Articles | Volume 12, issue 3
https://doi.org/10.5194/amt-12-2019-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-12-2019-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cloud products from the Earth Polychromatic Imaging Camera (EPIC): algorithms and initial evaluation
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Kerry Meyer
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Galina Wind
Science Systems and Applications Inc., Lanham, MD, USA
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Yaping Zhou
Goddard Earth Sciences Technology and Research, Morgan State University, Baltimore, MD, USA
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Alexander Marshak
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Steven Platnick
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Qilong Min
Atmospheric Sciences Research Center, State University of New York at Albany, Albany, NY, USA
Anthony B. Davis
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA
Joanna Joiner
NASA Goddard Space Flight Center, Greenbelt, MD, USA
Alexander Vasilkov
Science Systems and Applications Inc., Lanham, MD, USA
David Duda
Science Systems and Applications Inc., Lanham, MD, USA
NASA Langley Research Center, Hampton, VA, USA
Wenying Su
NASA Langley Research Center, Hampton, VA, USA
Related authors
Bangsheng Yin, Qilong Min, Emily Morgan, Yuekui Yang, Alexander Marshak, and Anthony B. Davis
Atmos. Meas. Tech., 13, 5259–5275, https://doi.org/10.5194/amt-13-5259-2020, https://doi.org/10.5194/amt-13-5259-2020, 2020
Short summary
Short summary
Cloud-top pressure (CTP) is an important cloud property for climate and weather studies. Based on differential oxygen absorption, both oxygen A-band and B-band pairs can be used to retrieve CTP. However, it is currently very challenging to perform a CTP retrieval accurately due to the complicated in-cloud penetration effect. To address this issue, we propose an analytic transfer inverse model for DSCOVR EPIC observations to retrieve CTP considering in-cloud photon penetration.
Yaping Zhou, Yuekui Yang, Meng Gao, and Peng-Wang Zhai
Atmos. Meas. Tech., 13, 1575–1591, https://doi.org/10.5194/amt-13-1575-2020, https://doi.org/10.5194/amt-13-1575-2020, 2020
Short summary
Short summary
Satellite cloud detection over snow and ice has been difficult for passive remote sensing instruments due to the lack of contrast between clouds and the bright and cold surfaces; the Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR) has very limited channels. This study investigates the methodology of applying EPIC's two oxygen absorption band pair ratios for cloud detection over snow and ice surfaces.
Xiaomei Lu, Yongxiang Hu, Yuekui Yang, Mark Vaughan, Zhaoyan Liu, Sharon Rodier, William Hunt, Kathy Powell, Patricia Lucker, and Charles Trepte
Atmos. Meas. Tech., 11, 3281–3296, https://doi.org/10.5194/amt-11-3281-2018, https://doi.org/10.5194/amt-11-3281-2018, 2018
Short summary
Short summary
This paper presents an innovative retrieval method that translates the CALIOP land surface laser pulse returns into the surface bidirectional reflectance. The surface bidirectional reflectances retrieved from CALIOP measurements contribute complementary data for existing MODIS standard data products and could be used to detect and monitor seasonal surface reflectance changes in high latitude regions where passive MODIS measurements are limited.
Stephen P. Palm, Vinay Kayetha, Yuekui Yang, and Rebecca Pauly
The Cryosphere, 11, 2555–2569, https://doi.org/10.5194/tc-11-2555-2017, https://doi.org/10.5194/tc-11-2555-2017, 2017
Short summary
Short summary
Blowing snow processes are an important component of ice sheet mass balance and also the atmospheric hydrological cycle. This paper presents the first satellite-derived estimates of continent-wide sublimation and transport of blowing snow over Antarctica. We find larger sublimation values than previously reported in the literature which were based on model parameterizations. We also compute an estimate of the amount of snow transported from continent to ocean and find this to be significant.
Kerry Meyer, Yuekui Yang, and Steven Platnick
Atmos. Meas. Tech., 9, 1785–1797, https://doi.org/10.5194/amt-9-1785-2016, https://doi.org/10.5194/amt-9-1785-2016, 2016
Short summary
Short summary
This paper presents the expected uncertainties of a single-channel cloud opacity retrieval technique and a temperature-based cloud phase approach in support of the Deep Space Climate Observatory (DSCOVR) mission; DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations. Results show that, for ice clouds, retrieval errors are minimal (< 2 %), while for liquid clouds the error is limited to within 10 %, although for thin clouds the error can be higher.
Meloë S. F. Kacenelenbogen, Ralph Kuehn, Nandana Amarasinghe, Kerry Meyer, Edward Nowottnick, Mark Vaughan, Hong Chen, Sebastian Schmidt, Richard Ferrare, John Hair, Robert Levy, Hongbin Yu, Paquita Zuidema, Robert Holz, and Willem Marais
EGUsphere, https://doi.org/10.5194/egusphere-2025-1403, https://doi.org/10.5194/egusphere-2025-1403, 2025
Short summary
Short summary
Aerosols perturb the radiation balance of the Earth-atmosphere system. To reduce the uncertainty in quantifying present-day climate change, we combine two satellite sensors and a model to assess the aerosol effects on radiation in all-sky conditions. Satellite-based and coincident aircraft measurements of aerosol radiative effects agree well over the Southeast Atlantic. This constitutes a crucial first evaluation before we apply our method to more years and regions of the world.
Bryan Edward Fabbri, Gregory L. Schuster, Frederick M. Denn, Bing Lin, David A. Rutan, Wenying Su, Zachary A. Eitzen, James J. Madigan Jr., Robert Arduini, and Norman G. Loeb
EGUsphere, https://doi.org/10.5194/egusphere-2025-872, https://doi.org/10.5194/egusphere-2025-872, 2025
Short summary
Short summary
A new upwelling longwave (LW) measuring technique is presented without the influence of an obstruction on a pyrgeometer using an infrared radiation thermometer, a downwelling LW pyrgeometer and an air temperature probe. This new technique could be used at other locations with obstruction issues and also to verify existing upwelling longwave pyrgeometer measurements. Satellite projects such as the Clouds and the Earth's Radiant Energy System rely on accurate measurements to verify their models.
Kerry Meyer, Steven Platnick, G. Thomas Arnold, Nandana Amarasinghe, Daniel Miller, Jennifer Small-Griswold, Mikael Witte, Brian Cairns, Siddhant Gupta, Greg McFarquhar, and Joseph O'Brien
Atmos. Meas. Tech., 18, 981–1011, https://doi.org/10.5194/amt-18-981-2025, https://doi.org/10.5194/amt-18-981-2025, 2025
Short summary
Short summary
Satellite remote sensing retrievals of cloud droplet size are used to understand clouds and their interactions with aerosols and radiation but require many simplifying assumptions. Evaluation of these retrievals is typically done by comparing against direct measurements of droplets from airborne cloud probes. This paper details an evaluation of proxy airborne remote sensing droplet size retrievals against several cloud probes and explores the impact of key assumptions on retrieval agreement.
Bryan N. Duncan, Daniel C. Anderson, Arlene M. Fiore, Joanna Joiner, Nickolay A. Krotkov, Can Li, Dylan B. Millet, Julie M. Nicely, Luke D. Oman, Jason M. St. Clair, Joshua D. Shutter, Amir H. Souri, Sarah A. Strode, Brad Weir, Glenn M. Wolfe, Helen M. Worden, and Qindan Zhu
Atmos. Chem. Phys., 24, 13001–13023, https://doi.org/10.5194/acp-24-13001-2024, https://doi.org/10.5194/acp-24-13001-2024, 2024
Short summary
Short summary
Trace gases emitted to or formed within the atmosphere may be chemically or physically removed from the atmosphere. One trace gas, the hydroxyl radical (OH), is responsible for initiating the chemical removal of many trace gases, including some greenhouse gases. Despite its importance, scientists have not been able to adequately measure OH. In this opinion piece, we discuss promising new methods to indirectly constrain OH using satellite data of trace gases that control the abundance of OH.
Can Li, Nickolay A. Krotkov, Joanna Joiner, Vitali Fioletov, Chris McLinden, Debora Griffin, Peter J. T. Leonard, Simon Carn, Colin Seftor, and Alexander Vasilkov
Earth Syst. Sci. Data, 16, 4291–4309, https://doi.org/10.5194/essd-16-4291-2024, https://doi.org/10.5194/essd-16-4291-2024, 2024
Short summary
Short summary
Sulfur dioxide (SO2), a poisonous gas from human activities and volcanoes, causes air pollution, acid rain, and changes to climate and the ozone layer. Satellites have been used to monitor SO2 globally, including remote areas. Here we describe a new satellite SO2 dataset from the OMPS instrument that flies on the N20 satellite. Results show that the new dataset agrees well with the existing ones from other satellites and can help to continue the global monitoring of SO2 from space.
Lusheng Liang, Wenying Su, Sergio Sejas, Zachary Eitzen, and Norman G. Loeb
Atmos. Meas. Tech., 17, 2147–2163, https://doi.org/10.5194/amt-17-2147-2024, https://doi.org/10.5194/amt-17-2147-2024, 2024
Short summary
Short summary
This paper describes an updated process to obtain unfiltered radiation from CERES satellite instruments by incorporating the most recent developments in radiative transfer modeling and ancillary input datasets (e.g., realistic representation of land surface radiation and climatology of surface temperatures and aerosols) during the past 20 years. The resulting global mean of instantaneous SW and LW fluxes is changed by less than 0.5 W m−2 with regional differences as large as 2.0 W m−2.
Fei Liu, Steffen Beirle, Joanna Joiner, Sungyeon Choi, Zhining Tao, K. Emma Knowland, Steven J. Smith, Daniel Q. Tong, Siqi Ma, Zachary T. Fasnacht, and Thomas Wagner
Atmos. Chem. Phys., 24, 3717–3728, https://doi.org/10.5194/acp-24-3717-2024, https://doi.org/10.5194/acp-24-3717-2024, 2024
Short summary
Short summary
Using satellite data, we developed a coupled method independent of the chemical transport model to map NOx emissions across US cities. After validating our technique with synthetic data, we charted NOx emissions from 2018–2021 in 39 cities. Our results closely matched EPA estimates but also highlighted some inconsistencies in both magnitude and spatial distribution. This research can help refine strategies for monitoring and managing air quality.
Vitali E. Fioletov, Chris A. McLinden, Debora Griffin, Nickolay A. Krotkov, Can Li, Joanna Joiner, Nicolas Theys, and Simon Carn
Atmos. Meas. Tech., 16, 5575–5592, https://doi.org/10.5194/amt-16-5575-2023, https://doi.org/10.5194/amt-16-5575-2023, 2023
Short summary
Short summary
Snow-covered terrain, with its high reflectance in the UV, typically enhances satellite sensitivity to boundary layer pollution. However, a significant fraction of high-quality cloud-free measurements over snow is currently excluded from analyses. In this study, we investigated how satellite SO2 measurements over snow-covered surfaces can be used to improve estimations of annual SO2 emissions.
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech., 16, 3931–3957, https://doi.org/10.5194/amt-16-3931-2023, https://doi.org/10.5194/amt-16-3931-2023, 2023
Short summary
Short summary
We test a new method for measuring the 3D spatial variations of water within clouds, using measurements of reflections of the Sun's light observed at multiple angles by satellites. This is a great improvement on older methods, which typically assume that clouds occur in a slab shape. Our study used computer modeling to show that our 3D method will work well in cumulus clouds, where older slab methods do not. Our method will inform us about these clouds and their role in our climate.
Clark Jay Weaver, Jay Herman, Alexander Marshak, Steven R. Lorentz, Yinan Yu, Allan W. Smith, and Adam Szabo
EGUsphere, https://doi.org/10.5194/egusphere-2023-638, https://doi.org/10.5194/egusphere-2023-638, 2023
Preprint archived
Short summary
Short summary
We calculate the total amount of solar energy reflected by the earth from the EPIC camera onboard the DSCOVR satellite positioned 1.5 million km from earth. We compare it with another estimate of the reflected energy from the NISTAR instrument, that is also on the DSCOVR satellite. Both energy estimates agree within the uncertainties of each instrument. Finally, we compare with a third estimate of solar reflected energy from the CERES instruments that are on board low-earth orbit satellites.
Nikolas Ovaskainen, Pietari Skyttä, Nicklas Nordbäck, and Jon Engström
Solid Earth, 14, 603–624, https://doi.org/10.5194/se-14-603-2023, https://doi.org/10.5194/se-14-603-2023, 2023
Short summary
Short summary
We studied bedrock fracturing at Åland Islands from bedrock outcrops,
digital elevation models and geophysics using multiple scales of observation.
Using the results we can compare properties of the fractures of different sizes
to find similarities and differences; e.g. we found that glacial erosion has a
probable effect on the study of larger bedrock structures. Furthermore, we
collected data from 100 to 500 m long fractures, which have previously
proved to be difficult to sample.
Robert Pincus, Paul A. Hubanks, Steven Platnick, Kerry Meyer, Robert E. Holz, Denis Botambekov, and Casey J. Wall
Earth Syst. Sci. Data, 15, 2483–2497, https://doi.org/10.5194/essd-15-2483-2023, https://doi.org/10.5194/essd-15-2483-2023, 2023
Short summary
Short summary
This paper describes a new global dataset of cloud properties observed by a specific satellite program created to facilitate comparison with a matching observational proxy used in climate models. Statistics are accumulated over daily and monthly timescales on an equal-angle grid. Statistics include cloud detection, cloud-top pressure, and cloud optical properties. Joint histograms of several variable pairs are also available.
Ian Chang, Lan Gao, Connor J. Flynn, Yohei Shinozuka, Sarah J. Doherty, Michael S. Diamond, Karla M. Longo, Gonzalo A. Ferrada, Gregory R. Carmichael, Patricia Castellanos, Arlindo M. da Silva, Pablo E. Saide, Calvin Howes, Zhixin Xue, Marc Mallet, Ravi Govindaraju, Qiaoqiao Wang, Yafang Cheng, Yan Feng, Sharon P. Burton, Richard A. Ferrare, Samuel E. LeBlanc, Meloë S. Kacenelenbogen, Kristina Pistone, Michal Segal-Rozenhaimer, Kerry G. Meyer, Ju-Mee Ryoo, Leonhard Pfister, Adeyemi A. Adebiyi, Robert Wood, Paquita Zuidema, Sundar A. Christopher, and Jens Redemann
Atmos. Chem. Phys., 23, 4283–4309, https://doi.org/10.5194/acp-23-4283-2023, https://doi.org/10.5194/acp-23-4283-2023, 2023
Short summary
Short summary
Abundant aerosols are present above low-level liquid clouds over the southeastern Atlantic during late austral spring. The model simulation differences in the proportion of aerosol residing in the planetary boundary layer and in the free troposphere can greatly affect the regional aerosol radiative effects. This study examines the aerosol loading and fractional aerosol loading in the free troposphere among various models and evaluates them against measurements from the NASA ORACLES campaign.
Jesse Loveridge, Aviad Levis, Larry Di Girolamo, Vadim Holodovsky, Linda Forster, Anthony B. Davis, and Yoav Y. Schechner
Atmos. Meas. Tech., 16, 1803–1847, https://doi.org/10.5194/amt-16-1803-2023, https://doi.org/10.5194/amt-16-1803-2023, 2023
Short summary
Short summary
We describe a new method for measuring the 3D spatial variations in water within clouds using the reflected light of the Sun viewed at multiple different angles by satellites. This is a great improvement over older methods, which typically assume that clouds occur in a slab shape. Our study used computer modeling to show that our 3D method will work well in cumulus clouds, where older slab methods do not. Our method will inform us about these clouds and their role in our climate.
Nick Gorkavyi, Nickolay Krotkov, and Alexander Marshak
Atmos. Meas. Tech., 16, 1527–1537, https://doi.org/10.5194/amt-16-1527-2023, https://doi.org/10.5194/amt-16-1527-2023, 2023
Short summary
Short summary
The article discusses topical issues of the visible (libration) motion of the Earth in the sky of the Moon in a rectangle measuring 13.4° × 15.8°. On the one hand, the librations of the Moon make these observations difficult. On the other hand, they can be used as a natural scanning mechanism for cameras and spectroscopes mounted on a fixed platform on the surface of the Moon.
Joanna Joiner, Sergey Marchenko, Zachary Fasnacht, Lok Lamsal, Can Li, Alexander Vasilkov, and Nickolay Krotkov
Atmos. Meas. Tech., 16, 481–500, https://doi.org/10.5194/amt-16-481-2023, https://doi.org/10.5194/amt-16-481-2023, 2023
Short summary
Short summary
Nitrogen dioxide (NO2) is an important trace gas for both air quality and climate. NO2 affects satellite ocean color products. A new ocean color instrument – OCI (Ocean Color Instrument) – will be launched in 2024 on a NASA satellite. We show that it will be possible to measure NO2 from OCI even though it was not designed for this. The techniques developed here, based on machine learning, can also be applied to instruments already in space to speed up algorithms and reduce the effects of noise.
