Articles | Volume 14, issue 6
https://doi.org/10.5194/amt-14-4375-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-4375-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new lidar design for operational atmospheric wind and cloud/aerosol survey from space
Didier Bruneau
CORRESPONDING AUTHOR
LATMOS/IPSL, Sorbonne Université, UVSQ, CNRS, Paris, France
Jacques Pelon
LATMOS/IPSL, Sorbonne Université, UVSQ, CNRS, Paris, France
Related authors
No articles found.
Gérard Ancellet, Camille Viatte, Anne Boynard, François Ravetta, Jacques Pelon, Cristelle Cailteau-Fischbach, Pascal Genau, Julie Capo, Axel Roy, and Philippe Nédélec
Atmos. Chem. Phys., 24, 12963–12983, https://doi.org/10.5194/acp-24-12963-2024, https://doi.org/10.5194/acp-24-12963-2024, 2024
Short summary
Short summary
Characterization of ozone pollution in urban areas benefited from a measurement campaign in summer 2022 in the Paris region. The analysis is based on 21 d of lidar and aircraft observations. The main objective is an analysis of the sensitivity of ozone pollution to the micrometeorological processes in the urban atmospheric boundary layer and the transport of regional pollution. The paper also discusses to what extent satellite observations can track observed ozone plumes.
Thomas Lesigne, François Ravetta, Aurélien Podglajen, Vincent Mariage, and Jacques Pelon
Atmos. Chem. Phys., 24, 5935–5952, https://doi.org/10.5194/acp-24-5935-2024, https://doi.org/10.5194/acp-24-5935-2024, 2024
Short summary
Short summary
Upper tropical clouds have a strong impact on Earth's climate but are challenging to observe. We report the first long-duration observations of tropical clouds from lidars flying on board stratospheric balloons. Comparisons with spaceborne observations reveal the enhanced sensitivity of balloon-borne lidar to optically thin cirrus. These clouds, which have a significant coverage and lie in the uppermost troposphere, are linked with the dehydration of air masses on their way to the stratosphere.
Meryl Wimmer, Gwendal Rivière, Philippe Arbogast, Jean-Marcel Piriou, Julien Delanoë, Carole Labadie, Quitterie Cazenave, and Jacques Pelon
Weather Clim. Dynam., 3, 863–882, https://doi.org/10.5194/wcd-3-863-2022, https://doi.org/10.5194/wcd-3-863-2022, 2022
Short summary
Short summary
The effect of deep convection representation on the jet stream above the cold front of an extratropical cyclone is investigated in the global numerical weather prediction model ARPEGE. Two simulations using different deep convection schemes are compared with (re)analysis datasets and NAWDEX airborne observations. A deeper jet stream is observed with the less active scheme. The diabatic origin of this difference is interpreted by backward Lagrangian trajectories and potential vorticity budgets.
Thibault Vaillant de Guélis, Gérard Ancellet, Anne Garnier, Laurent C.-Labonnote, Jacques Pelon, Mark A. Vaughan, Zhaoyan Liu, and David M. Winker
Atmos. Meas. Tech., 15, 1931–1956, https://doi.org/10.5194/amt-15-1931-2022, https://doi.org/10.5194/amt-15-1931-2022, 2022
Short summary
Short summary
A new IIR-based cloud and aerosol discrimination (CAD) algorithm is developed using the IIR brightness temperature differences for cloud and aerosol features confidently identified by the CALIOP version 4 CAD algorithm. IIR classifications agree with the majority of V4 cloud identifications, reduce the ambiguity in a notable fraction of
not confidentV4 cloud classifications, and correct a few V4 misclassifications of cloud layers identified as dense dust or elevated smoke layers by CALIOP.
