Articles | Volume 13, issue 1
https://doi.org/10.5194/amt-13-259-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-259-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Photoacoustic measurement with infrared band-pass filters significantly overestimates NH3 emissions from cattle houses due to volatile organic compound (VOC) interferences
Dezhao Liu
CORRESPONDING AUTHOR
College of Biosystems Engineering and Food Science, Zhejiang University,
Yuhangtang Road 866, 310058 Hangzhou, China
Department of Engineering, Aarhus University, Finlandsgade 22, 8200 Aarhus
N, Denmark
Li Rong
Department of Engineering, Aarhus University, Finlandsgade 22, 8200 Aarhus
N, Denmark
Jesper Kamp
Department of Engineering, Aarhus University, Finlandsgade 22, 8200 Aarhus
N, Denmark
Xianwang Kong
College of Biosystems Engineering and Food Science, Zhejiang University,
Yuhangtang Road 866, 310058 Hangzhou, China
Anders Peter S. Adamsen
APSA, c/o Agro Business Park, Niels Pedersens Allé 2, 8830 Tjele,
Denmark
Albarune Chowdhury
Department of Engineering, Aarhus University, Finlandsgade 22, 8200 Aarhus
N, Denmark
Anders Feilberg
CORRESPONDING AUTHOR
Department of Engineering, Aarhus University, Finlandsgade 22, 8200 Aarhus
N, Denmark
Related authors
No articles found.
Johanna Pedersen, Sasha D. Hafner, Andreas Pacholski, Valthor I. Karlsson, Li Rong, Rodrigo Labouriau, and Jesper N. Kamp
Atmos. Meas. Tech., 17, 4493–4505, https://doi.org/10.5194/amt-17-4493-2024, https://doi.org/10.5194/amt-17-4493-2024, 2024
Short summary
Short summary
Field-applied animal slurry is a significant source of NH3 emission. A new system of dynamic flux chambers for NH3 measurements was developed and validated using three field trials in order to assess the variability after application with a trailing hose at different scales: manual (handheld) application, a 3 m slurry boom, and a 30 m slurry boom. The system facilitates NH3 emission measurement with replication after both manual and farm-scale slurry application with relatively high precision.
Yolanda Maria Lemes, Christoph Häni, Jesper Nørlem Kamp, and Anders Feilberg
Atmos. Meas. Tech., 16, 1295–1309, https://doi.org/10.5194/amt-16-1295-2023, https://doi.org/10.5194/amt-16-1295-2023, 2023
Short summary
Short summary
The implementation of a new method, line-averaged concentration measurement with a closed-path analyzer, will enable the measurement of fluxes of multiple gases from different types of sources and will evaluate the effects of mitigation strategies on emissions. In addition, this method allows for continuous online measurements that resolve temporal variation in ammonia emissions and the peak emissions of methane.
Jesper Nørlem Kamp, Albarune Chowdhury, Anders Peter S. Adamsen, and Anders Feilberg
Atmos. Meas. Tech., 12, 2837–2850, https://doi.org/10.5194/amt-12-2837-2019, https://doi.org/10.5194/amt-12-2837-2019, 2019
Short summary
Short summary
We tested the performance of a cavity ring-down spectroscopy (CRDS) instrument from Picarro for measuring ammonia. Interference tests with 10 volatile organic compounds (VOCs) were conducted to find potential interference of these VOCs. Calibrations show excellent linearity over a large dynamic range of NH3 concentrations. There is negligible interference from humidity and few of the tested VOCs. Overall, the CRDS system performs well with only negligible influence from other compounds.
Jesper Kamp, Henrik Skov, Bjarne Jensen, and Lise Lotte Sørensen
Atmos. Chem. Phys., 18, 6923–6938, https://doi.org/10.5194/acp-18-6923-2018, https://doi.org/10.5194/acp-18-6923-2018, 2018
Short summary
Short summary
Measurements of mercury fluxes over snow surfaces are carried out at the High Arctic site at Villum Research Station in North Greenland. The measurements were carried out from 23 April to 12 May during spring 2016, where atmospheric mercury depletion events (AMDEs) took place. The measurements showed a net emission of 8.9 ng m−2 min−1, with only a few depositional fluxes. GEM fluxes and atmospheric temperature measurements suggest that GEM emission partly could be affected by surface heating.
Related subject area
Subject: Gases | Technique: Laboratory Measurement | Topic: Validation and Intercomparisons
A nitrate ion chemical-ionization atmospheric-pressure-interface time-of-flight mass spectrometer (NO3− ToFCIMS) sensitivity study
Two new 222Rn emanation sources – a comparison study
A traceable and continuous flow calibration method for gaseous elemental mercury at low ambient concentrations
Measurements of atmospheric C10–C15 biogenic volatile organic compounds (BVOCs) with sorbent tubes
Results of a long-term international comparison of greenhouse gas and isotope measurements at the Global Atmosphere Watch (GAW) Observatory in Alert, Nunavut, Canada
Colorimetric derivatization of ambient ammonia (NH3) for detection by long-path absorption photometry
Comparison of temperature-dependent calibration methods of an instrument to measure OH and HO2 radicals using laser-induced fluorescence spectroscopy
Controlled-release testing of the static chamber methodology for direct measurements of methane emissions
Development of an International System of Units (SI)-traceable transmission curve reference material to improve the quantitation and comparability of proton-transfer-reaction mass-spectrometry measurements
Reactive uptake coefficients for multiphase reactions determined by a dynamic chamber system
Influence of CO2 adsorption on cylinders and fractionation of CO2 and air during the preparation of a standard mixture
Detection of nitrous acid in the atmospheric simulation chamber SAPHIR using open-path incoherent broadband cavity-enhanced absorption spectroscopy and extractive long-path absorption photometry
Behavior of KCl sorbent traps and KCl trapping solutions used for atmospheric mercury speciation: stability and specificity
Intercomparison of O2 ∕ N2 ratio scales among AIST, NIES, TU, and SIO based on a round-robin exercise using gravimetric standard mixtures
Characterisation of gas reference materials for underpinning atmospheric measurements of stable isotopes of nitrous oxide
An indirect-calibration method for non-target quantification of trace gases applied to a time series of fourth-generation synthetic halocarbons at the Taunus Observatory (Germany)
Revision of the World Meteorological Organization Global Atmosphere Watch (WMO/GAW) CO2 calibration scale
Comparability of calibration strategies for measuring mercury concentrations in gas emission sources and the atmosphere
Characterizing water vapour concentration dependence of commercial cavity ring-down spectrometers for continuous on-site atmospheric water vapour isotope measurements in the tropics
Implementation of an incoherent broadband cavity-enhanced absorption spectroscopy technique in an atmospheric simulation chamber for in situ NO3 monitoring: characterization and validation for kinetic studies
A portable, robust, stable, and tunable calibration source for gas-phase nitrous acid (HONO)
Optimisation of a thermal desorption–gas chromatography–mass spectrometry method for the analysis of monoterpenes, sesquiterpenes and diterpenes
SIFT-MS optimization for atmospheric trace gas measurements at varying humidity
N2O isotopocule measurements using laser spectroscopy: analyzer characterization and intercomparison
An intercomparison of CH3O2 measurements by fluorescence assay by gas expansion and cavity ring-down spectroscopy within HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)
Isotopic characterization of nitrogen oxides (NOx), nitrous acid (HONO), and nitrate (pNO3−) from laboratory biomass burning during FIREX
A new laser-based and ultra-portable gas sensor for indoor and outdoor formaldehyde (HCHO) monitoring
Negligible influence of livestock contaminants and sampling system on ammonia measurements with cavity ring-down spectroscopy
Preparation of primary standard mixtures for atmospheric oxygen measurements with less than 1 µmol mol−1 uncertainty for oxygen molar fractions
The interference of tetrachloromethane in the measurement of benzene in the air by a gas chromatography–photoionisation detector (GC-PID)
Evaluation of cation exchange membrane performance under exposure to high Hg0 and HgBr2 concentrations
Gravimetrically prepared carbon dioxide standards in support of atmospheric research
The importance of cylinder passivation for preparation and long-term stability of multicomponent monoterpene primary reference materials
Dynamic–gravimetric preparation of metrologically traceable primary calibration standards for halogenated greenhouse gases
The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm
Interlaboratory comparison of δ13C and δD measurements of atmospheric CH4 for combined use of data sets from different laboratories
Absolute, pressure-dependent validation of a calibration-free, airborne laser hygrometer transfer standard (SEALDH-II) from 5 to 1200 ppmv using a metrological humidity generator
An intercomparison of HO2 measurements by fluorescence assay by gas expansion and cavity ring-down spectroscopy within HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)
Abundances of isotopologues and calibration of CO2 greenhouse gas measurements
Intercomparison of two cavity ring-down spectroscopy analyzers for atmospheric 13CO2 ∕ 12CO2 measurement
Development and evaluation of a suite of isotope reference gases for methane in air
MIPAS database: new HNO3 line parameters at 7.6 µm validated with MIPAS satellite measurements
Challenges associated with the sampling and analysis of organosulfur compounds in air using real-time PTR-ToF-MS and offline GC-FID
Twin-cuvette measurement technique for investigation of dry deposition of O3 and PAN to plant leaves under controlled humidity conditions
Gas adsorption and desorption effects on cylinders and their importance for long-term gas records
HOx radical chemistry in oxidation flow reactors with low-pressure mercury lamps systematically examined by modeling
ACTRIS non-methane hydrocarbon intercomparison experiment in Europe to support WMO GAW and EMEP observation networks
A method for stable carbon isotope ratio and concentration measurements of ambient aromatic hydrocarbons
Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions
Measuring acetic and formic acid by proton-transfer-reaction mass spectrometry: sensitivity, humidity dependence, and quantifying interferences
Stéphanie Alage, Vincent Michoud, Sergio Harb, Bénédicte Picquet-Varrault, Manuela Cirtog, Avinash Kumar, Matti Rissanen, and Christopher Cantrell
Atmos. Meas. Tech., 17, 4709–4724, https://doi.org/10.5194/amt-17-4709-2024, https://doi.org/10.5194/amt-17-4709-2024, 2024
Short summary
Short summary
Calibration exercises are essential for determining the accuracy of instruments. We performed calibrations on a NO3¯ ToFCIMS instrument to determine its sensitivity and linearity for detecting various organic compounds. Our findings revealed significant variability, over several orders of magnitude, in the calibration factors obtained. The results suggest that relying on a single calibration factor from H2SO4 for the quantification of all compounds detected by this technique is not appropriate.
