Articles | Volume 14, issue 5
https://doi.org/10.5194/amt-14-3707-2021
https://doi.org/10.5194/amt-14-3707-2021
Research article
 | 
21 May 2021
Research article |  | 21 May 2021

Modeled source apportionment of black carbon particles coated with a light-scattering shell

Aki Virkkula

Related authors

Validation of cantilever-enhanced photoacoustic particle size-resolved light absorption measurement using nigrosin reference particles and Mie-modelling
Joel Kuula, Juho Karhu, Tommi Mikkonen, Patrick Grahn, Aki Virkkula, Hilkka Timonen, Tuomas Hieta, and Markku Vainio
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-26,https://doi.org/10.5194/ar-2024-26, 2024
Preprint under review for AR
Short summary
Field-deployable cantilever-enhanced photoacoustic instrument for aerosol light absorption measurement at three wavelengths
Juho Karhu, Tommi Mikkonen, Joel Kuula, Aki Virkkula, Erkki Ikonen, Markku Vainio, Hilkka Timonen, and Tuomas Hieta
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-25,https://doi.org/10.5194/ar-2024-25, 2024
Preprint under review for AR
Short summary
Multiple eco-regions contribute to the seasonal cycle of Antarctic aerosol size distributions
James Brean, David C. S. Beddows, Eija Asmi, Ari Virkkula, Lauriane L. J. Quéléver, Mikko Sipilä, Floortje Van Den Heuvel, Thomas Lachlan-Cope, Anna Jones, Markus Frey, Angelo Lupi, Jiyeon Park, Young Jun Yoon, Ralf Weller, Giselle L. Marincovich, Gabriela C. Mulena, Roy M. Harrison, and Manuel Dall´Osto
EGUsphere, https://doi.org/10.5194/egusphere-2024-987,https://doi.org/10.5194/egusphere-2024-987, 2024
Short summary
Applicability of small-scale black carbon sensors to explore high resolution spatial variability of ambient black carbon
Tapio Elomaa, Krista Luoma, Sami Harni, Aki Virkkula, Hilkka Timonen, and Tuukka Petäjä
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-12,https://doi.org/10.5194/ar-2024-12, 2024
Preprint under review for AR
Short summary
Contribution of brown carbon to light absorption in emissions of European residential biomass combustion appliances
Satish Basnet, Anni Hartikainen, Aki Virkkula, Pasi Yli-Pirilä, Miika Kortelainen, Heikki Suhonen, Laura Kilpeläinen, Mika Ihalainen, Sampsa Väätäinen, Juho Louhisalmi, Markus Somero, Jarkko Tissari, Gert Jakobi, Ralf Zimmermann, Antti Kilpeläinen, and Olli Sippula
Atmos. Chem. Phys., 24, 3197–3215, https://doi.org/10.5194/acp-24-3197-2024,https://doi.org/10.5194/acp-24-3197-2024, 2024
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Spatial analysis of PM2.5 using a concentration similarity index applied to air quality sensor networks
Rósín Byrne, John C. Wenger, and Stig Hellebust
Atmos. Meas. Tech., 17, 5129–5146, https://doi.org/10.5194/amt-17-5129-2024,https://doi.org/10.5194/amt-17-5129-2024, 2024
Short summary
A novel probabilistic source apportionment approach: Bayesian auto-correlated matrix factorization
Anton Rusanen, Anton Björklund, Manousos I. Manousakas, Jianhui Jiang, Markku T. Kulmala, Kai Puolamäki, and Kaspar R. Daellenbach
Atmos. Meas. Tech., 17, 1251–1277, https://doi.org/10.5194/amt-17-1251-2024,https://doi.org/10.5194/amt-17-1251-2024, 2024
Short summary
Towards a hygroscopic growth calibration for low-cost PM2.5 sensors
Milan Y. Patel, Pietro F. Vannucci, Jinsol Kim, William M. Berelson, and Ronald C. Cohen
Atmos. Meas. Tech., 17, 1051–1060, https://doi.org/10.5194/amt-17-1051-2024,https://doi.org/10.5194/amt-17-1051-2024, 2024
Short summary
Enhancing characterization of organic nitrogen components in aerosols and droplets using high-resolution aerosol mass spectrometry
Xinlei Ge, Yele Sun, Justin Trousdell, Mindong Chen, and Qi Zhang
Atmos. Meas. Tech., 17, 423–439, https://doi.org/10.5194/amt-17-423-2024,https://doi.org/10.5194/amt-17-423-2024, 2024
Short summary
Machine learning approaches for automatic classification of single-particle mass spectrometry data
Guanzhong Wang, Heinrich Ruser, Julian Schade, Johannes Passig, Thomas Adam, Günther Dollinger, and Ralf Zimmermann
Atmos. Meas. Tech., 17, 299–313, https://doi.org/10.5194/amt-17-299-2024,https://doi.org/10.5194/amt-17-299-2024, 2024
Short summary

Cited articles

Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006. 
Arola, A., Schuster, G., Myhre, G., Kazadzis, S., Dey, S., and Tripathi, S. N.: Inferring absorbing organic carbon content from AERONET data, Atmos. Chem. Phys., 11, 215–225, https://doi.org/10.5194/acp-11-215-2011, 2011. 
Bergstrom, R. W., Pilewskie, P., Russell, P. B., Redemann, J., Bond, T. C., Quinn, P. K., and Sierau, B.: Spectral absorption properties of atmospheric aerosols, Atmos. Chem. Phys., 7, 5937–5943, https://doi.org/10.5194/acp-7-5937-2007, 2007. 
Bond, T. C. and Bergstrom, R. W.: Light Absorption by Carbonaceous Particles: An Investigative Review, Aerosol Sci. Technol., 40, 27–67, 2006. 
Download
Short summary
The Aethalometer model is used widely for estimating the contributions of fossil fuel emissions and biomass burning to black carbon. The calculation is based on measured absorption Ångström exponents, which is ambiguous since it not only depends on the dominant absorber but also on the size and internal structure of the particles, core size, and shell thickness. The uncertainties of the fractions of absorption by eBC from fossil fuel and biomass burning are evaluated with a core–shell Mie model.