Vitali E. Fioletov, Chris A. McLinden, Debora Griffin, Ihab Abboud, Nickolay Krotkov, Peter J. T. Leonard, Can Li, Joanna Joiner, Nicolas Theys, and Simon Carn
Earth Syst. Sci. Data, 15, 75–93, https://doi.org/10.5194/essd-15-75-2023, https://doi.org/10.5194/essd-15-75-2023, 2023
Short summary
Short summary
Sulfur dioxide (SO2) measurements from three satellite instruments were used to update and extend the previously developed global catalogue of large SO2 emission sources. This version 2 of the global catalogue covers the period of 2005–2021 and includes a total of 759 continuously emitting point sources. The catalogue data show an approximate 50 % decline in global SO2 emissions between 2005 and 2021, although emissions were relatively stable during the last 3 years.
Can Li, Joanna Joiner, Fei Liu, Nickolay A. Krotkov, Vitali Fioletov, and Chris McLinden
Atmos. Meas. Tech., 15, 5497–5514, https://doi.org/10.5194/amt-15-5497-2022, https://doi.org/10.5194/amt-15-5497-2022, 2022
Short summary
Short summary
Satellite observations provide information on the sources of SO2, an important pollutant that affects both air quality and climate. However, these observations suffer from relatively poor data quality due to weak signals of SO2. Here, we use a machine learning technique to analyze satellite SO2 observations in order to reduce the noise and artifacts over relatively clean areas while keeping the signals near pollution sources. This leads to significant improvement in satellite SO2 data.
Aaron Pearlman, Monica Cook, Boryana Efremova, Francis Padula, Lok Lamsal, Joel McCorkel, and Joanna Joiner
Atmos. Meas. Tech., 15, 4489–4501, https://doi.org/10.5194/amt-15-4489-2022, https://doi.org/10.5194/amt-15-4489-2022, 2022
Short summary
Short summary
NOAA’s Geostationary Extended Observations (GeoXO) constellation is planned to consist of an atmospheric composition instrument (ACX) to support air quality forecasting and monitoring. As design trade-offs are being studied, we investigated one parameter, the polarization sensitivity, which has yet to be fully documented for NO2 retrievals. Our simulation study explores these impacts to inform the ACX’s development and better understand polarization’s role in trace gas retrievals.
Qing Yue, Eric J. Fetzer, Likun Wang, Brian H. Kahn, Nadia Smith, John M. Blaisdell, Kerry G. Meyer, Mathias Schreier, Bjorn Lambrigtsen, and Irina Tkatcheva
Atmos. Meas. Tech., 15, 2099–2123, https://doi.org/10.5194/amt-15-2099-2022, https://doi.org/10.5194/amt-15-2099-2022, 2022
Short summary
Short summary
The self-consistency and continuity of cloud retrievals from infrared sounders and imagers aboard Aqua and SNPP (Suomi National Polar-orbiting Partnership) are examined at the pixel scale. Cloud products are found to be consistent with each other. Differences between sounder products are mainly due to cloud clearing and the treatment of clouds in scenes with unsuccessful atmospheric retrievals. The impact of algorithm and instrument differences is clearly seen in the imager cloud retrievals.
Fei Liu, Zhining Tao, Steffen Beirle, Joanna Joiner, Yasuko Yoshida, Steven J. Smith, K. Emma Knowland, and Thomas Wagner
Atmos. Chem. Phys., 22, 1333–1349, https://doi.org/10.5194/acp-22-1333-2022, https://doi.org/10.5194/acp-22-1333-2022, 2022
Short summary
Short summary
In this work, we present a novel method to infer NOx emissions and lifetimes based on tropospheric NO2 observations together with reanalysis wind fields for cities located in polluted backgrounds. We evaluate the accuracy of the method using synthetic NO2 observations derived from a high-resolution model simulation. Our work provides an estimate for uncertainties in satellite-derived emissions inferred from chemical transport model (CTM)-independent approaches.
Galina Wind, Arlindo M. da Silva, Kerry G. Meyer, Steven Platnick, and Peter M. Norris
Geosci. Model Dev., 15, 1–14, https://doi.org/10.5194/gmd-15-1-2022, https://doi.org/10.5194/gmd-15-1-2022, 2022
Short summary
Short summary
This is the third paper in series about the Multi-sensor Cloud and Aerosol Retrieval Simulator (MCARS). In this paper we use MCARS to create a set of constraints that might be used to assimilate a new above-cloud aerosol retrieval product developed for the MODIS instrument into a general circulation model. We executed the above-cloud aerosol retrieval over a series of synthetic MODIS granules and found the product to be of excellent quality.
Sarah J. Doherty, Pablo E. Saide, Paquita Zuidema, Yohei Shinozuka, Gonzalo A. Ferrada, Hamish Gordon, Marc Mallet, Kerry Meyer, David Painemal, Steven G. Howell, Steffen Freitag, Amie Dobracki, James R. Podolske, Sharon P. Burton, Richard A. Ferrare, Calvin Howes, Pierre Nabat, Gregory R. Carmichael, Arlindo da Silva, Kristina Pistone, Ian Chang, Lan Gao, Robert Wood, and Jens Redemann
Atmos. Chem. Phys., 22, 1–46, https://doi.org/10.5194/acp-22-1-2022, https://doi.org/10.5194/acp-22-1-2022, 2022
Short summary
Short summary
Between July and October, biomass burning smoke is advected over the southeastern Atlantic Ocean, leading to climate forcing. Model calculations of forcing by this plume vary significantly in both magnitude and sign. This paper compares aerosol and cloud properties observed during three NASA ORACLES field campaigns to the same in four models. It quantifies modeled biases in properties key to aerosol direct radiative forcing and evaluates how these biases propagate to biases in forcing.
Nick Gorkavyi, Nickolay Krotkov, Can Li, Leslie Lait, Peter Colarco, Simon Carn, Matthew DeLand, Paul Newman, Mark Schoeberl, Ghassan Taha, Omar Torres, Alexander Vasilkov, and Joanna Joiner
Atmos. Meas. Tech., 14, 7545–7563, https://doi.org/10.5194/amt-14-7545-2021, https://doi.org/10.5194/amt-14-7545-2021, 2021
Short summary
Short summary
The 21 June 2019 eruption of the Raikoke volcano produced significant amounts of volcanic aerosols (sulfate and ash) and sulfur dioxide (SO2) gas that penetrated into the lower stratosphere. We showed that the amount of SO2 decreases with a characteristic period of 8–18 d and the peak of sulfate aerosol lags the initial peak of SO2 by 1.5 months. We also examined the dynamics of an unusual stratospheric coherent circular cloud of SO2 and aerosol observed from 18 July to 22 September 2019.
Luis Guanter, Cédric Bacour, Andreas Schneider, Ilse Aben, Tim A. van Kempen, Fabienne Maignan, Christian Retscher, Philipp Köhler, Christian Frankenberg, Joanna Joiner, and Yongguang Zhang
Earth Syst. Sci. Data, 13, 5423–5440, https://doi.org/10.5194/essd-13-5423-2021, https://doi.org/10.5194/essd-13-5423-2021, 2021
Short summary
Short summary
Sun-induced chlorophyll fluorescence (SIF) is an electromagnetic signal emitted by plants in the red and far-red parts of the spectrum. It has a functional link to photosynthesis and can be measured by satellite instruments, which makes it an important variable for the remote monitoring of the photosynthetic activity of vegetation ecosystems around the world. In this contribution we present a SIF dataset derived from the new Sentinel-5P TROPOMI missions.
Alexander Vasilkov, Nickolay Krotkov, Eun-Su Yang, Lok Lamsal, Joanna Joiner, Patricia Castellanos, Zachary Fasnacht, and Robert Spurr
Atmos. Meas. Tech., 14, 2857–2871, https://doi.org/10.5194/amt-14-2857-2021, https://doi.org/10.5194/amt-14-2857-2021, 2021
Short summary
Short summary
To explicitly account for aerosol effects in the OMI cloud and nitrogen dioxide algorithms, we use a model of aerosol optical properties from a global aerosol assimilation system and radiative transfer computations. Accounting for anisotropic reflection of Earth's surface is an important feature of the approach. Comparisons of the cloud and tropospheric nitrogen dioxide retrievals with implicit and explicit aerosol corrections are carried out for a selected area with high pollution.
Eloise A. Marais, John F. Roberts, Robert G. Ryan, Henk Eskes, K. Folkert Boersma, Sungyeon Choi, Joanna Joiner, Nader Abuhassan, Alberto Redondas, Michel Grutter, Alexander Cede, Laura Gomez, and Monica Navarro-Comas
Atmos. Meas. Tech., 14, 2389–2408, https://doi.org/10.5194/amt-14-2389-2021, https://doi.org/10.5194/amt-14-2389-2021, 2021
Short summary
Short summary
Nitrogen oxides in the upper troposphere have a profound influence on the global troposphere, but routine reliable observations there are exceedingly rare. We apply cloud-slicing to TROPOMI total columns of nitrogen dioxide (NO2) at high spatial resolution to derive near-global observations of NO2 in the upper troposphere and show consistency with existing datasets. These data offer tremendous potential to address knowledge gaps in this oft underappreciated portion of the atmosphere.
Ying-Chieh Chen, Sheng-Hsiang Wang, Qilong Min, Sarah Lu, Pay-Liam Lin, Neng-Huei Lin, Kao-Shan Chung, and Everette Joseph
Atmos. Chem. Phys., 21, 4487–4502, https://doi.org/10.5194/acp-21-4487-2021, https://doi.org/10.5194/acp-21-4487-2021, 2021
Short summary
Short summary
In this study, we integrate satellite and surface observations to statistically quantify aerosol impacts on low-level warm-cloud microphysics and drizzle over northern Taiwan. Our result provides observational evidence for aerosol indirect effects. The frequency of drizzle is reduced under polluted conditions. For light-precipitation events (≤ 1 mm h-1), however, higher aerosol concentrations drive raindrops toward smaller sizes and thus increase the appearance of the drizzle drops.
Fanny Peers, Peter Francis, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Michael I. Cotterell, Ian Crawford, Nicholas W. Davies, Cathryn Fox, Stuart Fox, Justin M. Langridge, Kerry G. Meyer, Steven E. Platnick, Kate Szpek, and Jim M. Haywood
Atmos. Chem. Phys., 21, 3235–3254, https://doi.org/10.5194/acp-21-3235-2021, https://doi.org/10.5194/acp-21-3235-2021, 2021
Short summary
Short summary
Satellite observations at high temporal resolution are a valuable asset to monitor the transport of biomass burning plumes and the cloud diurnal cycle in the South Atlantic, but they need to be validated. Cloud and above-cloud aerosol properties retrieved from SEVIRI are compared against MODIS and measurements from the CLARIFY-2017 campaign. While some systematic differences are observed between SEVIRI and MODIS, the overall agreement in the cloud and aerosol properties is very satisfactory.
Junjie Liu, Latha Baskaran, Kevin Bowman, David Schimel, A. Anthony Bloom, Nicholas C. Parazoo, Tomohiro Oda, Dustin Carroll, Dimitris Menemenlis, Joanna Joiner, Roisin Commane, Bruce Daube, Lucianna V. Gatti, Kathryn McKain, John Miller, Britton B. Stephens, Colm Sweeney, and Steven Wofsy
Earth Syst. Sci. Data, 13, 299–330, https://doi.org/10.5194/essd-13-299-2021, https://doi.org/10.5194/essd-13-299-2021, 2021
Short summary
Short summary
On average, the terrestrial biosphere carbon sink is equivalent to ~ 20 % of fossil fuel emissions. Understanding where and why the terrestrial biosphere absorbs carbon from the atmosphere is pivotal to any mitigation policy. Here we present a regionally resolved satellite-constrained net biosphere exchange (NBE) dataset with corresponding uncertainties between 2010–2018: CMS-Flux NBE 2020. The dataset provides a unique perspective on monitoring regional contributions to the CO2 growth rate.
Nick Gorkavyi, Zachary Fasnacht, David Haffner, Sergey Marchenko, Joanna Joiner, and Alexander Vasilkov
Atmos. Meas. Tech., 14, 961–974, https://doi.org/10.5194/amt-14-961-2021, https://doi.org/10.5194/amt-14-961-2021, 2021
Short summary
Short summary
Various instrumental or geophysical artifacts, such as saturation, stray light or obstruction of light, negatively impact satellite measured ultraviolet and visible Earthshine radiance spectra. Here, we introduce a straightforward detection method that is based on the correlation, r, between the observed Earthshine radiance and solar irradiance spectra over a 10 nm spectral range; our decorrelation index (DI for brevity) is simply defined as DI of 1–r.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Lok N. Lamsal, Nickolay A. Krotkov, Alexander Vasilkov, Sergey Marchenko, Wenhan Qin, Eun-Su Yang, Zachary Fasnacht, Joanna Joiner, Sungyeon Choi, David Haffner, William H. Swartz, Bradford Fisher, and Eric Bucsela
Atmos. Meas. Tech., 14, 455–479, https://doi.org/10.5194/amt-14-455-2021, https://doi.org/10.5194/amt-14-455-2021, 2021
Short summary
Short summary
The NASA standard nitrogen dioxide (NO2) version 4.0 product for OMI Aura incorporates the most salient improvements. It represents the first global satellite trace gas retrieval with OMI–MODIS synergy accounting for surface reflectance anisotropy in cloud and NO2 retrievals. Improved spectral fitting procedures for NO2 and oxygen dimer (for cloud) retrievals and reliance on high-resolution field-of-view-specific input information for NO2 and cloud retrievals help enhance the NO2 data quality.
Tianle Yuan, Hua Song, Robert Wood, Johannes Mohrmann, Kerry Meyer, Lazaros Oreopoulos, and Steven Platnick
Atmos. Meas. Tech., 13, 6989–6997, https://doi.org/10.5194/amt-13-6989-2020, https://doi.org/10.5194/amt-13-6989-2020, 2020
Short summary
Short summary
We use deep transfer learning techniques to classify satellite cloud images into different morphology types. It achieves the state-of-the-art results and can automatically process a large amount of satellite data. The algorithm will help low-cloud researchers to better understand their mesoscale organizations.
Can Li, Nickolay A. Krotkov, Peter J. T. Leonard, Simon Carn, Joanna Joiner, Robert J. D. Spurr, and Alexander Vasilkov
Atmos. Meas. Tech., 13, 6175–6191, https://doi.org/10.5194/amt-13-6175-2020, https://doi.org/10.5194/amt-13-6175-2020, 2020
Short summary
Short summary
Sulfur dioxide (SO2) is an important pollutant that causes haze and acid rain. The Ozone Monitoring Instrument (OMI) has been providing global observation of SO2 from space for over 15 years. In this paper, we introduce a new OMI SO2 dataset for global pollution monitoring. The dataset better accounts for the influences of different factors such as location and sun and satellite angles, leading to improved data quality. The new OMI SO2 dataset is publicly available through NASA's data center.
Marc Mallet, Fabien Solmon, Pierre Nabat, Nellie Elguindi, Fabien Waquet, Dominique Bouniol, Andrew Mark Sayer, Kerry Meyer, Romain Roehrig, Martine Michou, Paquita Zuidema, Cyrille Flamant, Jens Redemann, and Paola Formenti
Atmos. Chem. Phys., 20, 13191–13216, https://doi.org/10.5194/acp-20-13191-2020, https://doi.org/10.5194/acp-20-13191-2020, 2020
Short summary
Short summary
This paper presents numerical simulations using two regional climate models to study the impact of biomass fire plumes from central Africa on the radiative balance of this region. The results indicate that biomass fires can either warm the regional climate when they are located above low clouds or cool it when they are located above land. They can also alter sea and land surface temperatures by decreasing solar radiation at the surface. Finally, they can also modify the atmospheric dynamics.
Bangsheng Yin, Qilong Min, Emily Morgan, Yuekui Yang, Alexander Marshak, and Anthony B. Davis
Atmos. Meas. Tech., 13, 5259–5275, https://doi.org/10.5194/amt-13-5259-2020, https://doi.org/10.5194/amt-13-5259-2020, 2020
Short summary
Short summary
Cloud-top pressure (CTP) is an important cloud property for climate and weather studies. Based on differential oxygen absorption, both oxygen A-band and B-band pairs can be used to retrieve CTP. However, it is currently very challenging to perform a CTP retrieval accurately due to the complicated in-cloud penetration effect. To address this issue, we propose an analytic transfer inverse model for DSCOVR EPIC observations to retrieve CTP considering in-cloud photon penetration.