Tanita J. Ballé, Stefan Röttger, Florian Mertes, Anja Honig, Petr Kovar, Petr P. S. Otáhal, and Annette Röttger
Atmos. Meas. Tech., 17, 2055–2065, https://doi.org/10.5194/amt-17-2055-2024, https://doi.org/10.5194/amt-17-2055-2024, 2024
Short summary
Short summary
Over 50 % of naturally occurring radiation exposure is due to 222Rn (progenies), but traceability of measurements to the International System of Units (SI) is lacking. To address this, two new 222Rn sources were developed to be used as calibration standards for reference instruments. These sources were investigated by comparing their estimated calibration factors for one instrument. Despite the small differences derived, all uncertainties are well within the intended target uncertainty of 10 %.
Teodor D. Andron, Warren T. Corns, Igor Živković, Saeed Waqar Ali, Sreekanth Vijayakumaran Nair, and Milena Horvat
Atmos. Meas. Tech., 17, 1217–1228, https://doi.org/10.5194/amt-17-1217-2024, https://doi.org/10.5194/amt-17-1217-2024, 2024
Short summary
Short summary
Atmospheric mercury monitoring is an important activity in order to model the global trajectory of this toxic element and to assess if certain areas are polluted or not in accordance to global guidelines. One of the analysers tested in this work is globally used in this regard due to its practicality compared with other devices. Because it is only calibrated by the manufacturer at very high concentrations, we wanted to see how it performs at ambient mercury concentrations.
Heidi Hellén, Toni Tykkä, Simon Schallhart, Evdokia Stratigou, Thérèse Salameh, and Maitane Iturrate-Garcia
Atmos. Meas. Tech., 17, 315–333, https://doi.org/10.5194/amt-17-315-2024, https://doi.org/10.5194/amt-17-315-2024, 2024
Short summary
Short summary
Even though online measurements of biogenic volatile organic compounds (BVOCs) are becoming more common, the use of sorbent tubes is expected to continue because they offer greater spatial coverage and no infrastructure is required for sampling. In this study the sorbent tube sampling method was optimized and evaluated for the determination of BVOCs in gas-phase samples. Tenax TA sorbent tubes were found to be suitable for the quantitative measurements of C10–C15 BVOCs.
Douglas E. J. Worthy, Michele K. Rauh, Lin Huang, Felix R. Vogel, Alina Chivulescu, Kenneth A. Masarie, Ray L. Langenfelds, Paul B. Krummel, Colin E. Allison, Andrew M. Crotwell, Monica Madronich, Gabrielle Pétron, Ingeborg Levin, Samuel Hammer, Sylvia Michel, Michel Ramonet, Martina Schmidt, Armin Jordan, Heiko Moossen, Michael Rothe, Ralph Keeling, and Eric J. Morgan
Atmos. Meas. Tech., 16, 5909–5935, https://doi.org/10.5194/amt-16-5909-2023, https://doi.org/10.5194/amt-16-5909-2023, 2023
Short summary
Short summary
Network compatibility is important for inferring greenhouse gas fluxes at global or regional scales. This study is the first assessment of the measurement agreement among seven individual programs within the World Meteorological Organization community. It compares co-located flask air measurements at the Alert Observatory in Canada over a 17-year period. The results provide stronger confidence in the uncertainty estimation while using those datasets in various data interpretation applications.
Shasha Tian, Kexin Zu, Huabin Dong, Limin Zeng, Keding Lu, and Qi Chen
Atmos. Meas. Tech., 16, 5525–5535, https://doi.org/10.5194/amt-16-5525-2023, https://doi.org/10.5194/amt-16-5525-2023, 2023
Short summary
Short summary
We developed an online NH3 monitoring system based on a selective colorimetric reaction and a long-path absorption photometer (SAC-LOPAP), which can run statically for a long time and be applied to the continuous online measurement of low concentrations of ambient air by optimizing the reaction conditions, adding a constant-temperature module and liquid flow controller. It is well suited for the investigation of the NH3 budget for urban to rural conditions in China.
Frank A. F. Winiberg, William J. Warman, Charlotte A. Brumby, Graham Boustead, Iustinian G. Bejan, Thomas H. Speak, Dwayne E. Heard, Daniel Stone, and Paul W. Seakins
Atmos. Meas. Tech., 16, 4375–4390, https://doi.org/10.5194/amt-16-4375-2023, https://doi.org/10.5194/amt-16-4375-2023, 2023
Short summary
Short summary
OH and HO2 are key reactive intermediates in the Earth's atmosphere. Accurate measurements in either the field or simulation chambers provide a good test for chemical mechanisms. Fluorescence techniques have the appropriate sensitivity for detection but require calibration. This paper compares different methods of calibration and specifically how calibration factors vary across a temperature range relevant to atmospheric and chamber determinations.
James P. Williams, Khalil El Hachem, and Mary Kang
Atmos. Meas. Tech., 16, 3421–3435, https://doi.org/10.5194/amt-16-3421-2023, https://doi.org/10.5194/amt-16-3421-2023, 2023
Short summary
Short summary
Methane is powerful greenhouse gas; thus, to reduce methane emissions, it is important that the methods used to measure methane are tested and validated. The static chamber method is an enclosure-based technique that directly measures methane emissions; however, it has not been thoroughly tested for the new variety of methane sources that it is currently being used for. We find that the static chamber method can accurately measure methane emissions under a wide range of methane emission rates.
David R. Worton, Sergi Moreno, Kieran O'Daly, and Rupert Holzinger
Atmos. Meas. Tech., 16, 1061–1072, https://doi.org/10.5194/amt-16-1061-2023, https://doi.org/10.5194/amt-16-1061-2023, 2023
Short summary
Short summary
Proton-transfer-reaction mass spectrometry is widely used in the environmental, health, and food and beverage sectors. As a result, there is a need for accurate and comparable measurements. In this work we have developed a 20-component gravimetrically prepared traceable primary reference material (gas standard in a high-pressure cylinder) to enable quantitative and comparable measurements. The accuracy of all components was better than 3 %–10 % with stabilities of better than 1–2 years.
