.org/10.1021/ac00290a047, 1985. 
Gustin, M. S., Huang, J., Miller, M. B., Peterson, C., Jaffe, D. A., Ambrose, J., Finley, B. D., Lyman, S. N., Call, K., Talbot, R., Feddersen, D., Mao, H., and Lindberg, S. E.: Do We Understand What the Mercury Speciation Instruments Are Actually Measuring? Results of RAMIX, Environ. Sci. Technol., 47, 7295–7306, https://doi.org/10.1021/es3039104, 2013. 
Gustin, M. S., Amos, H. M., Huang, J., Miller, M. B., and Heidecorn, K.: Measuring and modeling mercury in the atmosphere: a critical review, Atmos. Chem. Phys., 15, 5697–5713, https://doi.org/10.5194/acp-15-5697-2015, 2015. 
Publications Copernicus
Download
Short summary
This study was undertaken to demonstrate that a cation exchange membrane (CEM) material used for sampling reactive mercury (RM) does not possess an inherent tendency to collect gaseous elemental mercury (GEM). Using a custom-built mercury vapor permeation system, we found that the CEM material has a very small GEM uptake of approximately 0.004 %, too small to create a significant artifact. We also found that a representative RM compound was collected by the CEM material with high efficiency.
This study was undertaken to demonstrate that a cation exchange membrane (CEM) material used for...
Citation