Guoyong Wen, Alexander Marshak, Si-Chee Tsay, Jay Herman, Ukkyo Jeong, Nader Abuhassan, Robert Swap, and Dong Wu
Atmos. Chem. Phys., 20, 10477–10491, https://doi.org/10.5194/acp-20-10477-2020, https://doi.org/10.5194/acp-20-10477-2020, 2020
Short summary
Short summary
We combine the ground-based observations and radiative transfer model to quantify the impact of the 2017 solar eclipse on surface shortwave irradiation reduction. We find that the eclipse caused local reductions of time-averaged surface flux of about 379 W m-2 (50 %) and 329 W m-2 (46 %) during the ~ 3 h course of the eclipse at the Casper and Columbia sites, respectively. We estimate that the Moon’s shadow caused a reduction of approximately 7 %–8 % in global average surface broadband SW radiation.
Erik van Schaik, Maurits L. Kooreman, Piet Stammes, L. Gijsbert Tilstra, Olaf N. E. Tuinder, Abram F. J. Sanders, Willem W. Verstraeten, Rüdiger Lang, Alessandra Cacciari, Joanna Joiner, Wouter Peters, and K. Folkert Boersma
Atmos. Meas. Tech., 13, 4295–4315, https://doi.org/10.5194/amt-13-4295-2020, https://doi.org/10.5194/amt-13-4295-2020, 2020
Short summary
Short summary
With our improved algorithm we have generated a stable, long-term dataset of fluorescence measurements from the GOME-2A satellite instrument. In this study we determined a correction for the degradation of GOME-2A in orbit and applied this correction along with other improvements to our SIFTER v2 retrieval algorithm. The result is a coherent dataset of daily and monthly averaged fluorescence values for the period 2007–2018 to track worldwide changes in photosynthetic activity by vegetation.
Benjamin Marchant, Steven Platnick, Kerry Meyer, and Galina Wind
Atmos. Meas. Tech., 13, 3263–3275, https://doi.org/10.5194/amt-13-3263-2020, https://doi.org/10.5194/amt-13-3263-2020, 2020
Short summary
Short summary
Multilayer cloud scenes (such as an ice cloud overlapping a liquid cloud) are common in the Earth's atmosphere and are quite difficult to detect from space. The detection of multilayer clouds is important to better understand how they interact with the light and their impact on the climate. So, for the instrument MODIS an algorithm has been developed to detect those clouds, and this paper presents an evaluation of this algorithm by comparing it with
other instruments.
Sungyeon Choi, Lok N. Lamsal, Melanie Follette-Cook, Joanna Joiner, Nickolay A. Krotkov, William H. Swartz, Kenneth E. Pickering, Christopher P. Loughner, Wyat Appel, Gabriele Pfister, Pablo E. Saide, Ronald C. Cohen, Andrew J. Weinheimer, and Jay R. Herman
Atmos. Meas. Tech., 13, 2523–2546, https://doi.org/10.5194/amt-13-2523-2020, https://doi.org/10.5194/amt-13-2523-2020, 2020
Chenxi Wang, Steven Platnick, Kerry Meyer, Zhibo Zhang, and Yaping Zhou
Atmos. Meas. Tech., 13, 2257–2277, https://doi.org/10.5194/amt-13-2257-2020, https://doi.org/10.5194/amt-13-2257-2020, 2020
Short summary
Short summary
A machine-learning (ML)-based approach that can be used for cloud mask and phase detection is developed. An all-day model that uses infrared (IR) observations and a daytime model that uses shortwave and IR observations from a passive instrument are trained separately for different surface types. The training datasets are selected by using reference pixel types from collocated space lidar. The ML approach is validated carefully and the overall performance is better than traditional methods.
Yaping Zhou, Yuekui Yang, Meng Gao, and Peng-Wang Zhai
Atmos. Meas. Tech., 13, 1575–1591, https://doi.org/10.5194/amt-13-1575-2020, https://doi.org/10.5194/amt-13-1575-2020, 2020
Short summary
Short summary
Satellite cloud detection over snow and ice has been difficult for passive remote sensing instruments due to the lack of contrast between clouds and the bright and cold surfaces; the Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR) has very limited channels. This study investigates the methodology of applying EPIC's two oxygen absorption band pair ratios for cloud detection over snow and ice surfaces.
Samuel E. LeBlanc, Jens Redemann, Connor Flynn, Kristina Pistone, Meloë Kacenelenbogen, Michal Segal-Rosenheimer, Yohei Shinozuka, Stephen Dunagan, Robert P. Dahlgren, Kerry Meyer, James Podolske, Steven G. Howell, Steffen Freitag, Jennifer Small-Griswold, Brent Holben, Michael Diamond, Robert Wood, Paola Formenti, Stuart Piketh, Gillian Maggs-Kölling, Monja Gerber, and Andreas Namwoonde
Atmos. Chem. Phys., 20, 1565–1590, https://doi.org/10.5194/acp-20-1565-2020, https://doi.org/10.5194/acp-20-1565-2020, 2020
Short summary
Short summary
The southeast Atlantic during August–October experiences layers of smoke from biomass burning over marine stratocumulus clouds. Here we present the light attenuation of the smoke and its dependence in the spatial, vertical, and spectral domain through direct measurements from an airborne platform during September 2016. From our observations of this climatically important smoke, we found an average aerosol optical depth of 0.32 at 500 nm, slightly lower than comparative satellite measurements.
Wenying Su, Patrick Minnis, Lusheng Liang, David P. Duda, Konstantin Khlopenkov, Mandana M. Thieman, Yinan Yu, Allan Smith, Steven Lorentz, Daniel Feldman, and Francisco P. J. Valero
Atmos. Meas. Tech., 13, 429–443, https://doi.org/10.5194/amt-13-429-2020, https://doi.org/10.5194/amt-13-429-2020, 2020
Short summary
Short summary
The Deep Space Climate Observatory (DSCOVR) provides continuous full-disk global broadband irradiance measurements over most of the sunlit side of the Earth. The three active cavity radiometers measure the total radiant energy from the sunlit side of the Earth in shortwave (SW; 0.2–4 µm), total (0.4–100 µm), and near-infrared (NIR; 0.7–4 µm) channels. In this paper, the algorithm used to derive daytime shortwave and longwave fluxes from NISTAR measurements is presented.
Zachary Fasnacht, Alexander Vasilkov, David Haffner, Wenhan Qin, Joanna Joiner, Nickolay Krotkov, Andrew M. Sayer, and Robert Spurr
Atmos. Meas. Tech., 12, 6749–6769, https://doi.org/10.5194/amt-12-6749-2019, https://doi.org/10.5194/amt-12-6749-2019, 2019
Short summary
Short summary
The anisotropy of Earth's surface reflection plays an important role in satellite-based retrievals of cloud, aerosol, and trace gases. Most current ultraviolet and visible satellite retrievals utilize climatological surface reflectivity databases that do not account for surface anisotropy. The GLER concept was introduced to account for such features. Here we evaluate GLER for water surfaces by comparing with OMI measurements and show that it captures these surface anisotropy features.
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Meloë Kacenelenbogen, Michal Segal Rozenhaimer, Yohei Shinozuka, Connor Flynn, Steven Platnick, Kerry Meyer, Rich Ferrare, Sharon Burton, Chris Hostetler, Steven Howell, Steffen Freitag, Amie Dobracki, and Sarah Doherty
Atmos. Meas. Tech., 12, 6505–6528, https://doi.org/10.5194/amt-12-6505-2019, https://doi.org/10.5194/amt-12-6505-2019, 2019
Short summary
Short summary
For two cases from the NASA ORACLES experiments, we retrieve aerosol and cloud properties and calculate a direct aerosol radiative effect (DARE). We investigate the relationship between DARE and the cloud albedo by specifying the albedo for which DARE transitions from a cooling to warming radiative effect. Our new aerosol retrieval algorithm is successful despite complexities associated with scenes that contain aerosols above clouds and decreases the uncertainty on retrieved aerosol parameters.
Jonathan K. P. Shonk, Jui-Yuan Christine Chiu, Alexander Marshak, David M. Giles, Chiung-Huei Huang, Gerald G. Mace, Sally Benson, Ilya Slutsker, and Brent N. Holben
Atmos. Meas. Tech., 12, 5087–5099, https://doi.org/10.5194/amt-12-5087-2019, https://doi.org/10.5194/amt-12-5087-2019, 2019
Short summary
Short summary
Retrievals of cloud optical depth made using AERONET radiometers in “cloud mode” rely on the assumption that all cloud is liquid. The presence of ice cloud therefore introduces errors in the retrieved optical depth, which can be over 25 in optically thick ice clouds. However, such clouds are not frequent and the long-term mean optical depth error is about 3 for a sample of real clouds. A correction equation could improve the retrieval further, although this would require extra instrumentation.
Fanny Peers, Peter Francis, Cathryn Fox, Steven J. Abel, Kate Szpek, Michael I. Cotterell, Nicholas W. Davies, Justin M. Langridge, Kerry G. Meyer, Steven E. Platnick, and Jim M. Haywood
Atmos. Chem. Phys., 19, 9595–9611, https://doi.org/10.5194/acp-19-9595-2019, https://doi.org/10.5194/acp-19-9595-2019, 2019
Short summary
Short summary
The measurements from the geostationary satellite MSG/SEVIRI are used to retrieve the cloud and above-cloud aerosol properties over the South Atlantic. The technique relies on the spectral contrast and the magnitude of the signal in the visible to shortwave infrared region as well as the atmospheric correction based on forecasted water vapour profiles. The sensitivity analysis and the stability of the retrieval over time show great potential of the high-temporal-resolution observations.
Wenhan Qin, Zachary Fasnacht, David Haffner, Alexander Vasilkov, Joanna Joiner, Nickolay Krotkov, Bradford Fisher, and Robert Spurr
Atmos. Meas. Tech., 12, 3997–4017, https://doi.org/10.5194/amt-12-3997-2019, https://doi.org/10.5194/amt-12-3997-2019, 2019
Short summary
Short summary
Satellite observations depend on Sun and view angles due to anisotropy of the Earth's atmosphere and surface reflection. But most of the ultraviolet and visible cloud, aerosol, and trace-gas algorithms utilize surface reflectivity databases that do not account for surface anisotropy. We create a surface database using the GLER concept which adequately accounts for surface anisotropy, validate it with independent satellite data, and provide a simple implementation to the current algorithms.
Rachel F. Silvern, Daniel J. Jacob, Loretta J. Mickley, Melissa P. Sulprizio, Katherine R. Travis, Eloise A. Marais, Ronald C. Cohen, Joshua L. Laughner, Sungyeon Choi, Joanna Joiner, and Lok N. Lamsal
Atmos. Chem. Phys., 19, 8863–8878, https://doi.org/10.5194/acp-19-8863-2019, https://doi.org/10.5194/acp-19-8863-2019, 2019
Short summary
Short summary
The US EPA reports a steady decrease in nitrogen oxide (NOx) emissions from fuel combustion over the 2005–2017 period, while satellite observations show a leveling off after 2009, suggesting emission reductions and related air quality gains have halted. We show the sustained decrease in NOx emissions is in fact consistent with observed trends in surface NO2 and ozone concentrations and that the flattening of the satellite trend reflects a growing influence from the non-anthropogenic background.
David P. Duda, Sarah T. Bedka, Patrick Minnis, Douglas Spangenberg, Konstantin Khlopenkov, Thad Chee, and William L. Smith Jr.
Atmos. Chem. Phys., 19, 5313–5330, https://doi.org/10.5194/acp-19-5313-2019, https://doi.org/10.5194/acp-19-5313-2019, 2019
Short summary
Short summary
We use one year (2012) of satellite imagery obtained from two NASA research satellites, Terra and Aqua, to detect linear contrail coverage and to estimate their physical properties over the Northern Hemisphere. The satellite-derived properties are compared with results collected from the same sensors in 2006 to estimate whether the impact of contrail coverage on climate has changed. The study is the first of its kind to measure contrail properties over a near-global scale from satellite imagery.
Marc Mallet, Pierre Nabat, Paquita Zuidema, Jens Redemann, Andrew Mark Sayer, Martin Stengel, Sebastian Schmidt, Sabrina Cochrane, Sharon Burton, Richard Ferrare, Kerry Meyer, Pablo Saide, Hiren Jethva, Omar Torres, Robert Wood, David Saint Martin, Romain Roehrig, Christina Hsu, and Paola Formenti
Atmos. Chem. Phys., 19, 4963–4990, https://doi.org/10.5194/acp-19-4963-2019, https://doi.org/10.5194/acp-19-4963-2019, 2019
Short summary
Short summary
The model is able to represent LWP but not the LCF. AOD is consistent over the continent but also over ocean (ACAOD). Differences are observed in SSA due to the absence of internal mixing in ALADIN-Climate. A significant regional gradient of the forcing at TOA is observed. An intense positive forcing is simulated over Gabon. Results highlight the significant effect of enhanced moisture on BBA extinction. The surface dimming modifies the energy budget.
Eloise A. Marais, Daniel J. Jacob, Sungyeon Choi, Joanna Joiner, Maria Belmonte-Rivas, Ronald C. Cohen, Steffen Beirle, Lee T. Murray, Luke D. Schiferl, Viral Shah, and Lyatt Jaeglé
Atmos. Chem. Phys., 18, 17017–17027, https://doi.org/10.5194/acp-18-17017-2018, https://doi.org/10.5194/acp-18-17017-2018, 2018
Short summary
Short summary
We intercompare two new products of global upper tropospheric nitrogen dioxide (NO2) retrieved from the Ozone Monitoring Instrument (OMI). We evaluate these products with aircraft observations from NASA DC8 aircraft campaigns and interpret the useful information these products can provide about nitrogen oxides (NOx) in the global upper troposphere using the GEOS-Chem chemical transport model.
Fei Liu, Sungyeon Choi, Can Li, Vitali E. Fioletov, Chris A. McLinden, Joanna Joiner, Nickolay A. Krotkov, Huisheng Bian, Greet Janssens-Maenhout, Anton S. Darmenov, and Arlindo M. da Silva
Atmos. Chem. Phys., 18, 16571–16586, https://doi.org/10.5194/acp-18-16571-2018, https://doi.org/10.5194/acp-18-16571-2018, 2018
Short summary
Short summary
Sulfur dioxide measurements from space have been used to detect emissions from large sources. We developed a new emission inventory by combining the satellite-based emission estimates and the conventional bottom-up inventory for smaller sources. The new inventory improves the model agreement with in situ observations and offers the possibility of rapid updates to emissions.
Yao Zhang, Joanna Joiner, Seyed Hamed Alemohammad, Sha Zhou, and Pierre Gentine
Biogeosciences, 15, 5779–5800, https://doi.org/10.5194/bg-15-5779-2018, https://doi.org/10.5194/bg-15-5779-2018, 2018
Short summary
Short summary
Using satellite reflectance measurements and a machine learning algorithm, we generated a new solar-induced chlorophyll fluorescence (SIF) dataset that is closely linked to plant photosynthesis. This new dataset has higher spatial and temporal resolutions, and lower uncertainty compared to the existing satellite retrievals. We also demonstrated its application in monitoring drought and improving the understanding of the SIF–photosynthesis relationship.
Matthew Gibbons, Qilong Min, and Jiwen Fan
Atmos. Chem. Phys., 18, 12161–12184, https://doi.org/10.5194/acp-18-12161-2018, https://doi.org/10.5194/acp-18-12161-2018, 2018
Short summary
Short summary
The effects of dust aerosols on ice formation within a tropical Atlantic thunderstorm system were investigated using a 3-D weather model and compared with observations. Updated ice formation mechanisms directly connect available dust particles with ice particle formation. The resulting clouds were lower and narrower and produced less rain at the surface compared to cleaner conditions, due to ice formation occurring at warmer temperatures. These results agree well with observed changes.
Jay Herman, Guoyong Wen, Alexander Marshak, Karin Blank, Liang Huang, Alexander Cede, Nader Abuhassan, and Matthew Kowalewski
Atmos. Meas. Tech., 11, 4373–4388, https://doi.org/10.5194/amt-11-4373-2018, https://doi.org/10.5194/amt-11-4373-2018, 2018
Short summary
Short summary
The DSCOVR/EPIC instrument located near the Lagrange 1 Earth–Sun gravitational balance point is able to view the entire sunlit disk of the Earth. This means that during the eclipse of 21 August 2017 EPIC was able to see the region of totality and the much larger region of partial eclipse. Because of this, EPIC is able to measure the global reduction of reflected solar flux. For the wavelength range 388 to 780 nm, we estimated a 10 % reduction in reflected radiation.
Alexander Vasilkov, Eun-Su Yang, Sergey Marchenko, Wenhan Qin, Lok Lamsal, Joanna Joiner, Nickolay Krotkov, David Haffner, Pawan K. Bhartia, and Robert Spurr
Atmos. Meas. Tech., 11, 4093–4107, https://doi.org/10.5194/amt-11-4093-2018, https://doi.org/10.5194/amt-11-4093-2018, 2018
Short summary
Short summary
We discuss a new cloud algorithm that retrieves effective cloud fraction and cloud altitude and pressure from the oxygen dimer absorption band at 477 nm. The algorithm accounts for how changes in the sun–satellite geometry affect the surface reflection. The cloud fraction and pressure are used as inputs to the OMI algorithm that retrieves a pollutant gas called nitrogen dioxide. Impacts of the application of the newly developed cloud algorithm on the OMI nitrogen dioxide retrieval are discussed.