Lilian Loyer, Jean-Christophe Raut, Claudia Di Biagio, Julia Maillard, Vincent Mariage, and Jacques Pelon
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-326, https://doi.org/10.5194/amt-2021-326, 2021
Revised manuscript not accepted
Short summary
Short summary
The Arctic is facing drastic climate changes, and more observations are needed to better understand what is happening. Unfortunately observations are limited in the High Arctic. To obtain more observations, multiples buoys equipped with lidar, have been deployed in this region. This paper presents an approach to estimate the optical properties of clouds, and solar plus terrestrial energies from lidar measurements in the Arctic.
Gwendal Rivière, Meryl Wimmer, Philippe Arbogast, Jean-Marcel Piriou, Julien Delanoë, Carole Labadie, Quitterie Cazenave, and Jacques Pelon
Weather Clim. Dynam., 2, 1011–1031, https://doi.org/10.5194/wcd-2-1011-2021, https://doi.org/10.5194/wcd-2-1011-2021, 2021
Short summary
Short summary
Inacurracies in representing processes occurring at spatial scales smaller than the grid scales of the weather forecast models are important sources of forecast errors. This is the case of deep convection representation in models with 10 km grid spacing. We performed simulations of a real extratropical cyclone using a model with different representations of deep convection. These forecasts lead to different behaviors in the ascending air masses of the cyclone and the jet stream aloft.
Anne Garnier, Jacques Pelon, Nicolas Pascal, Mark A. Vaughan, Philippe Dubuisson, Ping Yang, and David L. Mitchell
Atmos. Meas. Tech., 14, 3253–3276, https://doi.org/10.5194/amt-14-3253-2021, https://doi.org/10.5194/amt-14-3253-2021, 2021
Short summary
Short summary
The IIR Level 2 data products include cloud effective emissivities and cloud microphysical properties such as effective diameter (De) and ice or liquid water path estimates. This paper (Part I) describes the improvements in the V4 algorithms compared to those used in the version 3 (V3) release, while results are presented in a companion paper (Part II).
Anne Garnier, Jacques Pelon, Nicolas Pascal, Mark A. Vaughan, Philippe Dubuisson, Ping Yang, and David L. Mitchell
Atmos. Meas. Tech., 14, 3277–3299, https://doi.org/10.5194/amt-14-3277-2021, https://doi.org/10.5194/amt-14-3277-2021, 2021
Short summary
Short summary
The IIR Level 2 data products include cloud effective emissivities and cloud microphysical properties such as effective diameter (De) and ice or liquid water path estimates. This paper (Part II) shows retrievals over ocean and describes the improvements made with respect to version 3 as a result of the significant changes implemented in the version 4 algorithms, which are presented in a companion paper (Part I).
David L. A. Flack, Gwendal Rivière, Ionela Musat, Romain Roehrig, Sandrine Bony, Julien Delanoë, Quitterie Cazenave, and Jacques Pelon
Weather Clim. Dynam., 2, 233–253, https://doi.org/10.5194/wcd-2-233-2021, https://doi.org/10.5194/wcd-2-233-2021, 2021
Short summary
Short summary
The representation of an extratropical cyclone in simulations of two climate models is studied by comparing them to observations of the international field campaign NAWDEX. We show that the current resolution used to run climate model projections (more than 100 km) is not enough to represent the life cycle accurately, but the use of 50 km resolution is good enough. Despite these encouraging results, cloud properties (partitioning liquid and solid) are found to be far from the observations.
Julia Maillard, François Ravetta, Jean-Christophe Raut, Vincent Mariage, and Jacques Pelon
Atmos. Chem. Phys., 21, 4079–4101, https://doi.org/10.5194/acp-21-4079-2021, https://doi.org/10.5194/acp-21-4079-2021, 2021
Short summary
Short summary
Clouds remain a major source of uncertainty in understanding the Arctic climate, due in part to the lack of measurements over the sea ice. In this paper, we exploit a series of lidar profiles acquired from autonomous drifting buoys deployed in the Arctic Ocean and derive a statistic of low cloud frequency and macrophysical properties. We also show that clouds contribute to warm the surface in the shoulder seasons but not significantly from May to September.
