Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
AMT | Articles | Volume 12, issue 7
Atmos. Meas. Tech., 12, 3943–3961, 2019
https://doi.org/10.5194/amt-12-3943-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Atmos. Meas. Tech., 12, 3943–3961, 2019
https://doi.org/10.5194/amt-12-3943-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 18 Jul 2019

Research article | 18 Jul 2019

A practical information-centered technique to remove a priori information from lidar optimal-estimation-method retrievals

Ali Jalali et al.

Related authors

Improvements to a long-term Rayleigh-scatter lidar temperature climatology by using an optimal estimation method
Ali Jalali, Robert J. Sica, and Alexander Haefele
Atmos. Meas. Tech., 11, 6043–6058, https://doi.org/10.5194/amt-11-6043-2018,https://doi.org/10.5194/amt-11-6043-2018, 2018
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
An examination of enhanced atmospheric methane detection methods for predicting performance of a novel multiband uncooled radiometer imager
Cody M. Webber and John P. Kerekes
Atmos. Meas. Tech., 13, 5359–5367, https://doi.org/10.5194/amt-13-5359-2020,https://doi.org/10.5194/amt-13-5359-2020, 2020
Short summary
Ground-based Fourier transform infrared (FTIR) O3 retrievals from the 3040 cm−1 spectral range at Xianghe, China
Minqiang Zhou, Pucai Wang, Bavo Langerock, Corinne Vigouroux, Christian Hermans, Nicolas Kumps, Ting Wang, Yang Yang, Denghui Ji, Liang Ran, Jinqiang Zhang, Yuejian Xuan, Hongbin Chen, Françoise Posny, Valentin Duflot, Jean-Marc Metzger, and Martine De Mazière
Atmos. Meas. Tech., 13, 5379–5394, https://doi.org/10.5194/amt-13-5379-2020,https://doi.org/10.5194/amt-13-5379-2020, 2020
Short summary
Establishment of AIRS climate-level radiometric stability using radiance anomaly retrievals of minor gases and sea surface temperature
L. Larrabee Strow and Sergio DeSouza-Machado
Atmos. Meas. Tech., 13, 4619–4644, https://doi.org/10.5194/amt-13-4619-2020,https://doi.org/10.5194/amt-13-4619-2020, 2020
Short summary
MAX-DOAS measurements of tropospheric NO2 and HCHO in Munich and the comparison to OMI and TROPOMI satellite observations
Ka Lok Chan, Matthias Wiegner, Jos van Geffen, Isabelle De Smedt, Carlos Alberti, Zhibin Cheng, Sheng Ye, and Mark Wenig
Atmos. Meas. Tech., 13, 4499–4520, https://doi.org/10.5194/amt-13-4499-2020,https://doi.org/10.5194/amt-13-4499-2020, 2020
Short summary
Overview: Estimating and reporting uncertainties in remotely sensed atmospheric composition and temperature
Thomas von Clarmann, Douglas A. Degenstein, Nathaniel J. Livesey, Stefan Bender, Amy Braverman, André Butz, Steven Compernolle, Robert Damadeo, Seth Dueck, Patrick Eriksson, Bernd Funke, Margaret C. Johnson, Yasuko Kasai, Arno Keppens, Anne Kleinert, Natalya A. Kramarova, Alexandra Laeng, Bavo Langerock, Vivienne H. Payne, Alexei Rozanov, Tomohiro O. Sato, Matthias Schneider, Patrick Sheese, Viktoria Sofieva, Gabriele P. Stiller, Christian von Savigny, and Daniel Zawada
Atmos. Meas. Tech., 13, 4393–4436, https://doi.org/10.5194/amt-13-4393-2020,https://doi.org/10.5194/amt-13-4393-2020, 2020
Short summary

Cited articles

Boersma, K. F., Eskes, H. J., and Brinksma, E. J.: Error analysis for tropospheric NO2 retrieval from space, J. Geophys. Res., 109, D04311, https://doi.org/10.1029/2003JD003962, 2004. a
Brocard, E., Philipona, R., Haefele, A., Romanens, G., Mueller, A., Ruffieux, D., Simeonov, V., and Calpini, B.: Raman Lidar for Meteorological Observations, RALMO – Part 2: Validation of water vapor measurements, Atmos. Meas. Tech., 6, 1347–1358, https://doi.org/10.5194/amt-6-1347-2013, 2013. a
Ceccherini, S., Raspollini, P., and Carli, B.: Optimal use of the information provided by indirect measurements of atmospheric vertical profiles, Opt. Express, 17, 4944–4958, https://doi.org/10.1364/OE.17.004944, 2009. a
Committee on Extension to the Standard Atmosphere: U.S. standard atmosphere, US Government Printing Office, 1–227, NASA-TM-X-74335, NOAA-S/T-76-1562, 1976. a
Cunnold, D. M., Chu, W., Barnes, R. A., McCormick, M. P., and Veiga, R. E.: Validation of SAGE II ozone measurements, J. Geophys. Res., 94, 8447–8460, https://doi.org/10.1029/JD094iD06p08447, 1989. a
Publications Copernicus
Download
Short summary
This paper builds upon the work in von Clarmann and Grabowski (2007) concerning the a priori profile influence in the optimal estimation method applied to active remote sensing measurements, with examples given for lidar retrievals of temperature and water vapor mixing ratio. The optimal estimation method is a new technique for many active remote sensing researchers. This study gives insight into understanding the effect on retrievals of the a priori information.
This paper builds upon the work in von Clarmann and Grabowski (2007) concerning the a priori...
Citation