Guo Li, Hang Su, Meng Li, Uwe Kuhn, Guangjie Zheng, Lei Han, Fengxia Bao, Ulrich Pöschl, and Yafang Cheng
Atmos. Meas. Tech., 15, 6433–6446, https://doi.org/10.5194/amt-15-6433-2022, https://doi.org/10.5194/amt-15-6433-2022, 2022
Short summary
Short summary
A large fraction of previous work using dynamic flow chambers was to quantify gas exchange in terms of flux or deposition/emission rate. Here, we extended the usage of this technique to examine uptake kinetics on sample surfaces. The good performance of the chamber system was validated. This technique can be further used for liquid samples and real atmospheric aerosol samples without complicated coating procedures, which complements the existing techniques in atmospheric kinetic studies.
Nobuyuki Aoki, Shigeyuki Ishidoya, Shohei Murayama, and Nobuhiro Matsumoto
Atmos. Meas. Tech., 15, 5969–5983, https://doi.org/10.5194/amt-15-5969-2022, https://doi.org/10.5194/amt-15-5969-2022, 2022
Short summary
Short summary
The CO2 concentration in a cylinder is affected by carbon dioxide (CO2) adsorption to a cylinder’s internal surface and fractionation of CO2 and air in the preparation of standard mixtures. We demonstrate that the effects make the CO2 molar fractions deviate in standard mixtures prepared by diluting pure CO2 with air three times. This means that CO2 standard gases are difficult to gravimetrically prepare through multistep dilution.
Sophie Dixneuf, Albert A. Ruth, Rolf Häseler, Theo Brauers, Franz Rohrer, and Hans-Peter Dorn
Atmos. Meas. Tech., 15, 945–964, https://doi.org/10.5194/amt-15-945-2022, https://doi.org/10.5194/amt-15-945-2022, 2022
Short summary
Short summary
Atmospheric chambers, like SAPHIR in Jülich (Germany), are used to experimentally simulate specific atmospheric scenarios to improve our understanding of the complex chemical reactions occurring in our atmospheres. These facilities hence require cutting-edge gas-sensing capabilities to detect trace gases at the lowest level and in a short time. One important trace gas is HONO, for which we custom-built an optical sensing setup, capable of detecting one HONO molecule in ~40 billion in 1 min.
Jan Gačnik, Igor Živković, Sergio Ribeiro Guevara, Radojko Jaćimović, Jože Kotnik, Gianmarco De Feo, Matthew A. Dexter, Warren T. Corns, and Milena Horvat
Atmos. Meas. Tech., 14, 6619–6631, https://doi.org/10.5194/amt-14-6619-2021, https://doi.org/10.5194/amt-14-6619-2021, 2021
Short summary
Short summary
Atmospheric mercury and knowledge of its transformations and processes are of great importance for lowering its anthropogenic emissions. To ensure that, it is crucial to have a tested and validated measurement procedure. Since this is not always the case, we performed experiments that provided insight into commonly used atmospheric mercury sampling methods. The results showed that some sampling methods are unsuitable, and some are useful if we consider the results obtained from this work.
Nobuyuki Aoki, Shigeyuki Ishidoya, Yasunori Tohjima, Shinji Morimoto, Ralph F. Keeling, Adam Cox, Shuichiro Takebayashi, and Shohei Murayama
Atmos. Meas. Tech., 14, 6181–6193, https://doi.org/10.5194/amt-14-6181-2021, https://doi.org/10.5194/amt-14-6181-2021, 2021
Short summary
Short summary
Observing the minimal long-term change in atmospheric O2 molar fraction combined with CO2 observation enables us to estimate terrestrial biospheric and oceanic CO2 uptakes separately. In this study, we firstly identified the span offset between the laboratory O2 scales using our developed high-precision standard mixtures, suggesting that the result may allow us to estimate terrestrial biospheric and oceanic CO2 uptakes precisely.
Ruth E. Hill-Pearce, Aimee Hillier, Eric Mussell Webber, Kanokrat Charoenpornpukdee, Simon O'Doherty, Joachim Mohn, Christoph Zellweger, David R. Worton, and Paul J. Brewer
Atmos. Meas. Tech., 14, 5447–5458, https://doi.org/10.5194/amt-14-5447-2021, https://doi.org/10.5194/amt-14-5447-2021, 2021
Short summary
Short summary
There is currently a need for gas reference materials with well-characterised delta values for monitoring N2O amount fractions. We present work towards the preparation of gas reference materials for calibration of in-field monitoring equipment, which target the WMO-GAW data quality objectives for comparability of amount fraction and demonstrate the stability of δ15Nα, δ15Nβ and δ18O values with pressure and effects of cylinder passivation.
Fides Lefrancois, Markus Jesswein, Markus Thoma, Andreas Engel, Kieran Stanley, and Tanja Schuck
Atmos. Meas. Tech., 14, 4669–4687, https://doi.org/10.5194/amt-14-4669-2021, https://doi.org/10.5194/amt-14-4669-2021, 2021
Short summary
Short summary
Synthetic halocarbons can contribute to stratospheric ozone depletion or to climate change. In many applications they have been replaced over the last years. The presented non-target analysis shows an application approach to quantify those replacements retrospectively, using recorded data of air measurements with gas chromatography coupled to time-of-flight mass spectrometry. We focus on the retrospective analysis of the fourth-generation halocarbons, detected at Taunus Observatory in Germany.
Bradley D. Hall, Andrew M. Crotwell, Duane R. Kitzis, Thomas Mefford, Benjamin R. Miller, Michael F. Schibig, and Pieter P. Tans
Atmos. Meas. Tech., 14, 3015–3032, https://doi.org/10.5194/amt-14-3015-2021, https://doi.org/10.5194/amt-14-3015-2021, 2021
Short summary
Short summary
We have recently revised the carbon dioxide calibration scale used by numerous laboratories that measure atmospheric CO2. The revision follows from an improved understanding of the manometric method used to determine the absolute amount of CO2 in an atmospheric air sample. The new scale is 0.18 μmol mol−1 (ppm) greater than the previous scale at 400 ppm CO2. While this difference is small in relative terms (0.045 %), it is significant in terms of atmospheric monitoring.
Iris de Krom, Wijnand Bavius, Ruben Ziel, Elizabeth A. McGhee, Richard J. C. Brown, Igor Živković, Jan Gačnik, Vesna Fajon, Jože Kotnik, Milena Horvat, and Hugo Ent
Atmos. Meas. Tech., 14, 2317–2326, https://doi.org/10.5194/amt-14-2317-2021, https://doi.org/10.5194/amt-14-2317-2021, 2021
Short summary
Short summary
To demonstrate the robustness and comparability of the novel primary mercury gas standard, the results of comparisons are presented with current calibration methods maintained, using the bell jar in combination with the Dumarey equation or NIST liquid standard reference material. The results show that the primary standard and the NIST reference material are comparable, whereas a difference of −8 % exists between results traceable to the primary standard and the Dumarey equation.
Shujiro Komiya, Fumiyoshi Kondo, Heiko Moossen, Thomas Seifert, Uwe Schultz, Heike Geilmann, David Walter, and Jost V. Lavric
Atmos. Meas. Tech., 14, 1439–1455, https://doi.org/10.5194/amt-14-1439-2021, https://doi.org/10.5194/amt-14-1439-2021, 2021
Short summary
Short summary
The Amazon basin influences the atmospheric and hydrological cycles on local to global scales. To better understand how, we plan to perform continuous on-site measurements of the stable isotope composition of atmospheric water vapour. For making accurate on-site observations possible, we have investigated the performance of two commercial analysers and determined the best calibration strategy. Well calibrated, both analysers will allow us to record natural signals in the Amazon rainforest.
Axel Fouqueau, Manuela Cirtog, Mathieu Cazaunau, Edouard Pangui, Pascal Zapf, Guillaume Siour, Xavier Landsheere, Guillaume Méjean, Daniele Romanini, and Bénédicte Picquet-Varrault
Atmos. Meas. Tech., 13, 6311–6323, https://doi.org/10.5194/amt-13-6311-2020, https://doi.org/10.5194/amt-13-6311-2020, 2020
Short summary
Short summary
An incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) technique has been developed for the in situ monitoring of NO3 radicals in the CSA simulation chamber at LISA. The optical cavity allows a high sensitivity for NO3 detection up to 6 ppt for an integration time of 10 s. The technique is now fully operational and can be used to determine rate constants for fast reactions involving complex volatile organic compounds (with rate constants up to 10−10 cm3 molecule−1 s−1).