Daniel J. Miller, Zhibo Zhang, Steven Platnick, Andrew S. Ackerman, Frank Werner, Celine Cornet, and Kirk Knobelspiesse
Atmos. Meas. Tech., 11, 3689–3715, https://doi.org/10.5194/amt-11-3689-2018, https://doi.org/10.5194/amt-11-3689-2018, 2018
Short summary
Short summary
Prior satellite comparisons of bispectral and polarimetric cloud droplet size retrievals exhibited systematic biases. However, similar airborne instrument retrievals have been found to be quite similar to one another. This study explains this discrepancy in terms of differing sensitivity to vertical profile, as well as spatial and angular resolution. This is accomplished by using a satellite retrieval simulator – an LES cloud model coupled to radiative transfer and cloud retrieval algorithms.
Xiaomei Lu, Yongxiang Hu, Yuekui Yang, Mark Vaughan, Zhaoyan Liu, Sharon Rodier, William Hunt, Kathy Powell, Patricia Lucker, and Charles Trepte
Atmos. Meas. Tech., 11, 3281–3296, https://doi.org/10.5194/amt-11-3281-2018, https://doi.org/10.5194/amt-11-3281-2018, 2018
Short summary
Short summary
This paper presents an innovative retrieval method that translates the CALIOP land surface laser pulse returns into the surface bidirectional reflectance. The surface bidirectional reflectances retrieved from CALIOP measurements contribute complementary data for existing MODIS standard data products and could be used to detect and monitor seasonal surface reflectance changes in high latitude regions where passive MODIS measurements are limited.
Pieternel F. Levelt, Joanna Joiner, Johanna Tamminen, J. Pepijn Veefkind, Pawan K. Bhartia, Deborah C. Stein Zweers, Bryan N. Duncan, David G. Streets, Henk Eskes, Ronald van der A, Chris McLinden, Vitali Fioletov, Simon Carn, Jos de Laat, Matthew DeLand, Sergey Marchenko, Richard McPeters, Jerald Ziemke, Dejian Fu, Xiong Liu, Kenneth Pickering, Arnoud Apituley, Gonzalo González Abad, Antti Arola, Folkert Boersma, Christopher Chan Miller, Kelly Chance, Martin de Graaf, Janne Hakkarainen, Seppo Hassinen, Iolanda Ialongo, Quintus Kleipool, Nickolay Krotkov, Can Li, Lok Lamsal, Paul Newman, Caroline Nowlan, Raid Suleiman, Lieuwe Gijsbert Tilstra, Omar Torres, Huiqun Wang, and Krzysztof Wargan
Atmos. Chem. Phys., 18, 5699–5745, https://doi.org/10.5194/acp-18-5699-2018, https://doi.org/10.5194/acp-18-5699-2018, 2018
Short summary
Short summary
The aim of this paper is to highlight the many successes of the Ozone Monitoring Instrument (OMI) spanning more than 13 years. Data from OMI have been used in a wide range of applications. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. OMI data continue to be used for new research and applications.
Igor V. Geogdzhayev and Alexander Marshak
Atmos. Meas. Tech., 11, 359–368, https://doi.org/10.5194/amt-11-359-2018, https://doi.org/10.5194/amt-11-359-2018, 2018
Short summary
Short summary
The unique Earth view of the Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Imaging Camera (EPIC) orbiting at the point of equal attraction from the Earth and the Sun can significantly augment the low-orbit remote sensing of aerosols, clouds and gases. We derive the relationship between the digital counts and the reflected sunlight intensity for some EPIC channels using collocated Earth views from EPIC and Moderate Resolution Imaging Spectroradiometer (MODIS) and EPIC moon views.
Stephen P. Palm, Vinay Kayetha, Yuekui Yang, and Rebecca Pauly
The Cryosphere, 11, 2555–2569, https://doi.org/10.5194/tc-11-2555-2017, https://doi.org/10.5194/tc-11-2555-2017, 2017
Short summary
Short summary
Blowing snow processes are an important component of ice sheet mass balance and also the atmospheric hydrological cycle. This paper presents the first satellite-derived estimates of continent-wide sublimation and transport of blowing snow over Antarctica. We find larger sublimation values than previously reported in the literature which were based on model parameterizations. We also compute an estimate of the amount of snow transported from continent to ocean and find this to be significant.
Jerald R. Ziemke, Sarah A. Strode, Anne R. Douglass, Joanna Joiner, Alexander Vasilkov, Luke D. Oman, Junhua Liu, Susan E. Strahan, Pawan K. Bhartia, and David P. Haffner
Atmos. Meas. Tech., 10, 4067–4078, https://doi.org/10.5194/amt-10-4067-2017, https://doi.org/10.5194/amt-10-4067-2017, 2017
Short summary
Short summary
We combine satellite measurements of ozone and cloud properties from the Aura OMI and MLS instruments for 2004–2016 to measure ozone in the mid–upper levels of deep convective clouds. Our results ascribe upward injection of low boundary layer ozone (varying from low to high amounts) as a major driver of the measured concentrations of ozone in thick clouds. Our OMI/MLS generated ozone product is made available to the public for use in science applications.
Wenying Su, Lusheng Liang, Walter F. Miller, and Victor E. Sothcott
Atmos. Meas. Tech., 10, 4001–4011, https://doi.org/10.5194/amt-10-4001-2017, https://doi.org/10.5194/amt-10-4001-2017, 2017
Short summary
Short summary
The footprint size of NPP CERES is larger than that of Aqua CERES, because the altitude of the NPP orbit is higher than that of the Aqua orbit. Additionally, the cloud retrievals from VIIRS and MODIS, the imagers that fly alongside NPP CERES and Aqua CERES, are also different. This paper outlined a simulation study using the MODIS pixel-level data to address the impact of these differences on the NPP CERES fluxes inverted using the Aqua CERES angular distribution models.
Vitali Fioletov, Chris A. McLinden, Shailesh K. Kharol, Nickolay A. Krotkov, Can Li, Joanna Joiner, Michael D. Moran, Robert Vet, Antoon J. H. Visschedijk, and Hugo A. C. Denier van der Gon
Atmos. Chem. Phys., 17, 12597–12616, https://doi.org/10.5194/acp-17-12597-2017, https://doi.org/10.5194/acp-17-12597-2017, 2017
Thomas Fauchez, Steven Platnick, Kerry Meyer, Céline Cornet, Frédéric Szczap, and Tamás Várnai
Atmos. Chem. Phys., 17, 8489–8508, https://doi.org/10.5194/acp-17-8489-2017, https://doi.org/10.5194/acp-17-8489-2017, 2017
Short summary
Short summary
This study presents impact of cirrus cloud horizontal heterogeneity on simulated thermal infrared brightness temperatures at the top of the atmosphere for spatial resolutions ranging from 50 m to 10 km. The cirrus is generated by the 3DCLOUD code and the radiative transfer by the 3DMCPOL code. Brightness temperatures are mostly impacted by the horizontal transport effect and plane-parallel bias at high and coarse spatial resolutions, respectively, with a minimum around 100 m–250 m.
John Rausch, Kerry Meyer, Ralf Bennartz, and Steven Platnick
Atmos. Meas. Tech., 10, 2105–2116, https://doi.org/10.5194/amt-10-2105-2017, https://doi.org/10.5194/amt-10-2105-2017, 2017
Short summary
Short summary
This paper documents the observed differences in the aggregated (Level-3) cloud droplet effective radius and droplet number concentration estimates inferred from the Aqua–MODIS cloud product collections 5.1 and 6 for warm oceanic cloud scenes over the year 2008. We note significant differences in effective radius and droplet concentration between the two products and discuss the algorithmic and calibration changes which may contribute to observed results.
Siwei Li, Everette Joseph, Qilong Min, Bangsheng Yin, Ricardo Sakai, and Megan K. Payne
Atmos. Meas. Tech., 10, 2093–2104, https://doi.org/10.5194/amt-10-2093-2017, https://doi.org/10.5194/amt-10-2093-2017, 2017
Short summary
Short summary
Monitoring fine aerosol concentration is important because of the adverse impacts of high fine-particle concentration on human health. However, monitoring fine aerosols is difficult during cloudy and nighttime periods. In this study, an empirical model using measurements from ceilometers was developed to measure fine aerosol mass concentration even under cloudy or nighttime conditions. The findings of this study illustrate the strong need for ceilometer data in air quality monitoring.
Yan Zhang, Can Li, Nickolay A. Krotkov, Joanna Joiner, Vitali Fioletov, and Chris McLinden
Atmos. Meas. Tech., 10, 1495–1509, https://doi.org/10.5194/amt-10-1495-2017, https://doi.org/10.5194/amt-10-1495-2017, 2017
Short summary
Short summary
In this study, we demonstrate a very good consistency of the SO2 retrievals from OMI and OMPS using our state-of-the-art principal component analysis technique. Four full years of OMI and OMPS SO2 retrievals, during 2012–2015 have been analyzed over some of the world’s most polluted regions: eastern China, Mexico, and South Africa. The consistency of retrievals between OMI and OMPS make it possible to continue the long-term global SO2 pollution monitoring.
Jun Yang, Qilong Min, Weitao Lu, Ying Ma, Wen Yao, and Tianshu Lu
Atmos. Meas. Tech., 10, 1191–1201, https://doi.org/10.5194/amt-10-1191-2017, https://doi.org/10.5194/amt-10-1191-2017, 2017
Short summary
Short summary
A big challenge for accurate cloud detection is the inhomogeneous brightness distribution of sky background, which mainly caused by the difference in atmospheric scattering angles. In this manuscript, we report a new RGB channel operation aiming to remove this inhomogeneous sky background in the total sky images, and then a cloud detection algorithm based on this new channel is proposed which combined the merits of the threshold and differencing methods.
Can Li, Nickolay A. Krotkov, Simon Carn, Yan Zhang, Robert J. D. Spurr, and Joanna Joiner
Atmos. Meas. Tech., 10, 445–458, https://doi.org/10.5194/amt-10-445-2017, https://doi.org/10.5194/amt-10-445-2017, 2017
Short summary
Short summary
In this paper, we describe the new-generation OMI volcanic SO2 algorithm based on our principal component analysis (PCA) retrieval technique. We demonstrate significant improvement in the our new OMI volcanic SO2 data, with the retrieval noise reduced by a factor of 2 as compared with the previous dataset. The algorithm also improves the accuracy for large volcanic eruptions. It is also capable of producing consistent retrievals between different instruments.
Alexander Vasilkov, Wenhan Qin, Nickolay Krotkov, Lok Lamsal, Robert Spurr, David Haffner, Joanna Joiner, Eun-Su Yang, and Sergey Marchenko
Atmos. Meas. Tech., 10, 333–349, https://doi.org/10.5194/amt-10-333-2017, https://doi.org/10.5194/amt-10-333-2017, 2017
Short summary
Short summary
We show how the surface reflection can vary day to day in the blue part of the sun's spectrum where we measure the pollutant gas nitrogen dioxide using a satellite instrument called OMI. We use information from an imaging spectrometer on another satellite, MODIS, to estimate the angular surface effects. We can then use models of how the sunlight travels through the atmosphere to predict how the angle-dependent surface reflection will impact the values of pollutant levels inferred by OMI.
Ulrich Schumann, Robert Baumann, Darrel Baumgardner, Sarah T. Bedka, David P. Duda, Volker Freudenthaler, Jean-Francois Gayet, Andrew J. Heymsfield, Patrick Minnis, Markus Quante, Ehrhard Raschke, Hans Schlager, Margarita Vázquez-Navarro, Christiane Voigt, and Zhien Wang
Atmos. Chem. Phys., 17, 403–438, https://doi.org/10.5194/acp-17-403-2017, https://doi.org/10.5194/acp-17-403-2017, 2017
Short summary
Short summary
The initially linear clouds often seen behind aircraft are known as contrails. Contrails are prototype cirrus clouds forming under well-known conditions, but with less certain life cycle and climate effects. This paper collects contrail data from a large set of measurements and compares them among each other and with models. The observations show consistent contrail properties over a wide range of aircraft and atmosphere conditions. The dataset is available for further research.
Frank Werner, Galina Wind, Zhibo Zhang, Steven Platnick, Larry Di Girolamo, Guangyu Zhao, Nandana Amarasinghe, and Kerry Meyer
Atmos. Meas. Tech., 9, 5869–5894, https://doi.org/10.5194/amt-9-5869-2016, https://doi.org/10.5194/amt-9-5869-2016, 2016
Short summary
Short summary
A research–level retrieval algorithm for cloud optical and microphysical properties is developed for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra satellite. This yields reliable estimates of important cloud variables at a horizontal resolution of 30 m. Comparisons of the ASTER retrieval results with the operational cloud products from the Moderate Resolution Imaging Spectroradiometer (MODIS) show a high agreement for 48 example cloud fields.
Shi Song, K. Sebastian Schmidt, Peter Pilewskie, Michael D. King, Andrew K. Heidinger, Andi Walther, Hironobu Iwabuchi, Gala Wind, and Odele M. Coddington
Atmos. Chem. Phys., 16, 13791–13806, https://doi.org/10.5194/acp-16-13791-2016, https://doi.org/10.5194/acp-16-13791-2016, 2016
Short summary
Short summary
The radiative effects of spatially complex cloud fields are notoriously difficult to estimate and are afflicted with errors up to ±50 % of the incident solar radiation. We find that horizontal photon transport, the leading cause for these three-dimensional effects, manifests itself through a spectral fingerprint – a new observable that holds promise for reducing the errors associated with spatial complexity by moving the problem to the spectral dimension.
Guillaume Merlin, Jérôme Riedi, Laurent C. Labonnote, Céline Cornet, Anthony B. Davis, Phillipe Dubuisson, Marine Desmons, Nicolas Ferlay, and Frédéric Parol
Atmos. Meas. Tech., 9, 4977–4995, https://doi.org/10.5194/amt-9-4977-2016, https://doi.org/10.5194/amt-9-4977-2016, 2016
Short summary
Short summary
The vertical distribution of cloud cover has a significant impact on a large number of meteorological and climatic processes. Cloud top altitude (CTOP) and cloud geometrical thickness (CGT) are essential for understanding these processes. Previous studies established the possibility of retrieving those parameters from multi-angular oxygen A-band measurements. Here we perform a study and comparison of the performance of future instruments.
Vitali E. Fioletov, Chris A. McLinden, Nickolay Krotkov, Can Li, Joanna Joiner, Nicolas Theys, Simon Carn, and Mike D. Moran
Atmos. Chem. Phys., 16, 11497–11519, https://doi.org/10.5194/acp-16-11497-2016, https://doi.org/10.5194/acp-16-11497-2016, 2016
Short summary
Short summary
We introduce the first space-based catalogue of SO2 emission sources seen by OMI. The inventory contains about 500 sources. They account for about a half of all SO2 emissions; the remaining half is likely related to sources emitting less than 30 kt yr−1 and not detected by OMI. The sources are grouped by type (volcanoes, power plants, oil- and gas-related sources, and smelters) and country. The catalogue presented herein can be used for verification of available SO2 emission inventories.
Joanna Joiner, Yasuko Yoshida, Luis Guanter, and Elizabeth M. Middleton
Atmos. Meas. Tech., 9, 3939–3967, https://doi.org/10.5194/amt-9-3939-2016, https://doi.org/10.5194/amt-9-3939-2016, 2016
Short summary
Short summary
We examine new ways to use existing satellite instruments to retrieve red solar-induced fluorescence (SIF) over land and ocean. Our 8-year record of red SIF observations over land with the Global Ozone Monitoring Instrument 2 (GOME-2) shows for the first time reductions in response to drought. High-quality ocean fluorescence can also be derived with GOME-2 and similar instruments by utilizing their rich measurements of different colors.
Feng Xu, Oleg Dubovik, Peng-Wang Zhai, David J. Diner, Olga V. Kalashnikova, Felix C. Seidel, Pavel Litvinov, Andrii Bovchaliuk, Michael J. Garay, Gerard van Harten, and Anthony B. Davis
Atmos. Meas. Tech., 9, 2877–2907, https://doi.org/10.5194/amt-9-2877-2016, https://doi.org/10.5194/amt-9-2877-2016, 2016
Short summary
Short summary
We developed an algorithm for aerosol and water-leaving radiance retrieval in a simultaneous way.