Setigui Aboubacar Keita, Eric Girard, Jean-Christophe Raut, Maud Leriche, Jean-Pierre Blanchet, Jacques Pelon, Tatsuo Onishi, and Ana Cirisan
Geosci. Model Dev., 13, 5737–5755, https://doi.org/10.5194/gmd-13-5737-2020, https://doi.org/10.5194/gmd-13-5737-2020, 2020
Cited articles
ASAG: Aeolus Science Advisory Group recommendations for operational
Doppler Wind Lidar (DWL) observation requirements in the 2030–2040
timeframe, v1.1, EOPSM-AEOL-TN-3695, 128 pp., 2020.
Baker, W. E., Emmitt, G. D., Robertson, F., Atlas, R. M., Molinari, J. E.,
Bowdle, D. A., Peagle, J., Hardesty, R. M., Menzies, R. T., Krishnamurti, T. N., Brown, R. A., Post, M. J., Anderson, J. A., Lorenc, A. C., and McElroy, J. E.: Lidar-Measured winds from Space: A key component for weather and climate prediction, B. Am. Meteorol. Soc., 76, 869–888, 1995.
Baker, W. E., Atlas, R., Cardinali, C., Clement, A., Emmitt, G. D., Gentry,
B. M., Hardesty, R. M., Källén, E., Kavaya, M. J., Langland, R., Ma,
Z., Masutani, M., McCarty, W., Pierce, R. B., Pu, Z., Riishojgaard, L P.,
Ryan, J., Tucker, S., Weissmann, M., and Yoe, J. G.: Lidar-Measured Wind
Profiles: The Missing Link in the Global Observing System, B. Am. Meteorol. Soc., 95, 543–564, https://doi.org/10.1175/BAMS-D-12-00164.1, 2014.
Bruneau, D.: Mach-Zehnder interferometer as a spectral analyzer for molecular
Doppler wind lidar, Appl. Optics, 40, 391–399, 2001.
Bruneau, D.: Fringe-imaging Mach-Zehnder interferometer as a spectral
analyser for molecular Doppler wind lidar, Appl. Optics, 41, 503–510, 2002.
Bruneau, D. and Pelon, J.: Simultaneous measurements of particle backscatter
and extinction coefficients and wind velocity by lidar with a Mach–Zehnder
interferometer: principle of operation and performance assessment, Appl.
Optics, 42, 1101–1114, 2003.
Bruneau, D., Garnier, A., Hertzog, A., and Porteneuve, J.: Wind-velocity lidar measurements by use of a Mach-Zehnder interferometer, comparison with a
Fabry-Perot interferometer, Appl. Optics, 43, 173–182, 2004.
Bruneau, D., Pelon, J., Blouzon, F., Spatazza, J., Genau, P., Buchholtz, G.,
Amarouche, N., Abchiche, A., and Aouji, O.: 355 nm high spectral resolution
airborne lidar LNG: system description and first results, Appl. Optics, 54,
8776–8785, 2015.
Burton, S. P., Ferrare, R. A., Hostetler, C. A., Hair, J. W., Rogers, R. R., Obland, M. D., Butler, C. F., Cook, A. L., Harper, D. B., and Froyd, K. D.: Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples, Atmos. Meas. Tech., 5, 73–98, https://doi.org/10.5194/amt-5-73-2012, 2012.
Cazenave, Q., Pelon, J., Delanoë, J., Collomb, H., and Blouzon, F.:
Contribution to the CAL/VAL of the Aeolus mission using 355 nm HSR Doppler
Lidar and 95 GHz Doppler cloud radar, Aeolus CAL/VAL workshop, March 26-29,
2019, Frascatti, 2019.
Cézard, N., Dolfi-Bouteyre, A., Huignard, J.-P., and Flamant, P. H.:
Performance evaluation of a dual fringe-imaging Michelson interferometer for
air parameter measurements with a 355 nm Rayleigh-Mie lidar”, Appl. Optics, 48, 2321–2332, 2009.