Melodie Lao, Leigh R. Crilley, Leyla Salehpoor, Teles C. Furlani, Ilann Bourgeois, J. Andrew Neuman, Andrew W. Rollins, Patrick R. Veres, Rebecca A. Washenfelder, Caroline C. Womack, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech., 13, 5873–5890, https://doi.org/10.5194/amt-13-5873-2020, https://doi.org/10.5194/amt-13-5873-2020, 2020
Short summary
Short summary
Nitrous acid (HONO) is a key intermediate in the generation of oxidants and fate of nitrogen oxides in the atmosphere. High-purity calibration sources that produce stable atmospherically relevant levels under field conditions have not been made to date, reducing measurement accuracy. In this study a simple salt-coated tube humidified with water vapor is demonstrated to produce pure stable low levels of HONO, with modifications allowing the generation of higher amounts.
Aku Helin, Hannele Hakola, and Heidi Hellén
Atmos. Meas. Tech., 13, 3543–3560, https://doi.org/10.5194/amt-13-3543-2020, https://doi.org/10.5194/amt-13-3543-2020, 2020
Short summary
Short summary
A thermal desorption–gas chromatography–mass spectrometry method following sorbent tube sampling was developed for the determination of terpenes in gas-phase samples. The main focus was on the analysis of diterpenes, which have been limited in study in gas-phase samples. The analytical figures of merit were fit for purpose (e.g. quantitation limits <10 pptv and reproducibility <10 % for terpenes). Diterpenes could be detected and identified in emissions from spruce and pine samples.
Ann-Sophie Lehnert, Thomas Behrendt, Alexander Ruecker, Georg Pohnert, and Susan E. Trumbore
Atmos. Meas. Tech., 13, 3507–3520, https://doi.org/10.5194/amt-13-3507-2020, https://doi.org/10.5194/amt-13-3507-2020, 2020
Short summary
Short summary
Volatile organic compounds (VOCs) like scents can appear and disappear quickly. For example, when a bug starts on a tree, the tree releases VOCs that warn the trees around him. Thus, one needs instruments measuring their concentration in real time and identify which VOC is measured. In our study, we compared two instruments doing that, PTR-MS and SIFT-MS. Both work similarly, but we found that the PTR-MS can measure lower concentrations, but the SIFT-MS can identify VOCs better.
Stephen J. Harris, Jesper Liisberg, Longlong Xia, Jing Wei, Kerstin Zeyer, Longfei Yu, Matti Barthel, Benjamin Wolf, Bryce F. J. Kelly, Dioni I. Cendón, Thomas Blunier, Johan Six, and Joachim Mohn
Atmos. Meas. Tech., 13, 2797–2831, https://doi.org/10.5194/amt-13-2797-2020, https://doi.org/10.5194/amt-13-2797-2020, 2020
Short summary
Short summary
The latest commercial laser spectrometers have the potential to revolutionize N2O isotope analysis. However, to do so, they must be able to produce trustworthy data. Here, we test the performance of widely used laser spectrometers for ambient air applications and identify instrument-specific dependencies on gas matrix and trace gas concentrations. We then provide a calibration workflow to facilitate the operation of these instruments in order to generate reproducible and accurate data.
Lavinia Onel, Alexander Brennan, Michele Gianella, James Hooper, Nicole Ng, Gus Hancock, Lisa Whalley, Paul W. Seakins, Grant A. D. Ritchie, and Dwayne E. Heard
Atmos. Meas. Tech., 13, 2441–2456, https://doi.org/10.5194/amt-13-2441-2020, https://doi.org/10.5194/amt-13-2441-2020, 2020
Jiajue Chai, David J. Miller, Eric Scheuer, Jack Dibb, Vanessa Selimovic, Robert Yokelson, Kyle J. Zarzana, Steven S. Brown, Abigail R. Koss, Carsten Warneke, and Meredith Hastings
Atmos. Meas. Tech., 12, 6303–6317, https://doi.org/10.5194/amt-12-6303-2019, https://doi.org/10.5194/amt-12-6303-2019, 2019
Short summary
Short summary
Isotopic analysis offers a potential tool to distinguish between sources and interpret transformation pathways of atmospheric species. We applied recently developed techniques in our lab to characterize the isotopic composition of reactive nitrogen species (NOx, HONO, HNO3, pNO3-) in fresh biomass burning emissions. Intercomparison with other techniques confirms the suitability of our methods, allowing for future applications of our techniques in a variety of environments.
Joshua D. Shutter, Norton T. Allen, Thomas F. Hanisco, Glenn M. Wolfe, Jason M. St. Clair, and Frank N. Keutsch
Atmos. Meas. Tech., 12, 6079–6089, https://doi.org/10.5194/amt-12-6079-2019, https://doi.org/10.5194/amt-12-6079-2019, 2019
Short summary
Short summary
A new mid-infrared and ultra-portable formaldehyde (HCHO) sensor from Aeris Technologies is characterized and evaluated against well-established laser-induced fluorescence (LIF) instrumentation. The Aeris sensor displays linear behavior (R squared > 0.94) and shows good agreement with LIF instruments. While the compact sensor is not currently a replacement for the most sensitive research-grade instrumentation available, its sub-ppbv precision is sufficient for indoor and outdoor HCHO monitoring.
Jesper Nørlem Kamp, Albarune Chowdhury, Anders Peter S. Adamsen, and Anders Feilberg
Atmos. Meas. Tech., 12, 2837–2850, https://doi.org/10.5194/amt-12-2837-2019, https://doi.org/10.5194/amt-12-2837-2019, 2019
Short summary
Short summary
We tested the performance of a cavity ring-down spectroscopy (CRDS) instrument from Picarro for measuring ammonia. Interference tests with 10 volatile organic compounds (VOCs) were conducted to find potential interference of these VOCs. Calibrations show excellent linearity over a large dynamic range of NH3 concentrations. There is negligible interference from humidity and few of the tested VOCs. Overall, the CRDS system performs well with only negligible influence from other compounds.
Nobuyuki Aoki, Shigeyuki Ishidoya, Nobuhiro Matsumoto, Takuro Watanabe, Takuya Shimosaka, and Shohei Murayama
Atmos. Meas. Tech., 12, 2631–2646, https://doi.org/10.5194/amt-12-2631-2019, https://doi.org/10.5194/amt-12-2631-2019, 2019
Short summary
Short summary
Observation of atmospheric O2 requires highly precise standard gas mixtures with uncertainty of less than 1 ppm for the O2 mole fraction or 5 per meg for O2 / N2. The uncertainty had not been achieved due unknown uncertainty factors in mass determination of the filled source gases. We first developed the primary standard mixtures with 1 ppm for the O2 mole fraction or 5 per meg by identifying and reducing the unknown uncertainty factors.
Cristina Romero-Trigueros, María Esther González, Marta Doval Miñarro, and Enrique González Ferradás
Atmos. Meas. Tech., 12, 1685–1695, https://doi.org/10.5194/amt-12-1685-2019, https://doi.org/10.5194/amt-12-1685-2019, 2019
Short summary
Short summary
Determining benzene in ambient air is mandatory in the European Union. The reference measuring technique is by gas chromatography (GC), and a photometric ionisation detector is recommended. This study shows that the simultaneous presence of benzene and tetrachloromethane causes a significant decrease in GC–photoionisation detector (GC-PID) readings. Given the importance of this behaviour, a possible mechanism was proposed. This study highlights the uncertainty of measuring benzene with a GC-PID.
Matthieu B. Miller, Sarrah M. Dunham-Cheatham, Mae Sexauer Gustin, and Grant C. Edwards
Atmos. Meas. Tech., 12, 1207–1217, https://doi.org/10.5194/amt-12-1207-2019, https://doi.org/10.5194/amt-12-1207-2019, 2019
Short summary
Short summary
This study was undertaken to demonstrate that a cation exchange membrane (CEM) material used for sampling reactive mercury (RM) does not possess an inherent tendency to collect gaseous elemental mercury (GEM). Using a custom-built mercury vapor permeation system, we found that the CEM material has a very small GEM uptake of approximately 0.004 %, too small to create a significant artifact. We also found that a representative RM compound was collected by the CEM material with high efficiency.
Bradley D. Hall, Andrew M. Crotwell, Benjamin R. Miller, Michael Schibig, and James W. Elkins
Atmos. Meas. Tech., 12, 517–524, https://doi.org/10.5194/amt-12-517-2019, https://doi.org/10.5194/amt-12-517-2019, 2019
Short summary
Short summary
We have used a one-step method for gravimetric preparation of CO2-in-air standards in aluminum cylinders. We consider both adsorption to stainless steel surfaces used in the transfer of highly pure CO2 and adsorption of CO2 to cylinder walls. This work compliments ongoing efforts to support atmospheric monitoring of CO2.