Gonzalo González Abad, Alexander Vasilkov, Colin Seftor, Xiong Liu, and Kelly Chance
Atmos. Meas. Tech., 9, 2797–2812, https://doi.org/10.5194/amt-9-2797-2016, https://doi.org/10.5194/amt-9-2797-2016, 2016
Short summary
Short summary
The multi-spectral possibilities of the OMPS Nadir Mapper instrument are exploited here to perform formaldehyde retrievals. Orbiting the Earth at 824 km, OMPS observes the atmosphere in a time frame similar to instruments belonging to NASA's A-Train constellation, 01:30. We show that OMPS is well suited to measure formaldehyde despite its spectral resolution of 1nm. The comparison of OMPS retrievals with OMI products show good temporal correlation.
Pawan Gupta, Joanna Joiner, Alexander Vasilkov, and Pawan K. Bhartia
Atmos. Meas. Tech., 9, 2813–2826, https://doi.org/10.5194/amt-9-2813-2016, https://doi.org/10.5194/amt-9-2813-2016, 2016
Short summary
Short summary
The A-train constellation of satellites provides a unique opportunity to analyze near-simultaneous data from several of these sensors. In this paper, retrievals of cloud/aerosols parameters and total column ozone (TCO) from the Aura Ozone Monitoring Instrument (OMI) have been used to develop a variety of neural networks that estimate TOA SWF globally over ocean and land using only OMI data as inputs. Application of our method to other ultraviolet sensors may provide unique estimates of TOA SWF.
Jinfeng Chang, Philippe Ciais, Mario Herrero, Petr Havlik, Matteo Campioli, Xianzhou Zhang, Yongfei Bai, Nicolas Viovy, Joanna Joiner, Xuhui Wang, Shushi Peng, Chao Yue, Shilong Piao, Tao Wang, Didier A. Hauglustaine, Jean-Francois Soussana, Anna Peregon, Natalya Kosykh, and Nina Mironycheva-Tokareva
Biogeosciences, 13, 3757–3776, https://doi.org/10.5194/bg-13-3757-2016, https://doi.org/10.5194/bg-13-3757-2016, 2016
Short summary
Short summary
We derived the global maps of grassland management intensity of 1901–2012, including the minimum area of managed grassland with fraction of mown/grazed part. These maps, to our knowledge for the first time, provide global, time-dependent information for drawing up global estimates of management impact on biomass production and yields and for global vegetation models to enable simulations of carbon stocks and GHG budgets beyond simple tuning of grassland productivities to account for management.
Matthew Gibbons, Qilong Min, and Jiwen Fan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-368, https://doi.org/10.5194/acp-2016-368, 2016
Revised manuscript not accepted
Short summary
Short summary
Observations suggest cloud systems evolve differently under dusty conditions compared to other aerosols. We have used numerical modeling to study one such case. Dust increases the formation of small sized ice in the mid-troposphere. This enhanced convective intensity, shifted precipitation top height to higher altitudes, and glaciated clouds at lower altitudes. Consistent with observations, average cloud height was lowered due to a greater number of heavy particles forming near the cloud tops.
Kerry Meyer, Yuekui Yang, and Steven Platnick
Atmos. Meas. Tech., 9, 1785–1797, https://doi.org/10.5194/amt-9-1785-2016, https://doi.org/10.5194/amt-9-1785-2016, 2016
Short summary
Short summary
This paper presents the expected uncertainties of a single-channel cloud opacity retrieval technique and a temperature-based cloud phase approach in support of the Deep Space Climate Observatory (DSCOVR) mission; DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations. Results show that, for ice clouds, retrieval errors are minimal (< 2 %), while for liquid clouds the error is limited to within 10 %, although for thin clouds the error can be higher.
Robert E. Holz, Steven Platnick, Kerry Meyer, Mark Vaughan, Andrew Heidinger, Ping Yang, Gala Wind, Steven Dutcher, Steven Ackerman, Nandana Amarasinghe, Fredrick Nagle, and Chenxi Wang
Atmos. Chem. Phys., 16, 5075–5090, https://doi.org/10.5194/acp-16-5075-2016, https://doi.org/10.5194/acp-16-5075-2016, 2016
Kerry Meyer, Steven Platnick, G. Thomas Arnold, Robert E. Holz, Paolo Veglio, John Yorks, and Chenxi Wang
Atmos. Meas. Tech., 9, 1743–1753, https://doi.org/10.5194/amt-9-1743-2016, https://doi.org/10.5194/amt-9-1743-2016, 2016
Short summary
Short summary
Cirrus cloud optical and microphysical properties are retrieved from remote sensing solar reflectance measurements at two narrow wavelength channels within the broader water vapor absorption band at 1.88 µm. Results from this technique compare well with other solar reflectance, IR, and lidar-based retrievals. This approach is complementary to traditional remote sensing techniques and can extend cloud retrieval capabilities for thin cirrus clouds.
Nickolay A. Krotkov, Chris A. McLinden, Can Li, Lok N. Lamsal, Edward A. Celarier, Sergey V. Marchenko, William H. Swartz, Eric J. Bucsela, Joanna Joiner, Bryan N. Duncan, K. Folkert Boersma, J. Pepijn Veefkind, Pieternel F. Levelt, Vitali E. Fioletov, Russell R. Dickerson, Hao He, Zifeng Lu, and David G. Streets
Atmos. Chem. Phys., 16, 4605–4629, https://doi.org/10.5194/acp-16-4605-2016, https://doi.org/10.5194/acp-16-4605-2016, 2016
Short summary
Short summary
We examine changes in SO2 and NO2 over the world's most polluted regions during the first decade of Aura OMI observations. Over the eastern US, both NO2 and SO2 levels decreased by 40 % and 80 %, respectively. OMI confirmed large reductions in SO2 over eastern Europe's largest coal power plants. The North China Plain has the world's most severe SO2 pollution, but a decreasing trend been observed since 2011, with a 50 % reduction in 2012–2014. India's SO2 and NO2 levels are growing at a fast pace.
Zhibo Zhang, Kerry Meyer, Hongbin Yu, Steven Platnick, Peter Colarco, Zhaoyan Liu, and Lazaros Oreopoulos
Atmos. Chem. Phys., 16, 2877–2900, https://doi.org/10.5194/acp-16-2877-2016, https://doi.org/10.5194/acp-16-2877-2016, 2016
Short summary
Short summary
The frequency of occurrence and shortwave direct radiative effects (DRE) of above-cloud aerosols (ACAs) over global oceans are investigated using 8 years of collocated CALIOP and MODIS observations. We estimated that ACAs have a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m−2 (range of −0.03 to 0.06 W m−2) at TOA. The DREs at surface and within atmosphere are −0.15 W m−2 (range of −0.09 to −0.21 W m−2), and 0.17 W m−2 (range of 0.11 to 0.24 W m−2), respectively.
Jun Yang, Qilong Min, Weitao Lu, Ying Ma, Wen Yao, Tianshu Lu, Juan Du, and Guangyi Liu
Atmos. Meas. Tech., 9, 587–597, https://doi.org/10.5194/amt-9-587-2016, https://doi.org/10.5194/amt-9-587-2016, 2016
J. Yang, Q. Min, W. Lu, W. Yao, Y. Ma, J. Du, T. Lu, and G. Liu
Atmos. Meas. Tech., 8, 4671–4679, https://doi.org/10.5194/amt-8-4671-2015, https://doi.org/10.5194/amt-8-4671-2015, 2015
W. Su, J. Corbett, Z. Eitzen, and L. Liang
Atmos. Meas. Tech., 8, 3297–3313, https://doi.org/10.5194/amt-8-3297-2015, https://doi.org/10.5194/amt-8-3297-2015, 2015
J. Corbett and W. Su
Atmos. Meas. Tech., 8, 3163–3175, https://doi.org/10.5194/amt-8-3163-2015, https://doi.org/10.5194/amt-8-3163-2015, 2015
Short summary
Short summary
Sastrugi are surface roughness elements on Antarctica that modify the anisotropy of reflected shortwave solar radiation. This can create biases in the shortwave flux inverted from radiances measured by the satellite-borne Clouds and the Earths's Radiant Energy System instruments. Here we provide a detailed description of the methodology we use to account for their effect and examples of the reduction in bias from using our new method.
P. Köhler, L. Guanter, and J. Joiner
Atmos. Meas. Tech., 8, 2589–2608, https://doi.org/10.5194/amt-8-2589-2015, https://doi.org/10.5194/amt-8-2589-2015, 2015
Short summary
Short summary
The paper presents recent developments for the retrieval of sun-induced fluorescence (SIF) from medium spectral resolution space-borne spectrometers such as the Global Ozone Monitoring Experiment (GOME-2) and the Scanning Imaging Absorption SpectroMeter for Atmospheric ChartographY (SCIAMACHY). Beside using simulated radiances to evaluate the retrieval performance, the method has also been used to estimate SIF at 740 nm using real spectra from GOME-2 and for the first time, from SCIAMACHY.
K. Knobelspiesse, B. van Diedenhoven, A. Marshak, S. Dunagan, B. Holben, and I. Slutsker
Atmos. Meas. Tech., 8, 1537–1554, https://doi.org/10.5194/amt-8-1537-2015, https://doi.org/10.5194/amt-8-1537-2015, 2015
Short summary
Short summary
We test if ground-based sun photometers/radiometers like those in the Aerosol Robotic Network (AERONET) can use the polarization sensitivity of some instruments for improved cloud optical property retrieval. Our radiative transfer simulations show that the direction of linear polarization indicates cloud thermodynamic phase for optically thin clouds. In practice, data analysis shows a weak response with AERONET instruments, most likely due to noise and orientation/calibration ambiguity.
L. Guanter, I. Aben, P. Tol, J. M. Krijger, A. Hollstein, P. Köhler, A. Damm, J. Joiner, C. Frankenberg, and J. Landgraf
Atmos. Meas. Tech., 8, 1337–1352, https://doi.org/10.5194/amt-8-1337-2015, https://doi.org/10.5194/amt-8-1337-2015, 2015
Short summary
Short summary
This paper investigates the potential of the upcoming TROPOspheric Monitoring Instrument (TROPOMI) instrument for the retrieval of the chlorophyll fluorescence signal emitted in the 650–850nm spectral range by the photosynthetic machinery of green plants. We find that TROPOMI will allow substantial improvements in the space monitoring of fluorescence with respect to current spaceborne instruments such as GOME-2 and SCIAMACHY.
T. Fauchez, P. Dubuisson, C. Cornet, F. Szczap, A. Garnier, J. Pelon, and K. Meyer
Atmos. Meas. Tech., 8, 633–647, https://doi.org/10.5194/amt-8-633-2015, https://doi.org/10.5194/amt-8-633-2015, 2015
W. Su, J. Corbett, Z. Eitzen, and L. Liang
Atmos. Meas. Tech., 8, 611–632, https://doi.org/10.5194/amt-8-611-2015, https://doi.org/10.5194/amt-8-611-2015, 2015
Short summary
Short summary
The top-of-atmosphere (TOA) radiative fluxes are critical components to advancing our understanding of the Earth's radiative energy balance. The Clouds and Earth's Radiant Energy System (CERES) instruments provide broadband shortwave and longwave radiance measurements. These radiances are converted to fluxes by using scene-type-dependent angular distribution models (ADMs). This paper describes the next-generation CERES ADMs that are developed for TOA radiative flux inversion.
S. Choi, J. Joiner, Y. Choi, B. N. Duncan, A. Vasilkov, N. Krotkov, and E. Bucsela
Atmos. Chem. Phys., 14, 10565–10588, https://doi.org/10.5194/acp-14-10565-2014, https://doi.org/10.5194/acp-14-10565-2014, 2014
A. Vasilkov, J. Joiner, and C. Seftor
Atmos. Meas. Tech., 7, 2897–2906, https://doi.org/10.5194/amt-7-2897-2014, https://doi.org/10.5194/amt-7-2897-2014, 2014
S. Li, E. Joseph, Q. Min, and B. Yin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-18943-2014, https://doi.org/10.5194/acpd-14-18943-2014, 2014
Revised manuscript not accepted
Q. Min, B. Yin, S. Li, J. Berndt, L. Harrison, E. Joseph, M. Duan, and P. Kiedron
Atmos. Meas. Tech., 7, 1711–1722, https://doi.org/10.5194/amt-7-1711-2014, https://doi.org/10.5194/amt-7-1711-2014, 2014
J. Fan, L. R. Leung, P. J. DeMott, J. M. Comstock, B. Singh, D. Rosenfeld, J. M. Tomlinson, A. White, K. A. Prather, P. Minnis, J. K. Ayers, and Q. Min
Atmos. Chem. Phys., 14, 81–101, https://doi.org/10.5194/acp-14-81-2014, https://doi.org/10.5194/acp-14-81-2014, 2014
J. Joiner, L. Guanter, R. Lindstrot, M. Voigt, A. P. Vasilkov, E. M. Middleton, K. F. Huemmrich, Y. Yoshida, and C. Frankenberg
Atmos. Meas. Tech., 6, 2803–2823, https://doi.org/10.5194/amt-6-2803-2013, https://doi.org/10.5194/amt-6-2803-2013, 2013
T. Várnai, A. Marshak, and W. Yang
Atmos. Chem. Phys., 13, 3899–3908, https://doi.org/10.5194/acp-13-3899-2013, https://doi.org/10.5194/acp-13-3899-2013, 2013
A. Vasilkov, J. Joiner, and R. Spurr
Atmos. Meas. Tech., 6, 981–990, https://doi.org/10.5194/amt-6-981-2013, https://doi.org/10.5194/amt-6-981-2013, 2013
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Satellite-based detection of deep-convective clouds: the sensitivity of infrared methods and implications for cloud climatology
Infrared radiometric image classification and segmentation of cloud structures using a deep-learning framework from ground-based infrared thermal camera observations
Algorithm for continual monitoring of fog based on geostationary satellite imagery
Mitigation of satellite OCO-2 CO2 biases in the vicinity of clouds with 3D calculations using the Education and Research 3D Radiative Transfer Toolbox (EaR3T)
Wet-radome attenuation in ARM cloud radars and its utilization in radar calibration using disdrometer measurements
Tomographic reconstruction algorithms for retrieving two-dimensional ice cloud microphysical parameters using along-track (sub)millimeter-wave radiometer observations
Empirical model for backscattering polarimetric variables in rain at W-band: motivation and implications
Synergy of millimeter-wave radar and radiometer measurements for retrieving frozen hydrometeors in deep convective systems
JAXA Level 2 cloud and precipitation microphysics retrievals based on EarthCARE radar, lidar, and imager: the CPR_CLP, AC_CLP, and ACM_CLP products
Peering into the heart of thunderstorm clouds: insights from cloud radar and spectral polarimetry
Vertical Wind and Drop Size Distribution Retrieval with the CloudCube G-band Doppler Radar
Improved Simulation of Thunderstorm Characteristics and Polarimetric Signatures with LIMA 2-Moment Microphysics in AROME
Harmonized Cloud Datasets for OMI and TROPOMI Using the O2‐O2 477 nm Absorption Band
Retrieving cloud-base height and geometric thickness using the oxygen A-band channel of GCOM-C/SGLI
Extension of AVHRR-based climate data records: Exploring ways to simulate AVHRR radiances from Suomi-NPP VIIRS data
Discriminating between “drizzle or rain” and sea salt aerosols in Cloudnet for measurements over the Barbados Cloud Observatory
Assessment of horizontally-oriented ice crystals with a combination of multiangle polarization lidar and cloud Doppler radar
Benchmarking and improving algorithms for attributing satellite-observed contrails to flights
Cancellation of cloud shadow effects in the absorbing aerosol index retrieval algorithm of TROPOMI
Riming-dependent Snowfall Rate and Ice Water Content Retrievals for W-band cloud radar
Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation
3D cloud masking across a broad swath using multi-angle polarimetry and deep learning
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Retrieval of cloud fraction and optical thickness of liquid water clouds over the ocean from multi-angle polarization observations
Severe-hail detection with C-band dual-polarisation radars using convolutional neural networks
Retrieval of cloud fraction using machine learning algorithms based on FY-4A AGRI observations
PEAKO and peakTree: tools for detecting and interpreting peaks in cloud radar Doppler spectra – capabilities and limitations
An advanced spatial coregistration of cloud properties for the atmospheric Sentinel missions: application to TROPOMI
Contrail altitude estimation using GOES-16 ABI data and deep learning
The Ice Cloud Imager: retrieval of frozen water column properties
Supercooled liquid water cloud classification using lidar backscatter peak properties
Marine cloud base height retrieval from MODIS cloud properties using machine learning
How well can brightness temperature differences of spaceborne imagers help to detect cloud phase? A sensitivity analysis regarding cloud phase and related cloud properties
Radiative Closure Assessment of Retrieved Cloud and Aerosol Properties for the EarthCARE Mission: The ACMB-DF Product
ampycloud: an open-source algorithm to determine cloud base heights and sky coverage fractions from ceilometer data
Simulation and detection efficiency analysis for measurements of polar mesospheric clouds using a spaceborne wide-field-of-view ultraviolet imager
The Chalmers Cloud Ice Climatology: retrieval implementation and validation
The algorithm of microphysical-parameter profiles of aerosol and small cloud droplets based on the dual-wavelength lidar data
Bayesian cloud-top phase determination for Meteosat Second Generation
Lidar–radar synergistic method to retrieve ice, supercooled water and mixed-phase cloud properties
Deriving cloud droplet number concentration from surface-based remote sensors with an emphasis on lidar measurements
A random forest algorithm for the prediction of cloud liquid water content from combined CloudSat–CALIPSO observations
Identification of ice-over-water multilayer clouds using multispectral satellite data in an artificial neural network
A new approach to crystal habit retrieval from far-infrared spectral radiance measurements
Multiple-scattering effects on single-wavelength lidar sounding of multi-layered clouds
A cloud-by-cloud approach for studying aerosol–cloud interaction in satellite observations
Geometrical and optical properties of cirrus clouds in Barcelona, Spain: analysis with the two-way transmittance method of 4 years of lidar measurements
Determination of the vertical distribution of in-cloud particle shape using SLDR-mode 35 GHz scanning cloud radar
Artificial intelligence (AI)-derived 3D cloud tomography from geostationary 2D satellite data
The EarthCARE mission: science data processing chain overview
Andrzej Z. Kotarba and Izabela Wojciechowska
Atmos. Meas. Tech., 18, 2721–2738, https://doi.org/10.5194/amt-18-2721-2025, https://doi.org/10.5194/amt-18-2721-2025, 2025
Short summary
Short summary
The research investigates methods for detecting deep convective clouds (DCCs) using satellite infrared data, essential for understanding long-term climate trends. By validating three popular detection methods against lidar–radar data, it found moderate accuracy (below 75 %), emphasizing the importance of fine-tuning thresholds regionally. The study shows how small threshold changes significantly affect the climatology of severe storms.