Chanin, M.-L., Garnier, A., Hauchecorne, A., and Porteneuve, J.: A Doppler LIDAR for measuring winds in the middle atmosphere, Geophys. Res. Let., 16,
1273–1276, 1989.
Cheng, Z., Liu, D., Luo, J., Yang, Y., Zhou, Y., Zhang, Y., Duan, L., Su, L., Yang, L., Shen, Y., Wang, K., and Bai, J.: Field-widened Michelson Interferometer for spectral discrimination in high-spectral resolution lidar: theoretical framework, Opt. Express, 23, 12117–12134, 2015.
Dabas, A., Denneulin, M., Flamant, P., Loth, C., Garnier, A., and
Dolfi-Bouteyre, A.: Correcting winds measured with a Rayleigh Doppler lidar
from pressure and temperature effects, Tellus A, 60, 206–215, 2008.
Delanoë, J., Protat, A., Jourdan, O., Pelon, J., Papazzoni, M., Dupuy, R., Gayet, J., and Jouan, C.: Comparison of airborne in-situ, airborne radar-lidar, and spaceborne radar-lidar retrievals of polar ice cloud properties sampled during the POLARCAT campaign, J. Atmos. Ocean. Tech., 30, 57–73, https://doi.org/10.1175/JTECH-D-11-00200.1, 2012.
Eloranta, E. W., Razenkov, I. A., Hedrick, J., and Garcia, J. P.: The Design and Construction of an Airborne High Spectral Resolution Lidar, in: 2008 IEEE Aerospace Conference, 1–8 March 2008, Big Sky, MT, 1–6, https://doi.org/10.1109/AERO.2008.4526390, 2008.
ESA: The Four Candidate Earth Explorer Core Missions – Atmospheric Dynamics, edited by: Battrick, B., publication SP-1233 (4), 157 pp., ISBN 92-9092-528-0, 1999.
ESA: Aeolus-ESA-Portal-mission, available at: https://earth.esa.int/web/eoportal/satellite-missions/a/adm-aeolus (last access: 1 June 2021), 2002.
ESA: ADM-Aeolus science report, edited by: Clissold, P., European Space Agency, Rep. ESA SP-1311, 121 pp., 2008.
ESA: Atmospheric Dynamics Mission, ADM-Aeolus, Mission Requirements Document, ESA, AE-RP-ESA-SY-001 EOP-SM/2047, Issue 2, 57 pp., 2016.
ESA: Aeolus-ESA-Portal-forecast, available at: https://www.esa.int/Applications/Observing_the_Earth/Aeolus/Aeolus_winds_now_in_daily_weather_forecasts (last access: 1 June 2021), 2020.
Esselborn, M., Wirth, M., Fix, A., Tesche, M., and Ehret, G.: Airborne high
spectral resolution lidar for measuring aerosol extinction and backscatter
coefficients, Appl. Optics, 47, 346–358, https://doi.org/10.1364/AO.47.000346, 2008.
Flamant, P., Cuesta, J., Denneulin, M.-L., Dabas, A., and Huber D.: ADM-Aeolus retrieval algorithms for aerosol and cloud products, Tellus A, 60, 273–286, 2008.
Frehlich, R., Hannon, S., and Henderson, S.: Coherent Doppler lidar measurements of wind field statistics, Bound.-Lay. Meteor., 86, 223–256, 1998.
Garnier, A.: Etude, développement et premiers résultats d'un nouveau
LIDAR Doppler destiné à la mesure des vents dans la moyenne
atmosphère, PhD thesis, University Paris XI, Orsay, France, 1990 (in French).
Garnier, A. and Chanin, M.-L.: Description of a Doppler Rayleigh lidar for
measuring winds in the middle atmosphere, Appl. Phys. B, 55, 35–40, 1992.