Nicholas D. C. Allen, David R. Worton, Paul J. Brewer, Celine Pascale, and Bernhard Niederhauser
Atmos. Meas. Tech., 11, 6429–6438, https://doi.org/10.5194/amt-11-6429-2018, https://doi.org/10.5194/amt-11-6429-2018, 2018
Short summary
Short summary
This paper investigates the stability of trace level static terpene primary reference materials (PRMs) and how the choice of passivation affects this process. For the first time, sampling canisters that can be used in the field are tested and demonstrated to be suitable for terpene mixtures. The PRMs were compared against a novel dynamic generator system based on dilution of pure limonene vapour emitted from a permeation tube. The effect of cylinder pressure and decanting are also investigated.
Myriam Guillevic, Martin K. Vollmer, Simon A. Wyss, Daiana Leuenberger, Andreas Ackermann, Céline Pascale, Bernhard Niederhauser, and Stefan Reimann
Atmos. Meas. Tech., 11, 3351–3372, https://doi.org/10.5194/amt-11-3351-2018, https://doi.org/10.5194/amt-11-3351-2018, 2018
Short summary
Short summary
We present new primary calibration scales for five halogenated greenhouse gases. The preparation method, newly applied to halocarbons, is dynamic and gravimetric
and allows the generation of reference gas mixtures at near-ambient levels (pmol mol−1). Each prepared molar fraction is traceable to the
realisation of SI units (International System of Units) and is assigned an uncertainty estimate following international guidelines.
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue
Atmos. Meas. Tech., 11, 2159–2171, https://doi.org/10.5194/amt-11-2159-2018, https://doi.org/10.5194/amt-11-2159-2018, 2018
Short summary
Short summary
The amplitude, the temperature dependence, and the physical origin of the water vapour absorption continuum are a long standing issue in molecular spectroscopy with a direct impact in atmospheric and planetary sciences. Using highly sensitive laser spectrometers, the water self continuum has been determined with unprecedented sensitivity in infrared atmospheric transparency windows.
Taku Umezawa, Carl A. M. Brenninkmeijer, Thomas Röckmann, Carina van der Veen, Stanley C. Tyler, Ryo Fujita, Shinji Morimoto, Shuji Aoki, Todd Sowers, Jochen Schmitt, Michael Bock, Jonas Beck, Hubertus Fischer, Sylvia E. Michel, Bruce H. Vaughn, John B. Miller, James W. C. White, Gordon Brailsford, Hinrich Schaefer, Peter Sperlich, Willi A. Brand, Michael Rothe, Thomas Blunier, David Lowry, Rebecca E. Fisher, Euan G. Nisbet, Andrew L. Rice, Peter Bergamaschi, Cordelia Veidt, and Ingeborg Levin
Atmos. Meas. Tech., 11, 1207–1231, https://doi.org/10.5194/amt-11-1207-2018, https://doi.org/10.5194/amt-11-1207-2018, 2018
Short summary
Short summary
Isotope measurements are useful for separating different methane sources. However, the lack of widely accepted standards and calibration methods for stable carbon and hydrogen isotopic ratios of methane in air has caused significant measurement offsets among laboratories. We conducted worldwide interlaboratory comparisons, surveyed the literature and assessed them systematically. This study may be of help in future attempts to harmonize data sets of isotopic composition of atmospheric methane.
Bernhard Buchholz and Volker Ebert
Atmos. Meas. Tech., 11, 459–471, https://doi.org/10.5194/amt-11-459-2018, https://doi.org/10.5194/amt-11-459-2018, 2018
Short summary
Short summary
This paper describes the absolute validation of the novel, calibration-free SEALDH-II hygrometer at a traceable humidity generator. During 23 days of permanent operation, 15 H2O mole fractions levels (5–1200 ppmv) at 6 gas pressures (65–950 hPa) were validated. With this validation, SEALDH-II is the first metrologically validated humidity transfer standard which links several scientific airborne and laboratory measurement campaigns to the international metrological water vapor scale.
Lavinia Onel, Alexander Brennan, Michele Gianella, Grace Ronnie, Ana Lawry Aguila, Gus Hancock, Lisa Whalley, Paul W. Seakins, Grant A. D. Ritchie, and Dwayne E. Heard
Atmos. Meas. Tech., 10, 4877–4894, https://doi.org/10.5194/amt-10-4877-2017, https://doi.org/10.5194/amt-10-4877-2017, 2017
Short summary
Short summary
Hydroperoxy (HO2) radicals are key intermediates participating in a rapid chemical cycling at the centre of the tropospheric oxidation. Fluorescence assay by gas expansion (FAGE) technique is the most commonly used for the HO2 measurements in the atmosphere. However, FAGE is an indirect technique, requiring calibration. This work finds a good agreement between the indirect FAGE method and the direct cavity ring-down spectroscopy method and hence validates FAGE and the FAGE calibration method.
Pieter P. Tans, Andrew M. Crotwell, and Kirk W. Thoning
Atmos. Meas. Tech., 10, 2669–2685, https://doi.org/10.5194/amt-10-2669-2017, https://doi.org/10.5194/amt-10-2669-2017, 2017
Short summary
Short summary
We describe a new CO2 calibration system for the Central Calibration Laboratory of the World Meteorological Organization Global Atmosphere Watch program. The system uses two laser spectroscopic instruments to measure the three major CO2 isotopologues individually. We account for isotopic differences between standards in the calibration hierarchy when assigning CO2 mole fraction, eliminating bias due to variations in the isotopic composition.
Jiaping Pang, Xuefa Wen, Xiaomin Sun, and Kuan Huang
Atmos. Meas. Tech., 9, 3879–3891, https://doi.org/10.5194/amt-9-3879-2016, https://doi.org/10.5194/amt-9-3879-2016, 2016
Peter Sperlich, Nelly A. M. Uitslag, Jürgen M. Richter, Michael Rothe, Heike Geilmann, Carina van der Veen, Thomas Röckmann, Thomas Blunier, and Willi A. Brand
Atmos. Meas. Tech., 9, 3717–3737, https://doi.org/10.5194/amt-9-3717-2016, https://doi.org/10.5194/amt-9-3717-2016, 2016
Short summary
Short summary
Isotope measurements in atmospheric CH4 are performed since more than 3 decades. However, standard gases to harmonize global measurements are not available to this day. We designed two methods to calibrate a suite of 8 CH4 gases with a wide range in isotopic composition to the VPDB and VSMOW scales with high precision and accuracy. Synthetic air mixtures with ~2 ppm of calibrated CH4 can be provided to the community by the ISOLAB of the Max Planck Institute for Biogeochemistry in Jena, Germany.
Agnès Perrin, Jean-Marie Flaud, Marco Ridolfi, Jean Vander Auwera, and Massimo Carlotti
Atmos. Meas. Tech., 9, 2067–2076, https://doi.org/10.5194/amt-9-2067-2016, https://doi.org/10.5194/amt-9-2067-2016, 2016
Short summary
Short summary
Improved line positions and intensities have been generated for the 7.6 µm spectral region of nitric acid, relying on a recent laboratory reinvestigation and comparisons of HNO3 volume mixing ratios retrieved from Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) radiances in the 11 and 7.6 µm regions. The much improved consistency of line intensities in both regions will make it possible to use them simultaneously to retrieve atmospheric HNO3.
Véronique Perraud, Simone Meinardi, Donald R. Blake, and Barbara J. Finlayson-Pitts
Atmos. Meas. Tech., 9, 1325–1340, https://doi.org/10.5194/amt-9-1325-2016, https://doi.org/10.5194/amt-9-1325-2016, 2016
Short summary
Short summary
Gas phase organosulfur compounds in air serve as precursors of particles which impact human health, visibility, and climate. We compare here two different approaches to measuring these compounds, one an online mass spectrometry technique and the other canister sampling followed by offline analysis by gas chromatography. We show that each approach has its own advantages and limitations in measuring these compounds in complex mixtures, including some artifacts due to reactions on surfaces.