Kélian Sommer, Wassim Kabalan, and Romain Brunet
Atmos. Meas. Tech., 18, 2083–2101, https://doi.org/10.5194/amt-18-2083-2025, https://doi.org/10.5194/amt-18-2083-2025, 2025
Short summary
Short summary
Our research introduces a novel deep-learning approach for classifying and segmenting ground-based infrared thermal images, a crucial step in cloud monitoring. Tests based on self-captured data showcase its excellent accuracy in distinguishing image types and in structure segmentation. With potential applications in astronomical observations, our work pioneers a robust solution for ground-based sky quality assessment, promising advancements in the photometric observation experiments.
Babak Jahani, Steffen Karalus, Julia Fuchs, Tobias Zech, Marina Zara, and Jan Cermak
Atmos. Meas. Tech., 18, 1927–1941, https://doi.org/10.5194/amt-18-1927-2025, https://doi.org/10.5194/amt-18-1927-2025, 2025
Short summary
Short summary
Fog and low stratus (FLS) are both persistent clouds close to the Earth's surface. This study introduces a new machine-learning-based algorithm developed for the Meteosat Second Generation geostationary satellites that can provide a coherent and detailed view of FLS development over large areas over the 24 h day cycle.
Yu-Wen Chen, K. Sebastian Schmidt, Hong Chen, Steven T. Massie, Susan S. Kulawik, and Hironobu Iwabuchi
Atmos. Meas. Tech., 18, 1859–1884, https://doi.org/10.5194/amt-18-1859-2025, https://doi.org/10.5194/amt-18-1859-2025, 2025
Short summary
Short summary
CO2 column-averaged dry-air mole fractions can be retrieved from space using spectrometers like OCO-2. However, nearby clouds induce spectral distortions that bias these retrievals beyond the accuracy needed for global CO2 source and sink assessments. This study employs a physics-based linearization approach to represent 3D cloud effects and introduces radiance-level mitigation techniques for actual OCO-2 data, enabling the operational implementation of these corrections.
Min Deng, Scott E. Giangrande, Michael P. Jensen, Karen Johnson, Christopher R. Williams, Jennifer M. Comstock, Ya-Chien Feng, Alyssa Matthews, Iosif A. Lindenmaier, Timothy G. Wendler, Marquette Rocque, Aifang Zhou, Zeen Zhu, Edward Luke, and Die Wang
Atmos. Meas. Tech., 18, 1641–1657, https://doi.org/10.5194/amt-18-1641-2025, https://doi.org/10.5194/amt-18-1641-2025, 2025
Short summary
Short summary
A relative calibration technique is developed for the cloud radar by monitoring the intercept of the wet-radome attenuation log-linear behavior as a function of rainfall rates in light and moderate rain conditions. This resulting reflectivity offset during the recent field campaign is compared favorably with the traditional disdrometer comparison near the rain onset, while it also demonstrates similar trends with respect to collocated and independently calibrated reference radars.
Yuli Liu and Ian Stuart Adams
Atmos. Meas. Tech., 18, 1659–1674, https://doi.org/10.5194/amt-18-1659-2025, https://doi.org/10.5194/amt-18-1659-2025, 2025
Short summary
Short summary
This paper presents our latest development in tomographic reconstruction algorithms that use multi-angle (sub)millimeter-wave brightness temperature to reconstruct the spatial distribution of ice clouds. Compared to nadir-only retrievals, the tomography technique provides a detailed reconstruction of ice clouds’ inner structure with high spatial resolution and significantly improves retrieval accuracy. Also, the technique effectively increases detection sensitivity for small ice cloud particles.
Alexander Myagkov, Tatiana Nomokonova, and Michael Frech
Atmos. Meas. Tech., 18, 1621–1640, https://doi.org/10.5194/amt-18-1621-2025, https://doi.org/10.5194/amt-18-1621-2025, 2025
Short summary
Short summary
The study examines the use of the spheroidal shape approximation for calculating cloud radar observables in rain and identifies some limitations. To address these, it introduces the empirical scattering model (ESM) based on high-quality Doppler spectra from a 94 GHz radar. The ESM offers improved accuracy and directly incorporates natural rain's microphysical effects. This new model can enhance retrieval and calibration methods, benefiting cloud radar polarimetry experts and scattering modelers.
Keiichi Ohara and Hirohiko Masunaga
EGUsphere, https://doi.org/10.5194/egusphere-2025-173, https://doi.org/10.5194/egusphere-2025-173, 2025
Short summary
Short summary
Ice particles (e.g., cloud ice, snow and graupel) in convective clouds play key roles in cloud and precipitation formation. This study combines satellite millimeter-wave radar and radiometer observations to estimate the vertical distributions of physical parameters of ice particles such as mass, size, and number densities. CPR radar and GPM radiometer observations together reduce the estimation errors of the physical parameters and provide information on the optimal ice particle shape.
Kaori Sato, Hajime Okamoto, Tomoaki Nishizawa, Yoshitaka Jin, Takashi Y. Nakajima, Minrui Wang, Masaki Satoh, Woosub Roh, Hiroshi Ishimoto, and Rei Kudo
Atmos. Meas. Tech., 18, 1325–1338, https://doi.org/10.5194/amt-18-1325-2025, https://doi.org/10.5194/amt-18-1325-2025, 2025
Short summary
Short summary
This study introduces the JAXA EarthCARE Level 2 (L2) cloud product using satellite observations and simulated EarthCARE data. The outputs from the product feature a 3D global view of the dominant ice habit categories and corresponding microphysics. Habit and size distribution transitions from cloud to precipitation are quantified by the L2 cloud algorithms. With Doppler data, the products can be beneficial for further understanding of the coupling of cloud microphysics, radiation, and dynamics.
Ho Yi Lydia Mak and Christine Unal
Atmos. Meas. Tech., 18, 1209–1242, https://doi.org/10.5194/amt-18-1209-2025, https://doi.org/10.5194/amt-18-1209-2025, 2025
Short summary
Short summary
The dynamics of thunderclouds are studied using cloud radar. Supercooled liquid water and conical graupel are likely present, while chain-like ice crystals may occur at cloud top. Ice crystals are vertically aligned seconds before lightning and resume their usual horizontal alignment afterwards in some cases. Updrafts and downdrafts are found near cloud core and edges respectively. Turbulence is strong. Radar measurement modes that are more suited for investigating thunderstorms are recommended.
Nitika Yadlapalli Yurk, Matthew Lebsock, Juan Socuellamos, Raquel Rodriguez Monje, Ken Cooper, and Pavlos Kollias
EGUsphere, https://doi.org/10.5194/egusphere-2025-618, https://doi.org/10.5194/egusphere-2025-618, 2025
Short summary
Short summary
Current knowledge of the link between clouds and climate is limited by lack of observations of the drop size distribution (DSD) within clouds, especially for the smallest drops. We demonstrate a method of retrieving DSDs down to small drop sizes using observations of drizzling marine layer clouds captured by the CloudCube millimeter-wave Doppler radar. We compare the shape of the observed spectra to theoretical expectations of radar echoes to solve for DSDs at each time and elevation.
Cloé David, Clotilde Augros, Benoît Vié, François Bouttier, and Tony Le Bastard
EGUsphere, https://doi.org/10.5194/egusphere-2025-685, https://doi.org/10.5194/egusphere-2025-685, 2025
Short summary
Short summary
Simulations of storm characteristics and associated radar signatures were improved, especially under the freezing level, using an advanced cloud scheme. Discrepancies between observations and forecasts at and above the melting layer highlighted issues in both the radar forward operator and the microphysics. To overcome part of these issues, different parametrizations of the operator were suggested. This work aligns with the future integration of polarimetric data into assimilation systems.
Huan Yu, Isabelle De Smedt, Nicolas Theys, Maarten Sneep, Pepijn Veefkind, and Michel Van Roozendael
EGUsphere, https://doi.org/10.5194/egusphere-2025-478, https://doi.org/10.5194/egusphere-2025-478, 2025
Short summary
Short summary
We introduce a new cloud retrieval algorithm using the O2-O2 absorption band at 477 nm to generate harmonized cloud datasets from OMI and TROPOMI. The algorithm improves upon the OMI O2-O2 operational cloud algorithm in several aspects. The new approach improves consistency in cloud parameters and NO2 retrievals between two sensors.
Takashi M. Nagao, Kentaroh Suzuki, and Makoto Kuji
Atmos. Meas. Tech., 18, 773–792, https://doi.org/10.5194/amt-18-773-2025, https://doi.org/10.5194/amt-18-773-2025, 2025
Short summary
Short summary
In satellite remote sensing, estimating cloud-base height (CBH) is more challenging than estimating cloud-top height because the cloud base is obscured by the cloud itself. We developed an algorithm using the specific channel (known as the oxygen A-band channel) of the SGLI on JAXA’s GCOM-C satellite to estimate CBHs together with other cloud properties. This algorithm can provide global distributions of CBH across various cloud types, including liquid, ice, and mixed-phase clouds.
Karl-Göran Karlsson, Nina Håkansson, Salomon Eliasson, Erwin Wolters, and Ronald Scheirer
EGUsphere, https://doi.org/10.5194/egusphere-2025-379, https://doi.org/10.5194/egusphere-2025-379, 2025
Short summary
Short summary
The topic is finding methods to extend climate data records from single-instrument satellite observations, in this case the Advanced Very High Resolution Radiometer (AVHRR). Several modern instruments include AVHRR-heritage channels but some corrections are necessary to account for some differences. We have simulated AVHRR data from the VIIIRS sensor on NOAA polar satellites. We find that methods based on machine learning are capable of performing these corrections.
Johanna Roschke, Jonas Witthuhn, Marcus Klingebiel, Moritz Haarig, Andreas Foth, Anton Kötsche, and Heike Kalesse-Los
Atmos. Meas. Tech., 18, 487–508, https://doi.org/10.5194/amt-18-487-2025, https://doi.org/10.5194/amt-18-487-2025, 2025
Short summary
Short summary
We present a technique to discriminate between the Cloudnet target classification of "drizzle or rain" and sea salt aerosols that is applicable to marine Cloudnet sites. The method is crucial for investigating the occurrence of precipitation and significantly improves the Cloudnet target classification scheme for measurements over the Barbados Cloud Observatory (BCO). A first-ever analysis of the Cloudnet product including the new "haze echo" target over 2 years at the BCO is presented.
Zhaolong Wu, Patric Seifert, Yun He, Holger Baars, Haoran Li, Cristofer Jimenez, Chengcai Li, and Albert Ansmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3841, https://doi.org/10.5194/egusphere-2024-3841, 2025
Short summary
Short summary
This study introduces a novel method to detect horizontally oriented ice crystals (HOICs) using two ground-based polarization lidars at different zenith angles, based on a year-long dataset collected in Beijing. Combined with cloud radar and reanalysis data, the fine categorization results reveal HOICs occur in calm winds and moderately cold temperatures and are influenced by turbulence near cloud bases. The results enhance our understanding of cloud processes and improve the atmospheric model.
Aaron Sarna, Vincent Meijer, Rémi Chevallier, Allie Duncan, Kyle McConnaughay, Scott Geraedts, and Kevin McCloskey
EGUsphere, https://doi.org/10.5194/egusphere-2024-3664, https://doi.org/10.5194/egusphere-2024-3664, 2025
Short summary
Short summary
Contrails, the linear clouds formed by aircraft, are have a substantial climate impact. Flight deviations to avoid forming contrails should decrease this impact. We introduce a method for matching contrails seen by satellites to the flights that made them. This can determine if avoidance was successful and improve contrail forecasts. We also introduce a synthetic contrail dataset to evaluate the accuracy of the matches. We show that our attributions are much more accurate than previous methods.
Victor J. H. Trees, Ping Wang, Piet Stammes, Lieuwe G. Tilstra, David P. Donovan, and A. Pier Siebesma
Atmos. Meas. Tech., 18, 73–91, https://doi.org/10.5194/amt-18-73-2025, https://doi.org/10.5194/amt-18-73-2025, 2025
Short summary
Short summary
Our study investigates the impact of cloud shadows on satellite-based aerosol index measurements over Europe by TROPOMI. Using a cloud shadow detection algorithm and simulations, we found that the overall effect on the aerosol index is minimal. Interestingly, we found that cloud shadows are significantly bluer than their shadow-free surroundings, but the traditional algorithm already (partly) automatically corrects for this increased blueness.
Nina Maherndl, Alessandro Battaglia, Anton Kötsche, and Maximilian Maahn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3916, https://doi.org/10.5194/egusphere-2024-3916, 2025
Short summary
Short summary
Accurate measurements of cloud water content IWC and snowfall rate SR are challenging due to high spatial variability and limitations of our measurement techniques. Here we present a novel method to derive IWC and SR from W-band cloud radar observations, considering the degree of riming. We also investigate the use of the liquid water path as a proxy for the occurrence of riming, which is easier to measure, so that the method can be applied to both ground-based and space-based instruments.
He Huang, Quan Wang, Chao Liu, and Chen Zhou
Atmos. Meas. Tech., 17, 7129–7141, https://doi.org/10.5194/amt-17-7129-2024, https://doi.org/10.5194/amt-17-7129-2024, 2024
Short summary
Short summary
This study introduces a cloud property retrieval method which integrates traditional radiative transfer simulations with a machine learning method. Retrievals from a machine learning algorithm are used to provide a priori states, and a radiative transfer model is used to create lookup tables for later iteration processes. The new method combines the advantages of traditional and machine learning algorithms, and it is applicable to both daytime and nighttime conditions.
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024, https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary
Short summary
Measuring the shape of clouds helps scientists understand how the Earth will continue to respond to climate change. Satellites measure clouds in different ways. One way is to take pictures of clouds from multiple angles and to use the differences between the pictures to measure cloud structure. However, doing this accurately can be challenging. We propose a way to use machine learning to recover the shape of clouds from multi-angle satellite data.
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024, https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary
Short summary
This article presents a novel technique to estimate liquid water content (LWC) profiles in shallow warm clouds using a pair of collocated Ka-band (35 GHz) and G-band (239 GHz) radars. We demonstrate that the use of a G-band radar allows retrieving the LWC with 3 times better accuracy than previous works reported in the literature, providing improved ability to understand the vertical profile of LWC and characterize microphysical and dynamical processes more precisely in shallow clouds.
Claudia Emde, Veronika Pörtge, Mihail Manev, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6769–6789, https://doi.org/10.5194/amt-17-6769-2024, https://doi.org/10.5194/amt-17-6769-2024, 2024
Short summary
Short summary
We introduce an innovative method to retrieve the cloud fraction and optical thickness of liquid water clouds over the ocean based on polarimetry. This is well suited for satellite observations providing multi-angle polarization measurements. Cloud fraction and cloud optical thickness can be derived from measurements at two viewing angles: one within the cloudbow and one in the sun glint region.