Geiss, A., Lehmann, V., Leinweber, R., Martin, A., and Weissmann, M.: Validation of Aeolus Observations by means of co-located reference measurements, in: Aeolus CAL.VAL & Science Workshop, Frascatti, 26–29 March 2019, ESA-ESRIN, 2019.
Grund, C. J., Howell, J., Pierce, R., and Stephens, M.: Optical autocovariance direct detection lidar for simultaneous wind, aerosol, and chemistry profiling from ground, air, and space platforms, SPIE Defense & Security Sensing Symposium, conference on Advanced Environmental, Chemical, and Biological Sensing Technologies VI, Paper 7312-37, Orlando, Florida, United Sates, 2009.
Hair, J. W., Hostetler, C. A., Cook, A. L., Harper, D. B., Ferrare, R. A.,
Mack, T. L., Welch, W., Izquierdo, L. R., and Hovis, F. E.: Airborne
high-spectral-resolution lidar for profiling aerosol optical profiles, Appl.
Optics, 47, 6734–6752, 2008.
Hélière, A., Gelsthorpe, R., Le Hors, L., and Toulemont, Y.: ATLID, the atmospheric lidar on board the Earthcare Satellite, International
Conference on Space Optics 2012 Proc. SPIE Vol 10564, ESA and CNES, Ajaccio, Corsica, France, 2012.
Herbst, J. and Vrancken, P.: Design of a Monolithic Michelson interferometer
for Fringe-Imaging in a Near-Field, UV, Direct Detection Doppler Wind Lidar,
Appl. Optics, 55, 6910–6929, 2016.
Illingworth, A. J., Barker, H. W., Beljaars, A., Ceccaldi, M., Chepfer, H.,
Clerbaux, N., Cole, J., Delanoë, J., Domenech, C., Donovan, D. P., Fukuda, S., Hirakata, M., Hogan, R. J., Huenerbein, A., Kollias, P., Kubota, T., Nakajima, T., Nakajima, T. Y., Nishizawa, T., Ohno, Y., Okamoto, H., Oki, R., Sato, K., Satoh, M., Shephard, M. W., Velázquez-Blázquez, A., Wandinger, U., Wehr, T., and van Zadelhoff, G. J.: The EarthCare satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation, B. Am. Meteorol. Soc., 96, 1311–1332, https://doi.org/10.1175/BAMS-D-12-00227.1, 2015.
LAWS (Lidar Atmospheric Wind Sounder): Instrument Panel Report, NASA, Washington DC, vol. IIg, 55 p., 1987.
Liu, D., Hostetler, C., Miller, I., Cook, A., and Hair, J.: System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar, Opt. Exp., 20, 1406–1420, 2012.
Lux, O., Lemmerz, C., Weiler, F., Marksteiner, U., Witschas, B., Rahm, S., Geiß, A., and Reitebuch, O.: Intercomparison of wind observations from the European Space Agency's Aeolus satellite mission and the ALADIN Airborne Demonstrator, Atmos. Meas. Tech., 13, 2075–2097, https://doi.org/10.5194/amt-13-2075-2020, 2020.
Ma, C., Wang, T., Jiang, Z., Wu, H., Zhao, M., Zhuang, B., Li, S., Xie, M., Li, M., Liu, J., and Wu, R.: Importance of bias correction in data assimilation of multiple observations over eastern China using WRF-Chem/DART, J. Geophys. Res.-Atmos., 125, e2019JD031465, https://doi.org/10.1029/2019JD031465, 2019.
McCormick, M. P., Winker, D. M., Browell, E.V., Coakley, J. A., Gardner, C.
S., Hoff, R. M., Kent, G. S., Melfi, S. H, Menzies, R. T., Platt, C. M.,
Randall, D. A., and Reagan, J. A.: Scientific Investigations Planned for the
Lidar In-Space Technology Experiment (LITE), B. Am. Meteorol. Soc., 74,
205–214, https://doi.org/10.1175/1520-0477(1993)074<0205:SIPFTL>2.0.CO;2, 1993.