Shang Sun, Alexander Moravek, Lisa von der Heyden, Andreas Held, Matthias Sörgel, and Jürgen Kesselmeier
Atmos. Meas. Tech., 9, 599–617, https://doi.org/10.5194/amt-9-599-2016, https://doi.org/10.5194/amt-9-599-2016, 2016
Short summary
Short summary
We present a dynamic twin-cuvette system for quantifying the trace gas exchange fluxes between plants and the atmosphere under controlled temperature, light, and humidity conditions. We found out that at a relative humidity of 40 %, the deposition velocity ratio of O3 and PAN was determined to be 0.45. At that humidity, the O3-deposition to the plant leaves was found to be only controlled by leaf stomata. For PAN, an additional resistance inhibited the uptake of PAN by the leaves.
M. C. Leuenberger, M. F. Schibig, and P. Nyfeler
Atmos. Meas. Tech., 8, 5289–5299, https://doi.org/10.5194/amt-8-5289-2015, https://doi.org/10.5194/amt-8-5289-2015, 2015
Short summary
Short summary
Adsorption/desorption effects of trace gases in gas cylinders were investigated. Our measurements indicate a rather strong effect on steel cylinders for CO2 that becomes easily visible through enhanced concentrations for low (<20 bars) gas pressure. Much smaller effects are observed for CO and CH4. Significantly smaller effects are measured for all gas species investigated on aluminium cylinders. Careful selection of gas cylinders for high-precision calibration purposes is recommended.
Z. Peng, D. A. Day, H. Stark, R. Li, J. Lee-Taylor, B. B. Palm, W. H. Brune, and J. L. Jimenez
Atmos. Meas. Tech., 8, 4863–4890, https://doi.org/10.5194/amt-8-4863-2015, https://doi.org/10.5194/amt-8-4863-2015, 2015
C. C. Hoerger, A. Claude, C. Plass-Duelmer, S. Reimann, E. Eckart, R. Steinbrecher, J. Aalto, J. Arduini, N. Bonnaire, J. N. Cape, A. Colomb, R. Connolly, J. Diskova, P. Dumitrean, C. Ehlers, V. Gros, H. Hakola, M. Hill, J. R. Hopkins, J. Jäger, R. Junek, M. K. Kajos, D. Klemp, M. Leuchner, A. C. Lewis, N. Locoge, M. Maione, D. Martin, K. Michl, E. Nemitz, S. O'Doherty, P. Pérez Ballesta, T. M. Ruuskanen, S. Sauvage, N. Schmidbauer, T. G. Spain, E. Straube, M. Vana, M. K. Vollmer, R. Wegener, and A. Wenger
Atmos. Meas. Tech., 8, 2715–2736, https://doi.org/10.5194/amt-8-2715-2015, https://doi.org/10.5194/amt-8-2715-2015, 2015
Short summary
Short summary
The performance of 20 European laboratories involved in long-term non-methane hydrocarbon (NMHC) measurements was assessed with respect to ACTRIS and GAW data quality objectives. The participants were asked to measure both a 30-component NMHC mixture in nitrogen and whole air. The NMHCs were analysed either by GC-FID or GC-MS. Most systems performed well for the NMHC in nitrogen, whereas in air more scatter was observed. Reasons for this are explained in the paper.
A. Kornilova, S. Moukhtar, M. Saccon, L. Huang, W. Zhang, and J. Rudolph
Atmos. Meas. Tech., 8, 2301–2313, https://doi.org/10.5194/amt-8-2301-2015, https://doi.org/10.5194/amt-8-2301-2015, 2015
Short summary
Short summary
A technique for compound specific analysis of stable carbon isotope ratios and concentration of ambient volatile organic compounds (VOC) is presented. It is based on selective VOC sampling onto adsorbent filled cartridges. Examples of measurements conducted demonstrate that the ability to make accurate measurements in air with low VOC mixing ratios is important to avoid bias from an overrepresentation of samples that are strongly impacted by recent emissions.
R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer
Atmos. Meas. Tech., 8, 1835–1862, https://doi.org/10.5194/amt-8-1835-2015, https://doi.org/10.5194/amt-8-1835-2015, 2015
Short summary
Short summary
Measurements of α-dicarbonyl compounds, like glyoxal (CHOCHO) and methyl glyoxal (CH3C(O)CHO), are informative about the rate of hydrocarbon oxidation, oxidative capacity, and secondary organic aerosol (SOA) formation in the atmosphere. We have compared nine instruments and seven techniques to measure α-dicarbonyl, using simulation chamber facilities in the US and Europe. We assess our understanding of calibration, precision, accuracy and detection limits, as well as possible sampling biases.
M. Baasandorj, D. B. Millet, L. Hu, D. Mitroo, and B. J. Williams
Atmos. Meas. Tech., 8, 1303–1321, https://doi.org/10.5194/amt-8-1303-2015, https://doi.org/10.5194/amt-8-1303-2015, 2015
Cited articles
Adamsen, A. P.: Measurement of climate gases from livestock barns with
infrared photo-acoustic spectrometry (in Danish: Måling af klimagasser
fra stalde med infrarød fotoakustisk spektrometri), Technical Report,
SEGES, December, 2018.
Aneja, V. P., Schlesinger, W. H., and Erisman, J. W.: Effects of agriculture
upon the air quality and climate: research, policy, and regulations,
Environ. Sci. Technol., 43, 4234–4240,
https://doi.org/10.1021/es8024403, 2009.
Angela, E., Di, F. C., Mario, L. P., and Gaetano, S.: Photoacoustic
Spectroscopy with Quantum Cascade Lasers for Trace Gas Detection,
Sensors-Basel, 6, 1411–1419, https://doi.org/10.3390/s6101411,
2006.
Berden, G., Peeters, R., and Meijer, G.: Cavity ring-down spectroscopy:
Experimental schemes and applications, Int. Rev. Phys. Chem., 19, 565–607,
https://doi.org/10.1080/014423500750040627, 2000.
Blake, R. S., Monks, P. S., and Ellis, A. M.: Proton-transfer reaction mass
spectrometry, Chem. Rev., 109, 861–896,
https://doi.org/10.1002/chin.200923275, 2009.
Blanes-Vidal, V., Topper, P. A., and Wheeler, E. F.: Validation of ammonia
emissions from dairy cow manure estimated with a non-steady-state,
recirculation flux chamber with whole-building emissions, T. ASABE, 50,
633–640, https://doi.org/10.13031/2013.22652, 2007.
Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., Van, D. H. K.
W., and Olivier, J. G. J.: A global high-resolution emission inventory for
ammonia, Global Biogeochem. Cy., 11, 561–587,
https://doi.org/10.1029/97GB02266, 1997.
California Air Resources Board (CARB): Manufacturer Notification, Mail-Out
#MSO 2000-08, CARB: Sacramento, CA, USA, available at:
http://www.arb.ca.gov/msprog/mailouts/mso0008/mso0008.pdf (last access: 15 October 2018), 2000.
Chadwick, D., Sommer, S., Thorman, R., Fangueiro, D., Cardenas, L., Amon,
B., and Misselbrook, T.: Manure management: Implications for greenhouse gas
emissions, Anim. Feed Sci. Tech., 166–167, 514–531,
https://doi.org/10.1016/j.anifeedsci.2011.04.036, 2011.
Christensen, J.: The Brüel&Kjær Photoacoustic Transducer System and
its Physical Properties, Brüel & Kjær Technical Review, 1, 1990a.
Christensen, J.: Optical filters and their use with the type 1302 type 1306
phtoacoustic gas monitors, Brüel & Kjær Technical Review, 2, 1990b.
Chung, M. Y., Beene, M., Ashkan, S., Krauter, C., and Hasson, A. S.:
Evaluation of non-enteric sources of non-methane volatile organic compound
(NMVOC) emissions from dairies, Atmos. Environ., 44, 786–794,
https://doi.org/10.1016/j.atmosenv.2009.11.033, 2009.
Cortus E. L., Jacobson L. D., Hetchler B. P., and Heber A. J.: Emission
monitoring methodology at a NAEMS dairy site, with an assessment of the
uncertainty of measured ventilation rates, ASABE – 9th International
Livestock Environment Symposium, 583–590,
https://doi.org/10.13031/2013.41578, 2012.
De Gouw, J. and Warneke, C.: Measurements of volatile organic compounds in
the earth's atmosphere using proton-transfer-reaction mass spectrometry,
Mass Spectrom. Rev., 26, 223–257, https://doi.org/10.1002/mas.20119, 2007.
De Vries, J. W. and Melse, R. W.: Comparing environmental impact of air
scrubbers for ammonia abatement at pig houses: A life cycle assessment,
Biosyst. Eng., 161, 53–61,
https://doi.org/10.1016/j.biosystemseng.2017.06.010, 2017.