Vincent Forcadell, Clotilde Augros, Olivier Caumont, Kévin Dedieu, Maxandre Ouradou, Cloé David, Jordi Figueras i Ventura, Olivier Laurantin, and Hassan Al-Sakka
Atmos. Meas. Tech., 17, 6707–6734, https://doi.org/10.5194/amt-17-6707-2024, https://doi.org/10.5194/amt-17-6707-2024, 2024
Short summary
Short summary
This study demonstrates the potential of enhancing severe-hail detection through the application of convolutional neural networks (CNNs) to dual-polarization radar data. It is shown that current methods can be calibrated to significantly enhance their performance for severe-hail detection. This study establishes the foundation for the solution of a more complex problem: the estimation of the maximum size of hailstones on the ground using deep learning applied to radar data.
Jinyi Xia and Li Guan
Atmos. Meas. Tech., 17, 6697–6706, https://doi.org/10.5194/amt-17-6697-2024, https://doi.org/10.5194/amt-17-6697-2024, 2024
Short summary
Short summary
This study presents a method for estimating cloud cover from FY-4A AGRI observations using random forest (RF) and multilayer perceptron (MLP) algorithms. The results demonstrate excellent performance in distinguishing clear-sky scenes and reducing errors in cloud cover estimation. It shows significant improvements compared to existing methods.
Teresa Vogl, Martin Radenz, Fabiola Ramelli, Rosa Gierens, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 6547–6568, https://doi.org/10.5194/amt-17-6547-2024, https://doi.org/10.5194/amt-17-6547-2024, 2024
Short summary
Short summary
In this study, we present a toolkit of two Python algorithms to extract information from Doppler spectra measured by ground-based cloud radars. In these Doppler spectra, several peaks can be formed due to populations of droplets/ice particles with different fall velocities coexisting in the same measurement time and height. The two algorithms can detect peaks and assign them to certain particle types, such as small cloud droplets or fast-falling ice particles like graupel.
Athina Argyrouli, Diego Loyola, Fabian Romahn, Ronny Lutz, Víctor Molina García, Pascal Hedelt, Klaus-Peter Heue, and Richard Siddans
Atmos. Meas. Tech., 17, 6345–6367, https://doi.org/10.5194/amt-17-6345-2024, https://doi.org/10.5194/amt-17-6345-2024, 2024
Short summary
Short summary
This paper describes a new treatment of the spatial misregistration of cloud properties for Sentinel-5 Precursor, when the footprints of different spectral bands are not perfectly aligned. The methodology exploits synergies between spectrometers and imagers, like TROPOMI and VIIRS. The largest improvements have been identified for heterogeneous scenes at cloud edges. This approach is generic and can also be applied to future Sentinel-4 and Sentinel-5 instruments.
Vincent R. Meijer, Sebastian D. Eastham, Ian A. Waitz, and Steven R. H. Barrett
Atmos. Meas. Tech., 17, 6145–6162, https://doi.org/10.5194/amt-17-6145-2024, https://doi.org/10.5194/amt-17-6145-2024, 2024
Short summary
Short summary
Aviation's climate impact is partly due to contrails: the clouds that form behind aircraft and which can linger for hours under certain atmospheric conditions. Accurately forecasting these conditions could allow aircraft to avoid forming these contrails and thus reduce their environmental footprint. Our research uses deep learning to identify three-dimensional contrail locations in two-dimensional satellite imagery, which can be used to assess and improve these forecasts.
Eleanor May, Bengt Rydberg, Inderpreet Kaur, Vinia Mattioli, Hanna Hallborn, and Patrick Eriksson
Atmos. Meas. Tech., 17, 5957–5987, https://doi.org/10.5194/amt-17-5957-2024, https://doi.org/10.5194/amt-17-5957-2024, 2024
Short summary
Short summary
The upcoming Ice Cloud Imager (ICI) mission is set to improve measurements of atmospheric ice through passive microwave and sub-millimetre wave observations. In this study, we perform detailed simulations of ICI observations. Machine learning is used to characterise the atmospheric ice present for a given simulated observation. This study acts as a final pre-launch assessment of ICI's capability to measure atmospheric ice, providing valuable information to climate and weather applications.
Luke Edgar Whitehead, Adrian James McDonald, and Adrien Guyot
Atmos. Meas. Tech., 17, 5765–5784, https://doi.org/10.5194/amt-17-5765-2024, https://doi.org/10.5194/amt-17-5765-2024, 2024
Short summary
Short summary
Supercooled liquid water cloud is important to represent in weather and climate models, particularly in the Southern Hemisphere. Previous work has developed a new machine learning method for measuring supercooled liquid water in Antarctic clouds using simple lidar observations. We evaluate this technique using a lidar dataset from Christchurch, New Zealand, and develop an updated algorithm for accurate supercooled liquid water detection at mid-latitudes.
Julien Lenhardt, Johannes Quaas, and Dino Sejdinovic
Atmos. Meas. Tech., 17, 5655–5677, https://doi.org/10.5194/amt-17-5655-2024, https://doi.org/10.5194/amt-17-5655-2024, 2024
Short summary
Short summary
Clouds play a key role in the regulation of the Earth's climate. Aspects like the height of their base are of essential interest to quantify their radiative effects but remain difficult to derive from satellite data. In this study, we combine observations from the surface and satellite retrievals of cloud properties to build a robust and accurate method to retrieve the cloud base height, based on a computer vision model and ordinal regression.
Johanna Mayer, Bernhard Mayer, Luca Bugliaro, Ralf Meerkötter, and Christiane Voigt
Atmos. Meas. Tech., 17, 5161–5185, https://doi.org/10.5194/amt-17-5161-2024, https://doi.org/10.5194/amt-17-5161-2024, 2024
Short summary
Short summary
This study uses radiative transfer calculations to characterize the relation of two satellite channel combinations (namely infrared window brightness temperature differences – BTDs – of SEVIRI) to the thermodynamic cloud phase. A sensitivity analysis reveals the complex interplay of cloud parameters and their contribution to the observed phase dependence of BTDs. This knowledge helps to design optimal cloud-phase retrievals and to understand their potential and limitations.
Howard W. Barker, Jason N. S. Cole, Najda Villefranque, Zhipeng Qu, Almudena Velázquez Blázquez, Carlos Domenech, Shannon L. Mason, and Robin J. Hogan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1651, https://doi.org/10.5194/egusphere-2024-1651, 2024
Short summary
Short summary
Measurements made by three instruments aboard EarthCARE are used to retrieve estimates of cloud and aerosol properties. A radiative closure assessment of these retrievals is performed by the ACMB-DF processor. Radiative transfer models acting on retrieved information produce broadband radiances commensurate with measurements made by EarthCARE’s broadband radiometer. Measured and modelled radiances for small domains are compared and the likelihood of them differing by 10 W/m2 defines the closure.
Frédéric P. A. Vogt, Loris Foresti, Daniel Regenass, Sophie Réthoré, Néstor Tarin Burriel, Mervyn Bibby, Przemysław Juda, Simone Balmelli, Tobias Hanselmann, Pieter du Preez, and Dirk Furrer
Atmos. Meas. Tech., 17, 4891–4914, https://doi.org/10.5194/amt-17-4891-2024, https://doi.org/10.5194/amt-17-4891-2024, 2024
Short summary
Short summary
ampycloud is a new algorithm developed at MeteoSwiss to characterize the height and sky coverage fraction of cloud layers above aerodromes via ceilometer data. This algorithm was devised as part of a larger effort to fully automate the creation of meteorological aerodrome reports (METARs) at Swiss civil airports. The ampycloud algorithm is implemented as a Python package that is made publicly available to the community under the 3-Clause BSD license.
Ke Ren, Haiyang Gao, Shuqi Niu, Shaoyang Sun, Leilei Kou, Yanqing Xie, Liguo Zhang, and Lingbing Bu
Atmos. Meas. Tech., 17, 4825–4842, https://doi.org/10.5194/amt-17-4825-2024, https://doi.org/10.5194/amt-17-4825-2024, 2024
Short summary
Short summary
Ultraviolet imaging technology has significantly advanced the research and development of polar mesospheric clouds (PMCs). In this study, we proposed the wide-field-of-view ultraviolet imager (WFUI) and built a forward model to evaluate the detection capability and efficiency. The results demonstrate that the WFUI performs well in PMC detection and has high detection efficiency. The relationship between ice water content and detection efficiency follows an exponential function distribution.
Adrià Amell, Simon Pfreundschuh, and Patrick Eriksson
Atmos. Meas. Tech., 17, 4337–4368, https://doi.org/10.5194/amt-17-4337-2024, https://doi.org/10.5194/amt-17-4337-2024, 2024
Short summary
Short summary
The representation of clouds in numerical weather and climate models remains a major challenge that is difficult to address because of the limitations of currently available data records of cloud properties. In this work, we address this issue by using machine learning to extract novel information on ice clouds from a long record of satellite observations. Through extensive validation, we show that this novel approach provides surprisingly accurate estimates of clouds and their properties.
Huige Di, Xinhong Wang, Ning Chen, Jing Guo, Wenhui Xin, Shichun Li, Yan Guo, Qing Yan, Yufeng Wang, and Dengxin Hua
Atmos. Meas. Tech., 17, 4183–4196, https://doi.org/10.5194/amt-17-4183-2024, https://doi.org/10.5194/amt-17-4183-2024, 2024
Short summary
Short summary
This study proposes an inversion method for atmospheric-aerosol or cloud microphysical parameters based on dual-wavelength lidar data. It is suitable for the inversion of uniformly mixed and single-property aerosol layers or small cloud droplets. For aerosol particles, the inversion range that this algorithm can achieve is 0.3–1.7 μm. For cloud droplets, it is 1.0–10 μm. This algorithm can quickly obtain the microphysical parameters of atmospheric particles and has better robustness.
Johanna Mayer, Luca Bugliaro, Bernhard Mayer, Dennis Piontek, and Christiane Voigt
Atmos. Meas. Tech., 17, 4015–4039, https://doi.org/10.5194/amt-17-4015-2024, https://doi.org/10.5194/amt-17-4015-2024, 2024
Short summary
Short summary
ProPS (PRObabilistic cloud top Phase retrieval for SEVIRI) is a method to detect clouds and their thermodynamic phase with a geostationary satellite, distinguishing between clear sky and ice, mixed-phase, supercooled and warm liquid clouds. It uses a Bayesian approach based on the lidar–radar product DARDAR. The method allows studying cloud phases, especially mixed-phase and supercooled clouds, rarely observed from geostationary satellites. This can be used for comparison with climate models.
Clémantyne Aubry, Julien Delanoë, Silke Groß, Florian Ewald, Frédéric Tridon, Olivier Jourdan, and Guillaume Mioche
Atmos. Meas. Tech., 17, 3863–3881, https://doi.org/10.5194/amt-17-3863-2024, https://doi.org/10.5194/amt-17-3863-2024, 2024
Short summary
Short summary
Radar–lidar synergy is used to retrieve ice, supercooled water and mixed-phase cloud properties, making the most of the radar sensitivity to ice crystals and the lidar sensitivity to supercooled droplets. A first analysis of the output of the algorithm run on the satellite data is compared with in situ data during an airborne Arctic field campaign, giving a mean percent error of 49 % for liquid water content and 75 % for ice water content.
Gerald G. Mace
Atmos. Meas. Tech., 17, 3679–3695, https://doi.org/10.5194/amt-17-3679-2024, https://doi.org/10.5194/amt-17-3679-2024, 2024
Short summary
Short summary
The number of cloud droplets per unit volume, Nd, in a cloud is important for understanding aerosol–cloud interaction. In this study, we develop techniques to derive cloud droplet number concentration from lidar measurements combined with other remote sensing measurements such as cloud radar and microwave radiometers. We show that deriving Nd is very uncertain, although a synergistic algorithm seems to produce useful characterizations of Nd and effective particle size.
Richard M. Schulte, Matthew D. Lebsock, John M. Haynes, and Yongxiang Hu
Atmos. Meas. Tech., 17, 3583–3596, https://doi.org/10.5194/amt-17-3583-2024, https://doi.org/10.5194/amt-17-3583-2024, 2024
Short summary
Short summary
This paper describes a method to improve the detection of liquid clouds that are easily missed by the CloudSat satellite radar. To address this, we use machine learning techniques to estimate cloud properties (optical depth and droplet size) based on other satellite measurements. The results are compared with data from the MODIS instrument on the Aqua satellite, showing good correlations.
Sunny Sun-Mack, Patrick Minnis, Yan Chen, Gang Hong, and William L. Smith Jr.
Atmos. Meas. Tech., 17, 3323–3346, https://doi.org/10.5194/amt-17-3323-2024, https://doi.org/10.5194/amt-17-3323-2024, 2024
Short summary
Short summary
Multilayer clouds (MCs) affect the radiation budget differently than single-layer clouds (SCs) and need to be identified in satellite images. A neural network was trained to identify MCs by matching imagery with lidar/radar data. This method correctly identifies ~87 % SCs and MCs with a net accuracy gain of 7.5 % over snow-free surfaces. It is more accurate than most available methods and constitutes a first step in providing a reasonable 3-D characterization of the cloudy atmosphere.
Gianluca Di Natale, Marco Ridolfi, and Luca Palchetti
Atmos. Meas. Tech., 17, 3171–3186, https://doi.org/10.5194/amt-17-3171-2024, https://doi.org/10.5194/amt-17-3171-2024, 2024
Short summary
Short summary
This work aims to define a new approach to retrieve the distribution of the main ice crystal shapes occurring inside ice and cirrus clouds from infrared spectral measurements. The capability of retrieving these shapes of the ice crystals from satellites will allow us to extend the currently available climatologies to be used as physical constraints in general circulation models. This could could allow us to improve their accuracy and prediction performance.
Valery Shcherbakov, Frédéric Szczap, Guillaume Mioche, and Céline Cornet
Atmos. Meas. Tech., 17, 3011–3028, https://doi.org/10.5194/amt-17-3011-2024, https://doi.org/10.5194/amt-17-3011-2024, 2024
Short summary
Short summary
We performed Monte Carlo simulations of single-wavelength lidar signals from multi-layered clouds with special attention focused on the multiple-scattering (MS) effect in regions of the cloud-free molecular atmosphere. The MS effect on lidar signals always decreases with the increasing distance from the cloud far edge. The decrease is the direct consequence of the fact that the forward peak of particle phase functions is much larger than the receiver field of view.
Fani Alexandri, Felix Müller, Goutam Choudhury, Peggy Achtert, Torsten Seelig, and Matthias Tesche
Atmos. Meas. Tech., 17, 1739–1757, https://doi.org/10.5194/amt-17-1739-2024, https://doi.org/10.5194/amt-17-1739-2024, 2024
Short summary
Short summary
We present a novel method for studying aerosol–cloud interactions. It combines cloud-relevant aerosol concentrations from polar-orbiting lidar observations with the development of individual clouds from geostationary observations. Application to 1 year of data gives first results on the impact of aerosols on the concentration and size of cloud droplets and on cloud phase in the regime of heterogeneous ice formation. The method could enable the systematic investigation of warm and cold clouds.
Cristina Gil-Díaz, Michäel Sicard, Adolfo Comerón, Daniel Camilo Fortunato dos Santos Oliveira, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Jasper R. Lewis, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 17, 1197–1216, https://doi.org/10.5194/amt-17-1197-2024, https://doi.org/10.5194/amt-17-1197-2024, 2024
Short summary
Short summary
In this paper, a statistical study of cirrus geometrical and optical properties based on 4 years of continuous ground-based lidar measurements with the Barcelona (Spain) Micro Pulse Lidar (MPL) is analysed. The cloud optical depth, effective column lidar ratio and linear cloud depolarisation ratio have been calculated by a new approach to the two-way transmittance method, which is valid for both ground-based and spaceborne lidar systems. Their associated errors are also provided.
Audrey Teisseire, Patric Seifert, Alexander Myagkov, Johannes Bühl, and Martin Radenz
Atmos. Meas. Tech., 17, 999–1016, https://doi.org/10.5194/amt-17-999-2024, https://doi.org/10.5194/amt-17-999-2024, 2024
Short summary
Short summary
The vertical distribution of particle shape (VDPS) method, introduced in this study, aids in characterizing the density-weighted shape of cloud particles from scanning slanted linear depolarization ratio (SLDR)-mode cloud radar observations. The VDPS approach represents a new, versatile way to study microphysical processes by combining a spheroidal scattering model with real measurements of SLDR.
Sarah Brüning, Stefan Niebler, and Holger Tost
Atmos. Meas. Tech., 17, 961–978, https://doi.org/10.5194/amt-17-961-2024, https://doi.org/10.5194/amt-17-961-2024, 2024
Short summary
Short summary
We apply the Res-UNet to derive a comprehensive 3D cloud tomography from 2D satellite data over heterogeneous landscapes. We combine observational data from passive and active remote sensing sensors by an automated matching algorithm. These data are fed into a neural network to predict cloud reflectivities on the whole satellite domain between 2.4 and 24 km height. With an average RMSE of 2.99 dBZ, we contribute to closing data gaps in the representation of clouds in observational data.