Martin, A., Weissmann, M., Reitebuch, O., Rennie, M., Geiß, A., and Cress, A.: Validation of Aeolus winds using radiosonde observations and numerical weather prediction model equivalents, Atmos. Meas. Tech., 14, 2167–2183, https://doi.org/10.5194/amt-14-2167-2021, 2021.
Mioche, G., Josset, D., Gayet, J.-F., Pelon, J., Garnier, A., Minikin, A., and Schwarzenboeck, A.: Validation of the CALIPSO/CALIOP extinction coefficients from in situ observations in mid-latitude cirrus clouds during CIRCLE-2 experiment, J. Geophys. Res., 115, D00H25, https://doi.org/10.1029/2009JD012376, 2010.
Müller, D., Hostetler, C. A., Ferrare, R. A., Burton, S. P., Chemyakin, E., Kolgotin, A., Hair, J. W., Cook, A. L., Harper, D. B., Rogers, R. R., Hare, R. W., Cleckner, C. S., Obland, M. D., Tomlinson, J., Berg, L. K., and Schmid, B.: Airborne Multiwavelength High Spectral Resolution Lidar (HSRL-2) observations during TCAP 2012: vertical profiles of optical and microphysical properties of a smoke/urban haze plume over the northeastern coast of the US, Atmos. Meas. Tech., 7, 3487–3496, https://doi.org/10.5194/amt-7-3487-2014, 2014.
National Academies of Sciences, Engineering, and Medicine: Thriving on Our
Changing Planet: A Decadal Strategy for Earth Observation from Space, The
National Academies Press, Washington, DC, https://doi.org/10.17226/24938, 2018.
Paffrath, U.: Performance assessment of the Aeolus Doppler wind lidar
prototype, D-Ing dissertation, Technische Universität München and DLR Forschungsbericht, Munich, 2006.
Reitebuch, O., Lemmerz, C., Nagel, E., Paffrath, U., Durand, Y., Endemann,
M., Fabre, F., and Chaloupy, M.: The airborne demonstrator for the
direct-detection Doppler wind lidar ALADIN on ADM-Aeolus, 2009: I.
Instrument design and comparison to satellite instrument, J. Atmos. Ocean.
Tech., 26, 2501–2515, 2009.
Reitebuch, O., Lemmerz, C., Mux, O., Markensteiner, U., Schmidt, K., Huber, D., Nicolaus, I., Dabas, A., Flament, T., Rennie, M., and Kanitz, T.: ALADIN's radiometric and frequency performance, Aeolus CAL.VAL & Science Workshop, Frascatti, ESA-ESRIN, 26–29 March 2019.
Reitebuch, O., Lemmerz, C., Lux, O., Marksteiner, U., Rahm, S., Weiler, F., Witschas, B., Meringer, M., Schmidt, K., Huber, D., Nikolaus, I., Geiss, A., Vaughan, M., Dabas, A., Flament, T., Stieglitz, H., Isaksen, L., Rennie, M., de Kloe, J., Marseille, G.-J., Stoffelen, A., Wernham, D., Kanitz, T., Straume, A.-G., Fehr, T., von Bismarck, J., Floberghagen, R., and Parrinello, T.: Initial Assessment of the performance of the first wind lidar in space on Aeolus, ILRC29, EPJ Web Conf., 237, 01010, https://doi.org/10.1051/epjconf/202023701010, 2020.
Rennie, M. and Isaksen, L.: Use of Aeolus observations at ECMWF, ECMWF
Newsletter No. 163, 4–5, available at: https://www.ecmwf.int/en/elibrary/19508-newsletter-no-163-spring-2020 (last access: 31 May 2021), 2020.