EMEP, Agency: EMEP/EEA air pollutant emission inventory guidebook – 2013,
Luxembourg: Publications Office of the European Union, 3B: Manure management, https://www.eea.europa.eu/publications/emep-eea-guidebook-2013/part-b-sectoral-guidance-chapters/4-agriculture/3-b-manure-management/view (last access: : 4 May 2018),
2013.
Emmenegger, L., Mohn J., Sigrist M., Marinov D., Steinemann U., Zumsteg F.,
and Meier M.: Measurement of ammonia emissions using various techniques in a
comparative tunnel study, Int. J. Environ. Pollut., 22, 326–341,
https://doi.org/10.1504/IJEP.2004.005547, 2004.
Erisman, J. W., Bleeker, A., Galloway, J., and Sutton, M. S.: Reduced
nitrogen in ecology and the environment, Environ. Pollut., 150, 140–149,
https://doi.org/10.1016/j.envpol.2007.06.033, 2007.
Feilberg, A., Liu, D., Adamsen, A. P. S., Hansen, M. J., and Jonassen, K. E. N.:
Odorant emissions from intensive pig production measured by online
proton-transfer-reaction mass spectrometry, Environ. Sci. Technol., 44,
5894–5900, https://doi.org/10.1021/es100483s, 2010.
Flèchard, C. R., Neftel, A., Jocher, M., Ammann, C., and
Fuhrer, J.: Bi-directional soil/atmosphere N2O exchange over two mown
grassland systems with contrasting management practices, Global Change
Biol., 11, 2114–2127, https://doi.org/10.1111/j.1365-2486.2005.01056.x,
2005.
Hafner, S. D., Howard, C., Muck, R. E., Franco, R. B., Montes, F., Green, P. G.,
Mitloehner, F., Trabue, S. L., and Rotz, C. A.: Emission of volatile organic
compounds from silage: Compounds, sources, and implications, Atmos.
Environ., 77, 827–839, https://doi.org/10.1016/j.atmosenv.2013.04.076,
2013.
Harren, F. J. M., Cotti, G., Oomens, J., and Hekkert, S. L.: Photoacoustic
Spectroscopy in Trace Gas Monitoring, in: Encyclopedia of Analytical
Chemistry, edited by: Meyers, R. A., 2203–2226, JohnWiley & Sons
Ltd, Chichester, 2000.
Hassouna, M., Espagnol, S., Robin, P., Paillat, J. M., Levasseur, P., and
Li, Y.: Monitoring NH3, N2O, CO2 and CH4 emissions during pig solid manure
storage and effect of turning, Compost Sci. Util., 16, 267–274,
https://doi.org/10.1080/1065657X.2008.10702388, 2008.
Hassouna, M., Robin, P., Charpiot, A., Edouard, N., and Méda, B.:
Infrared photoacoustic spectroscopy in animal houses: Effect of
non-compensated interferences on ammonia, nitrous oxide and methane air
concentrations, Biosyst. Eng., 114, 318–326,
https://doi.org/10.1016/j.biosystemseng.2012.12.011, 2013.
Heber, A. J., Ni, J.-Q., Lim, T. T., Tao, P.-C., Schmidt, A. M., Koziel, J. A.,
Beasley, D. B., Hoff, S. J., Nicolai, R. E., Jacobson, L. D., and Zhang, Y.:
Quality assured measurements of animal building emissions: Gas
concentrations, J. Air Waste Manage., 56, 1472–1483,
https://doi.org/10.1080/10473289.2006.10465680, 2006.
Howard, C. J., Kumar, A., Malkina, I., Mitloehner, F., Green, P. G.,
Flocchini, R. G., and Kleeman, M. J.: Reactive organic gas emissions from
livestock feed contribute significantly to ozone production in central
California, Environ. Sci. Technol., 44, 2309–2314, https://doi.org/10.1021/es902864u, 2010.
Hutchings, N. J., Sommer, S. G., Andersen, J. M., and Asman, W. A. H.: A
detailed ammonia emission inventory for Denmark, Atmos. Environ.,
35, 1959–1968, https://doi.org/10.1016/S1352-2310(00)00542-2,
2001.
Inomata S. and Tanimoto H.: A deuterium-labeling study on the reproduction of
hydronium ions in the PTR-MS detection of ethanol, Int. J. Mass Spectrom.,
285, 95–99, https://doi.org/10.1016/j.ijms.2009.05.001, 2009.
Insam, H. and Seewald, M. S. A.: Volatile organic compounds (VOCs) in
soils, Biol. Fert. Soils, 46, 199–213,
https://doi.org/10.1007/s00374-010-0442-3, 2010.
Iqbal, J., Castellano, M. J., and Parkin, T. B.: Evaluation of photoacoustic
infrared spectroscopy for simultaneous measurement of N2O and CO2 gas
concentrations and fluxes at the soil surface, Global Change Biol., 19,
327–336, https://doi.org/10.1111/gcb.12021, 2013.
Joo, H. S., Ndegwa, P. M., Neerackal, G. M., Wang, X., and Harrison, J. H.: Effects
of manure managements on ammonia, hydrogen sulfide and greenhouse gases
emissions from the naturally ventilated dairy barn, ASABE, 2, 1302–1311,
https://doi.org/10.13031/aim.20131593447, 2013.
Kamp, J. N., Chowdhury, A., Adamsen, A. P. S., and Feilberg, A.: Negligible influence of livestock contaminants and sampling system on ammonia measurements with cavity ring-down spectroscopy, Atmos. Meas. Tech., 12, 2837–2850, https://doi.org/10.5194/amt-12-2837-2019, 2019.
Lambert J. D.: Vibrational and Rotational Relaxation in Gases, Clarendon
Press, Oxford, 1977.
Lin, X., Zhang, R., Jiang, S., El-Mashad, H., and Xin, H.: Emissions of
ammonia, carbon dioxide and particulate matter from cage-free layer houses
in California, Atmos. Environ., 152, 246–255,
https://doi.org/10.1016/j.atmosenv.2016.12.018, 2017.
Liu, D., Lokke, M. M., Leegaard Riis, A., Mortensen, K., and Feilberg, A.:
Evaluation of clay aggregate biotrickling filters for treatment of gaseous
emissions from intensive pig production, J. Environ. Manage., 136, 1–8,
https://doi.org/10.1016/j.jenvman.2014.01.023, 2014.
Liu, D., Nyord, T., Rong, L., and Feilberg, A.: Real-time quantification of
emissions of volatile organic compounds from land spreading of pig slurry
measured by PTR-MS and wind tunnels, Sci. Total. Environ., 639, 1079–1087,
https://doi.org/10.1016/j.scitotenv.2018.05.149, 2018.
Lumasense: Photoacoustic Gas Monitor – INNOVA 1412i, available at: http://www.lumasenseinc.com/FR/produits/gas-sensing/gas-monitoring-instruments/photoacoustic-spectroscopy-pas/photoacoustic-gas-monitor-innova-1412i/
(last access: 18 November 2018), 2012.
Malkina, I. L., Kumar, A., Green, P. G., and Mitloehner, F. M.: Identification
and quantitation of volatile organic compounds emitted from dairy silages
and other feedstuffs, J. Environ. Qual., 40, 28–36,
https://doi.org/10.2134/jeq2010.0302, 2011.
Mathot, M., Decruyenaere, V., Lambert, R., and Stilmant, D.: Emissions de
CH4, N2O et NH3 en é tables et lors du
stockage des engrais de ferme de génisses Blanc Bleu Belge,
Paper presented at the 14e`me Journées 3R, Paris, 2007.
Melse, R. W. and van der Werf, A. W.: Biofiltration for mitigation of methane
emission from animal husbandry, Environ. Sci. Technol., 39, 5460,
https://doi.org/10.1021/es048048q, 2005.
Moset, V., Cambra-López, M., Estellés, F., Torres, A. G., and
Cerisuelo, A.: Evolution of chemical composition and gas emissions from aged
pig slurry during outdoor storage with and without prior solid separation,
Biosyst. Eng., 111, 2–10,
https://doi.org/10.1016/j.biosystemseng.2011.10.001, 2012.
Ngwabie, N. M., Schade, G. W., Custer, T. G., Linke, S., and Hinz, T.:
Abundances and flux estimates of volatile organic compounds from a dairy
cowshed in Germany, J. Environ. Qual., 37, 565–573,
https://doi.org/10.2134/jeq2006.0417, 2008.
