Articles | Volume 12, issue 9
Atmos. Meas. Tech., 12, 4949–4964, 2019
https://doi.org/10.5194/amt-12-4949-2019
Atmos. Meas. Tech., 12, 4949–4964, 2019
https://doi.org/10.5194/amt-12-4949-2019

Research article 12 Sep 2019

Research article | 12 Sep 2019

Calibration of the 2007–2017 record of Atmospheric Radiation Measurements cloud radar observations using CloudSat

Pavlos Kollias et al.

Related authors

First Light Multi-Frequency Observations with a G-band radar
Katia Lamer, Mariko Oue, Alessandro Battaglia, Richard J. Roy, Ken B. Cooper, Ranvir Dhillon, and Pavlos Kollias
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-493,https://doi.org/10.5194/amt-2020-493, 2020
Preprint under review for AMT
Short summary
Multilayer cloud conditions in trade wind shallow cumulus – confronting two ICON model derivatives with airborne observations
Marek Jacob, Pavlos Kollias, Felix Ament, Vera Schemann, and Susanne Crewell
Geosci. Model Dev., 13, 5757–5777, https://doi.org/10.5194/gmd-13-5757-2020,https://doi.org/10.5194/gmd-13-5757-2020, 2020
Short summary
Environmental sensitivities of shallow-cumulus dilution – Part 1: Selected thermodynamic conditions
Sonja Drueke, Daniel J. Kirshbaum, and Pavlos Kollias
Atmos. Chem. Phys., 20, 13217–13239, https://doi.org/10.5194/acp-20-13217-2020,https://doi.org/10.5194/acp-20-13217-2020, 2020
Short summary
Mind the gap – Part 2: Improving quantitative estimates of cloud and rain water path in oceanic warm rain using spaceborne radars
Alessandro Battaglia, Pavlos Kollias, Ranvir Dhillon, Katia Lamer, Marat Khairoutdinov, and Daniel Watters
Atmos. Meas. Tech., 13, 4865–4883, https://doi.org/10.5194/amt-13-4865-2020,https://doi.org/10.5194/amt-13-4865-2020, 2020
Short summary
PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere
Mario Mech, Maximilian Maahn, Stefan Kneifel, Davide Ori, Emiliano Orlandi, Pavlos Kollias, Vera Schemann, and Susanne Crewell
Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020,https://doi.org/10.5194/gmd-13-4229-2020, 2020
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Improving cloud type classification of ground-based images using region covariance descriptors
Yuzhu Tang, Pinglv Yang, Zeming Zhou, Delu Pan, Jianyu Chen, and Xiaofeng Zhao
Atmos. Meas. Tech., 14, 737–747, https://doi.org/10.5194/amt-14-737-2021,https://doi.org/10.5194/amt-14-737-2021, 2021
Short summary
Global cloud property models for real-time triage on board visible–shortwave infrared spectrometers
Macey W. Sandford, David R. Thompson, Robert O. Green, Brian H. Kahn, Raffaele Vitulli, Steve Chien, Amruta Yelamanchili, and Winston Olson-Duvall
Atmos. Meas. Tech., 13, 7047–7057, https://doi.org/10.5194/amt-13-7047-2020,https://doi.org/10.5194/amt-13-7047-2020, 2020
Short summary
Applying deep learning to NASA MODIS data to create a community record of marine low-cloud mesoscale morphology
Tianle Yuan, Hua Song, Robert Wood, Johannes Mohrmann, Kerry Meyer, Lazaros Oreopoulos, and Steven Platnick
Atmos. Meas. Tech., 13, 6989–6997, https://doi.org/10.5194/amt-13-6989-2020,https://doi.org/10.5194/amt-13-6989-2020, 2020
Short summary
Microwave single-scattering properties of non-spheroidal raindrops
Robin Ekelund, Patrick Eriksson, and Michael Kahnert
Atmos. Meas. Tech., 13, 6933–6944, https://doi.org/10.5194/amt-13-6933-2020,https://doi.org/10.5194/amt-13-6933-2020, 2020
Short summary
Determining cloud thermodynamic phase from the polarized Micro Pulse Lidar
Jasper R. Lewis, James R. Campbell, Sebastian A. Stewart, Ivy Tan, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 13, 6901–6913, https://doi.org/10.5194/amt-13-6901-2020,https://doi.org/10.5194/amt-13-6901-2020, 2020
Short summary

Cited articles

Atlas, D.: Radar calibration: Some simple approaches, B. Am. Meteorol. Soc., 83, 1313–1316, 2002. 
Bolen, S. M. and Chandrasekar, V.: Quantitative cross validation of space-based and ground-based radar observations, J. Appl. Meteorol., 39, 2071–2079, 2000. 
Clothiaux, E. E., Miller, M. A., Perez, R. C., Turner, D. D., Moran, K. P., Martner, B. E., Ackerman, T. P., Mace, G. G., Marchand, R. T., and Widener, K. B.: The ARM millimeter wave cloud radars (MMCRs) and the active remote sensing of clouds (ARSCL) value added product (VAP), DOE Tech Memo. ARM VAP-002.1, 2001. 
Dong, X., Xi, B., Kennedy, A., Minnis, P., and Wood, R.: A 19-month Marine Aerosol-Cloud_Radiation Properties derived from DOE ARM AMF deployment at the Azores: Part I: Cloud fraction and single-layered MBL cloud properties, J. Climate, 27, 3665–3682, doi:10.1175/JCLI-D-13-00553.1, 2014. 
Gage, K. S., Williams, C. R., Johnston, P. E., Ecklund, W. L., Cifelli, R., Tokay, A., and Carter, D. A.: Doppler radar profilers as calibration tools for scanning radars, J. Appl. Meteorol., 39, 2209–2222, 2000. 
Download
Short summary
Profiling millimeter-wavelength radars are the cornerstone instrument of surface-based observatories. Calibrating these radars is important for establishing a long record of observations suitable for model evaluation and improvement. Here, the CloudSat CPR is used to assess the calibration of a record over 10 years long of ARM cloud radar observations (a total of 44 years). The results indicate that correction coefficients are needed to improve record reliability and usability.