Michael Eisinger, Fabien Marnas, Kotska Wallace, Takuji Kubota, Nobuhiro Tomiyama, Yuichi Ohno, Toshiyuki Tanaka, Eichi Tomita, Tobias Wehr, and Dirk Bernaerts
Atmos. Meas. Tech., 17, 839–862, https://doi.org/10.5194/amt-17-839-2024, https://doi.org/10.5194/amt-17-839-2024, 2024
Short summary
Short summary
The Earth Cloud Aerosol and Radiation Explorer (EarthCARE) is an ESA–JAXA satellite mission to be launched in 2024. We presented an overview of the EarthCARE processors' development, with processors developed by teams in Europe, Japan, and Canada. EarthCARE will allow scientists to evaluate the representation of cloud, aerosol, precipitation, and radiative flux in weather forecast and climate models, with the objective to better understand cloud processes and improve weather and climate models.
Cited articles
Ackerman, S., Strabala, K., Menzel, P., Frey, R., Moeller, C., and Gumley,
L.: Discriminating clear-sky from cloud with MODIS algorithm theoretical
basis document (MOD35), MODIS Cloud Mask Team, Cooperative Institute
for Meteorological Satellite Studies, University of Wisconsin, 2010.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S.K., Sherwood, S., Stevens, B., and Zhang, X.Y.: Clouds and Aerosols, in:
Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, UK and New York, NY, USA, 2013.
Buriez, J.-C., Vanbauce, C., Parol, F., Goloub, P., Herman, M., Bonnel, B.,
Fouquart, Y., Couvert, P., and Sèze, G.: Cloud detection and derivation
of cloud properties from POLDER, Int. J. Remote Sens., 18, 2785–2813, 1997.
Chiu, J. C., Huang, C.-H., Marshak, A., Slutsker, I., Giles, D. M., Holben,
B. N., Knyazikhin, Y., and Wiscombe, W. J.: Cloud optical depth retrievals
from the Aerosol Robotic Network (AERONET) cloud mode observations,
J. Geophys. Res., 115, D14202, https://doi.org/10.1029/2009JD013121, 2010.
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M.
J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative
transfer modelling: a summary of the AER codes, Short Communication,
J. Quant. Spectrosc. Ra., 91, 233–244, 2005.
Daniel, J. S., Solomon, S., Miller, H. L., Langford, A. O., Portmann, R. W.,
and Eubank, C. S.: Retrieving cloud information from passive measurements of
solar radiation absorbed by molecular oxygen and O2-O2, J.
Geophys. Res., 108, 4515, https://doi.org/10.1029/2002JD002994, 2003.
Davis, A. B., Polonsky, I. N., and Marshak, A.,: Space-time Green functions for
diffusive radiation transport, in application to active and passive cloud
probing, in: Light Scattering Reviews, Vol. 4, edited by: Kokhanovsky, A. A., 169–292, Springer-Praxis, Heidelberg (Germany), 2009.
Davis, A. B., Merlin, G., Cornet, C., C.-Labonnote, L., Riédi, J, Ferlay,
N., Dubuisson, P., Min, Q., Yang, Y., and Marshak, A.: Cloud information
content in EPIC/DSCOVR's oxygen A- and B-band channels: An optimal estimation
approach, J. Quant. Spectrosc. Ra., 216, 6–16,
https://doi.org/10.1016/j.jqsrt.2018.05.007, 2018a.
Davis, A. B., Ferlay, N., Libois, Q., Marshak, A., Yang, Y., and Min, Q.:
Cloud information content in EPIC/DSCOVR's oxygen A- and B-band channels: A
physics-based approach, J. Quant. Spectrosc. Ra., 220,
84–96, https://doi.org/10.1016/j.jqsrt.2018.09.006, 2018b.
Edwards, M.: Global Gridded Elevation and Bathymetric (ETOPO5), Digital
Raster Data on a 5-Minute Geographic Grid, Boulder CO: National Oceanic and
Atmospheric Administration (NOAA) National Geophysical Data Center, 1989.
Ferlay, N., Thieuleux, F., Cornet, C., and Davis, A. B.: Toward New
Inferences about Cloud Structures from Multidirectional Measurements in the
Oxygen A Band: Middle-of-Cloud Pressure and Cloud Geometrical Thickness from
POLDER-3/PARASOL, J. Appl. Meteor. Climatol., 49,
2492–2507, https://doi.org/10.1175/2010JAMC2550.1, 2010.
Herman, J. R. and Celarier, E. A.: Earth surface reflectivity climatology at
340–380 nm from TOMS data, J. Geophys. Res., 102, 28003–28011, 1997.
Herman, J. R., Celarier, E., and Larko, D.: UV 380 nm reflectivity of the Earth's surface, clouds and aerosols, J. Geophys.
Res., 106, 5335–5351, https://doi.org/10.1029/2000JD900584, 2001.
Holdaway, D. and Yang, Y.: Study of the Effect of Temporal Sampling Frequency
on DSCOVR Observations Using the GEOS-5 Nature Run Results (Part II): Cloud
Coverage, Remote Sens., 8, 431,
https://doi.org/10.3390/rs8050431, 2016a.
Holdaway, D. and Yang, Y.: Study of the Effect of Temporal Sampling Frequency
on DSCOVR Observations Using the GEOS-5 Nature Run Results (Part I): Earth's
Radiation Budget, Remote Sens., 8, 98, https://doi.org/10.3390/rs8020098,
2016b.
Holz, R. E., Platnick, S., Meyer, K., Vaughan, M., Heidinger, A., Yang, P.,
Wind, G., Dutcher, S., Ackerman, S., Amarasinghe, N., Nagle, F., and Wang,
C.: Resolving ice cloud optical thickness biases between CALIOP and MODIS
using infrared retrievals, Atmos. Chem. Phys., 16, 5075–5090,
https://doi.org/10.5194/acp-16-5075-2016, 2016.
Joiner, J., Vasilkov, A. P., Gupta, P., Bhartia, P. K., Veefkind, P., Sneep,
M., de Haan, J., Polonsky, I., and Spurr, R.: Fast simulators for satellite
cloud optical centroid pressure retrievals; evaluation of OMI cloud
retrievals, Atmos. Meas. Tech., 5, 529–545,
https://doi.org/10.5194/amt-5-529-2012, 2012.
Khlopenkov, K., Duda, D., Thieman, M., Minnis, P., Su, W., and Bedka, K.:
Development of multi-sensor global cloud and radiance composites for earth
radiation budget monitoring from DSCOVR, Proc. SPIE 10424, Remote Sens.,
104240K, Warsaw, 2 October 2017, https://doi.org/10.1117/12.2278645, 2017.
King, M. D., Platnick, S., Yang, P., Arnold, G. T., Gray, M. A., Riedi, J.
C., Ackerman, S. A., and Liou, K. N.: Remote sensing of liquid water and ice
cloud optical thickness and effective radius in the Arctic: Application of
airborne multispectral MAS data, J. Atmos. Ocean. Tech., 21, 857–875, 2004.
Koelemeijer, R. B. A., Stammes, P., Hovenier, J. W., and de Haan, J. F.: A
fast method for retrieval of cloud parameters using oxygen A band
measurements from the Global Ozone Monitoring Experiment, J. Geophys. Res.,
106, 3475–3490, 2001.
Kokhanovsky, A. A., Rozanov, V. V., Burrows, J. P., Eichmann, K.-U., Lotz,
W., and Vountas, M.: The SCIAMACHY cloud products: Algorithms and examples
from ENVISAT, Adv. Space Res., 36, 789–799, https://doi.org/10.1016/j.asr.2005.03.026,
2005.
Lindstrot, R., Preusker, R., Ruhtz, T., Heese, B., Wiegner, M., Lindemann,
C., and Fischer, J.: Validation of MERIS cloud top pressure using airborne
lidar measurements, J. Appl. Meteor. Climatol., 45, 1612–1621, 2006.
Loyola, D. G., Gimeno García, S., Lutz, R., Argyrouli, A., Romahn, F.,
Spurr, R. J. D., Pedergnana, M., Doicu, A., Molina García, V., and
Schüssler, O.: The operational cloud retrieval algorithms from TROPOMI on
board Sentinel-5 Precursor, Atmos. Meas. Tech., 11, 409–427,
https://doi.org/10.5194/amt-11-409-2018, 2018.
Lucchesi, R.: File Specification for GEOS-5 FP-IT, GMAO Office Note No. 2
(Version 1.4), 63 pp., available at:
https://gmao.gsfc.nasa.gov/pubs/docs/Lucchesi865.pdf (last access:
26 March 2019), 2015.
Marchand, R., Ackerman, T., Smyth, M., and Rossow, W. B.: A review of cloud
top height and optical depth histograms from MISR, ISCCP, and MODIS, J.
Geophys. Res., 115, D16206, https://doi.org/10.1029/2009JD013422, 2010.
Marshak, A., Herman, J., Szabo, A., Blank, K., Cede, A., Carn, S.,
Geogdzhayev, I., Huang, D., Huang, L-K, Knyazikhin, Y., Kowalewski, M.,
Krotkov, N., Lyapustin, A., McPeters, R., Meyer, K., Torres, O., and Yang,
Y.: Earth observations from DSCOVR/EPIC instrument, B. Am. Meteor. Soc., 99,
1829–1850, https://doi.org/10.1175/BAMS-D-17-0223.1, 2018.
Meyer, K., Yang, Y., and Platnick, S.: Uncertainties in cloud phase and
optical thickness retrievals from the Earth Polychromatic Imaging Camera
(EPIC), Atmos. Meas. Tech., 9, 1785–1797,
https://doi.org/10.5194/amt-9-1785-2016, 2016.
Min, Q. L., Harrison, L. C., Kiedron, P., Berndt, J., and Joseph, E.: A
high-resolution oxygen A-band and water vapor band spectrometer, J. Geophys.
Res., 109, D02202, https://doi.org/10.1029/2003JD003540, 2004.
Minnis, P., Sun-Mack, S., Chen, Y., Khaiyer, M. M., Yi, Y., Ayers, J. K.,
Brown, R. R., Dong, X., Gibson, S. C., Heck, P. W., Lin, B., Nordeen, M.L.,
Nguyen, L., Palikonda, R., Smith Jr., W. L., Spangenberg, D. A., Trepte, Q.
Z., and Xi, B.: CERES Edition-2 cloud property retrievals using TRMM VIRS and
Terra and Aqua MODIS data, Part II: Examples of average results and
comparisons with other data, IEEE T. Geosci. Remote, 49, 4401–4430,
https://doi.org/10.1109/TGRS.2011.2144602, 2011.
Nakajima, T. and King, M. D.: Determination of the optical thickness and
effective particle radius of clouds from reflected solar radiation
measurements, Part I: Theory, J. Atmos. Sci., 47, 1878–1893, 1990.
National Academies of Sciences, Engineering, and Medicine: Thriving on Our
Changing Planet: A Decadal Strategy for Earth Observation from Space,
https://doi.org/10.17226/24938, The National Academies Press, Washington, DC, 2018.
Platnick, S., Meyer, K., King, M. D., Wind, G., Amarasinghe, N., Marchant,
B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Holz, R. E., Yang, P., Ridgway,
W. L., and Riedi, J.: The MODIS cloud optical and microphysical products:
Collection 6 updates and examples from Terra and Aqua, IEEE T. Geosci.
Remote, 55, 502–525, https://doi.org/10.1109/TGRS.2016.2610522, 2017.
Rossow, W. B. and Garder, L. C.: Cloud Detection Using Satellite Measurements
of Infrared and Visible Radiances for ISCCP, J. Climate, 6, 2341–2369, 1993.
Rossow, W. B. and Schiffer, R. A.: Advances in understanding clouds from
ISCCP, B. Am. Meteor. Soc., 80, 2261–2287,
https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2, 1999.
Schüssler, O., Loyola, D., Doicu, A., and Spurr, R.: Information Content
in the Oxygen A-band for the Retrieval of Macrophysical Cloud Parameters,
IEEE T. Geosci. Remote, 52, 3246–3255, 2014.
Sneep, M., de Haan, J. F., Stammes, P., Wang, P., Vanbauce, C., Joiner, J.,
Vasilkov, A. P., and Levelt, P. F.: Three-way comparison between OMI and
PARASOL cloud pressure products, J. Geophys. Res., 113, D15S23,
https://doi.org/10.1029/2007JD008694, 2008.
Stammes, P., Sneep, M., de Haan, J. F., Veefkind, J. P., Wang, P., and
Levelt, P. F.: Effective cloud fractions from the Ozone Monitoring
Instrument: Theoretical framework and validation, J. Geophys. Res., 113,
D16S38, https://doi.org/10.1029/2007JD008820, 2008.
Stamnes, K., Tsay, S.-C., Wiscombe, W. J., and Jayaweera, K.: Numerically
stable algorithm for discrete-ordinate-method radiative transfer in multiple
scattering and emitting layered media, Appl. Opt., 27, 2502–2512, 1988.
Stephens, G. L. and Heidinger, A. K.: Molecular line absorption in a
scattering atmosphere: Part I, Theory, J. Atmos. Sci., 57, 1599–1614, 2000.
Tilstra, L. G., Tuinder, O. N. E., Wang, P., and Stammes, P.: Surface
reflectivity climatologies from UV to NIR determined from Earth observations
by GOME-2 and SCIAMACHY, J. Geophys. Res.-Atmos., 122, 4084–4111, 2017.
Vanbauce, C., Cadet, B., and Marchand, R. T.: Comparison of POLDER apparent
and corrected oxygen pressure to ARM/MMCR cloud boundary pressures, Geophys.
Res. Lett., 30, 1212, https://doi.org/10.1029/2002GL016449, 2003.
Vasilkov, A., Joiner, J., Spurr, R., Bhartia, P. K., Levelt, P., and
Stephens, G.: Evaluation of the OMI cloud pressures derived from rotational
Raman scattering by comparisons with other satellite data and radiative
transfer simulations, J. Geophys. Res., 113, D15S19,
https://doi.org/10.1029/2007JD008689, 2008.
Vermote, E. F. and Tanre, D.: Analytical expressions for radiative properties
of planar Rayleigh scattering media including polarization contribution, J.
Quant. Spectrosc. Ra., 47, 305–314, 1992.
Wang, P., Stammes, P., van der A, R., Pinardi, G., and van Roozendael, M.:
FRESCO+: an improved O2 A-band cloud retrieval algorithm for
tropospheric trace gas retrievals, Atmos. Chem. Phys., 8, 6565–6576,
https://doi.org/10.5194/acp-8-6565-2008, 2008.
Wang, P., Stammes, P., and Mueller, R.: Surface solar irradiance from
SCIAMACHY measurements: algorithm and validation, Atmos. Meas. Tech., 4,
875–891, https://doi.org/10.5194/amt-4-875-2011, 2011.
Yang, P., Bi, L., Baum, B. A., Liou, K.-N., Kattawar, G. W., Mishchenko, M.
I., and Cole, B.: Spectrally Consistent Scattering, Absorption, and
Polarization Properties of Atmospheric Ice Crystals at Wavelengths from 0.2
to 100 µm, J. Atmos. Sci., 70, 330–347,
https://doi.org/10.1175/JAS-D-12-039.1, 2013.
Yang, Y., Di Girolamo, L., and Mazzoni, D.: Selection of the automated
thresholding algorithm for Multi-angle Imaging SpectroRadiometer Radiometric
Camera-by-Camera Cloud Mask over land, Remote Sens. Environ., 107, 159–171,
https://doi.org/10.1016/j.rse.2006.05.020, 2007.
Yang, Y., Marshak, A., Chiu, J. C., Wiscombe, W. J., Palm, S. P., Davis, A.
B., Spangenberg, D. A., Nguyen, L., Spinhirne, J. D., and Minnis, P.:
Retrievals of Thick Cloud Optical Depth from the Geoscience Laser Altimeter
System (GLAS) by Calibration of Solar Background Signal, J. Atmos. Sci., 65,
3513–3526, https://doi.org/10.1175/2008JAS2744.1, 2008.
Yang, Y., Marshak, A., Mao, J., Lyapustin, A., and Herman, J.: A Method of
Retrieving Cloud Top Height and Cloud Geometrical Thickness with Oxygen A and
B bands for the Deep Space Climate Observatory (DSCOVR) Mission: Radiative
Transfer Simulations, J. Quant. Spectrosc. Ra., 122, 141–149,
https://doi.org/10.1016/j.jqsrt.2012.09.017, 2013.
Short summary
The physical basis of the EPIC cloud product algorithms and an initial evaluation of their performance are presented. EPIC cloud products include cloud mask, effective height, and optical depth. Comparison with co-located retrievals from geosynchronous earth orbit (GEO) and low earth orbit (LEO) satellites shows that the algorithms are performing well and are consistent with theoretical expectations. These products are publicly available at the NASA Langley Atmospheric Sciences Data Center.
The physical basis of the EPIC cloud product algorithms and an initial evaluation of their...