Ngwabie, N. M., Jeppsson, K. H., Gustafsson, G., and Nimmermark, S.: Effects
of animal activity and air temperature on methane and ammonia emissions from
a naturally ventilated building for dairy cows, Atmos. Environ., 45,
6760–6768, https://doi.org/10.1016/j.atmosenv.2011.08.027,
2011.
Ni, J. Q. and Heber, A. J.: Sampling and Measurement of Ammonia at Animal
Facilities, Adv. Agron., 98, 201–269, https://doi.org/10.1016/s0065-2113(08)00204-6, 2008.
Ni, J. Q., Diehl, C. A., Chai, L., Chen, Y., Heber, A. J., Lim, T. T., and
Bogan, B. W.: Factors and characteristics of ammonia, hydrogen sulfide,
carbon dioxide, and particulate matter emissions from two manure-belt layer
hen houses, Atmos. Environ., 156, 113–124,
https://doi.org/10.1016/j.atmosenv.2017.02.033, 2017.
Norman, M., Hansel, A., and Wisthaler, A.: as reagent ion in the
PTR-MS instrument: Detection of gas-phase ammonia, Int. J. Mass Spectrom.,
265, 382–387, https://doi.org/10.1016/j.ijms.2007.06.010, 2007.
Osada, T. and Fukumoto, Y.: Development of a new dynamic chamber system for
measuring harmful gas emissions from composting livestock waste, Water Sci.
Technol., 44, 79–86, https://doi.org/10.2166/wst.2001.0513,
2001.
Osada, T., Rom, H. B., and Dahl, P.: Continuous measurement of nitrous oxide
and methane emission in pig units by infrared photoacoustic detection, T.
ASAE, 41, 1109–1114,
https://doi.org/10.13031/2013.17256, 1998.
Paulot, F., Jacob, D. J., Pinder, R. W., Bash, J. O., Travis, K., and Henze,
D. K.: Ammonia emissions in the United States, European Union, and China
derived by high resolution inversion of ammonium wet deposition data:
Interpretation with a new agricultural emissions inventory
(MASAGE_NH3), J. Geophys. Res., 119, 4343–4364,
https://doi.org/10.1002/2013JD021130, 2015.
Pearson, J. and Stewart, G. R.: The deposition of atmospheric ammonia and
its effects on plants, New Phytol., 125, 283–305,
https://doi.org/10.1111/j.1469-8137.1993.tb03882.x, 1993.
Phillips, V. R., Lee, D. S., Scholtens, R., Garland, J. A., and Sneath, R.
W.: SE – Structures and Environment: A Review of Methods for measuring
Emission Rates of Ammonia from Livestock Buildings and Slurry or Manure
Stores, Part 2: monitoring Flux Rates, Concentrations and Airflow Rates, J.
Agr. Eng. Res., 78, 1–14,
https://doi.org/10.1006/jaer.2000.0618, 2001.
Picarro: Technology: Cavity Ring-Down Spectroscopy (CRDS), available at: https://www.picarro.com/technology/cavity_ring_down_spectroscopy, last access: 12 May, 2018.
Pinder, R. W., Adams, P. J., and Pandis, S. N.: Ammonia emission controls as
a cost-effective strategy for reducing atmospheric particulate matter in the
Eastern United States, Environ. Sci. Technol., 41, 380–386,
https://doi.org/10.1021/es060379a, 2007.
Rabaud, N. E., Ebeler, S. E., Ashbaugh, L. L., and Flocchini, R. G.:
Characterization and quantification of odorous and non-odorous volatile
organic compounds near a commercial dairy in California, Atmos. Environ.,
37, 933–940, https://doi.org/10.1016/S1352-2310(02)00970-6, 2003.
Rong, L., Nielsen, P. V., and Zhang, G. Q.: Effects of airflow and liquid
temperature on ammonia mass transfer above an emission surface: experimental
study on emission rate, Bioresource Technol., 100, 4654–4661,
https://doi.org/10.1016/j.biortech.2009.05.003, 2009.
Rong, L., Liu, D., Pedersen, E. F., and Zhang, G.: Effect of climate parameters
on air exchange rate and ammonia and methane emissions from a hybrid
ventilated dairy cow building, Energ. Buildings, 82, 632–643,
https://doi.org/10.1016/j.enbuild.2014.07.089, 2014.
Rong, L., Liu, D., Pedersen, E. F., and Zhang, G.: The effect of wind speed and
direction and surrounding maizeon hybrid ventilation in a dairy cow building
in Denmark, Energy and Buildings, 86, 25–34, https://doi.org/10.1016/j.enbuild.2014.10.016, 2015.
Schilt, S., Thévenaz, L., Niklès, M., Emmenegger, L., and
Hüglin, C.: Ammonia monitoring at trace level using photoacoustic
spectroscopy in industrial and environmental applications, Spectrochim.
Acta. A, 60, 3259–3268,
https://doi.org/10.1016/j.saa.2003.11.032, 2004.
Scholtens, R., Jones, C. J. D. M., Lee, D. S., and Phillips, V. R.:
Measuring ammonia emission rates from livestock buildings and manure
stores – part 1: development and validation of external tracer ratio,
internal tracer ratio and passive flux sampling methods, Atmos. Environ., 38,
3003–3015, https://doi.org/10.1016/j.atmosenv.2004.02.030,
2004.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From
Air Pollution to Climate Change, Wiley-VCH, New York, 1326 pp., 1997.
Shaw, S. L., Mitloehner, F. M., Jackson, W., Depeters, E. J., Fadel, J. G.,
Robinson, P. H., Holzinger, R., and Goldstein, A. H.: Volatile organic
compound emissions from dairy cows and their waste as measured by
proton-transfer-reaction mass spectrometry, Environ. Sci. Technol.,
41, 1310–1316, https://doi.org/10.1021/es061475e, 2007.
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., Mccarl,
B., Ogle, S., O'Mara, F., and Rice, C.: Greenhouse gas mitigation in
agriculture, Philos. T. R. Soc. B, 363, 789–813,
https://doi.org/10.1098/rstb.2007.2184, 2008.
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J.,
Collingham, Y. C., Erasmus, B. F., De Siqueira, M. F., Grainger, A., and
Hannah, L.: Extinction risk from climate change, Nature, 427, 145–148,
https://doi.org/10.1038/nature02121, 2004.
Van Breemen, N., Mulder, J., and Driscoll, C. T.: Acidification and
alkalinization of soils, Plant Soil, 75, 283–308,
https://doi.org/10.1007/BF02369968, 1983.
von Bobrutzki, K., Braban, C. F., Famulari, D., Jones, S. K., Blackall, T., Smith, T. E. L., Blom, M., Coe, H., Gallagher, M., Ghalaieny, M., McGillen, M. R., Percival, C. J., Whitehead, J. D., Ellis, R., Murphy, J., Mohacsi, A., Pogany, A., Junninen, H., Rantanen, S., Sutton, M. A., and Nemitz, E.: Field inter-comparison of eleven atmospheric ammonia measurement techniques, Atmos. Meas. Tech., 3, 91–112, https://doi.org/10.5194/amt-3-91-2010, 2010.
Wang-Li, L., Li, Q.-F., Chai, L., Cortus, E. L., Wang, K., Kilic, I., Bogan, B. W.,
Ni, J.-Q., and Heber, A. J.: The national air emissions monitoring study's
Southeast Layer Site: Part III, Ammonia concentrations and emissions, T.
ASABE, 56, 1185–1197, https://doi.org/10.13031/trans.56.9673, 2013.
Yuan, B., Koss, A. R., Warneke, C., Coggon, M., Sekimoto, K., and de Gouw,
J. A.: Proton-Transfer-Reaction Mass Spectrometry: Applications in
Atmospheric Sciences, Chem. Rev., 117, 13187–13229,
https://doi.org/10.1021/acs.chemrev.7b00325, 2017.
Zhao, L., Hadlocon, L. J. S., Manuzon, R. B., Darr, M. J., Keener, H. M.,
Heber, A. J., and Ni, J.: Ammonia concentrations and emission rates at a
commercial poultry manure composting facility, Biosyst. Eng., 150, 69–78,
https://doi.org/10.1016/j.biosystemseng.2016.07.006, 2016.
Zhao, Y., Pan, Y., Rutherford, J., and Mitloehner, F. M.: Estimation of the
Interference in Multi-Gas Measurements Using Infrared Photoacoustic
Analyzers, Atmos., 3, 246–265,
https://doi.org/10.3390/atmos3020246, 2012.