Shipley, S. T., Tracy, D. H., Eloranta, E. W., Trauger, J. T., Sroga, J. T., Roesler, F. L., and Weinman, J. A.: High spectral resolution lidar to measure
optical scattering properties of atmospheric aerosols. 1: Theory and
instrumentation, Appl. Optics, 22, 3716–3724, 1983.
Smith, J. A and Chu, X.: Investigation of a field-widened Mach–Zehnder
receiver to extend Fe Doppler lidar wind measurements from the thermosphere
to the ground, Appl. Optics, 55, 1366–1380, https://doi.org/10.1364/AO.55.001366, 2016.
Souprayen, C., Garnier, A., and Hertzog, A.: Rayleigh-Mie Doppler wind lidar
for stratospheric measurements II: Impact of Mie scattering, theory and
calibration, Appl. Optics, 38, 2422–2431, 1999b.
Sroga, J. T., Eloranta, E. W., Shipley, S. T., Roesler, F. L., and Tryon, P. J.: High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis, Appl. Optics, 22, 3725–3732, 1983.
Stephens G., Winker, D., Pelon, J., Trepte, C., Vane, D., Yuhas, C.,
L'Ecuyer, T., and Lebsock, M.: CloudSat and CALIPSO within the A-Train: Ten
years of actively observing the Earth system, B. Am. Meteorol. Soc., 99, 569–581, https://doi.org/10.1175/BAMS-D-16-0324.1, 2018.
Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang, Z., Illingworth, A. J., O'Connor, E. J., Rossow, W. B., Durden, S. L., Miller, S. D., Austin, R. T., Benedetti, A., Mitriscu, C., and the CloudSat Team: The CloudSat mission and the A-train: A new dimension of spacebased observations of clouds and precipitation, B. Am. Meteorol. Soc., 83, 1771–1790, https://doi.org/10.1175/BAMS-83-12-1771, 2002.
Stoffelen, A., Pailleux, J., Källen, E., Vaughan, J. M., Isaksen, L.,
Flamant, P., Wergen, W., Andersson, E., Schyberg, H., Culoma, A., Meynart, R., Endemann, M., and Ingmann, P., The Atmospheric Dynamics Mission for global wind field measurement, B. Am. Meteorol. Soc., 86, 73–88,
https://doi.org/10.1175/BAMS-D-16-0324.1, 2005.
Stoffelen, A., Benedetti, A., Borde, R., Dabas, A., Flamant, P., Forsythe,
M., Hardesty, M., Isaksen, L., Källén, E., Körnich, H., Lee, T.,
Reitebuch, O., Rennie, M., Riishøjgaard, L.-P., Schyberg, H., Straume A.
G., and Vaughan, M.: Wind profile satellite observation requirements and
capabilities, B. Am. Meteorol. Soc., 101, 2005–2021,
https://doi.org/10.1175/BAMS-D-18-0202.1, 2020.
Tenti, G., Boley, C., and Desai, R.: On the kinetic model description of
Rayleigh-Brillouin scattering from molecular gases, Can. J. Phys., 52,
285–290, 1974.
Tucker, S., Walters, B., Applegate, J., and Springer, C.: The Nested-OAWL
approach to full tropospheric wind measurements: building on Aeolus and
CALIPSO for future operational wind missions, Aeolus CAL.VAL & Science
Workshop, Frascatti, ESA-ESRIN, 26–29 March 2019.
Tucker, S., Walters, B., Applegate, J., and Springer, C.: The Nested-OAWL
approach to full tropospheric wind measurements: building on Aeolus and
CALIPSO for future operational wind missions, Aeolus CAL.VAL & Science
Workshop, Frascatti, ESA-ESRIN, 2–6 November 2020.
Tucker, S. C., Weimer, C. S., Baidar, S., and Hardesty, R. M.: The Optical
Autocovariance Wind Lidar. Part I: OAWL Instrument Development and
Demonstration, J. Atmos. Ocean. Tech., 35, 2079–2097,
https://doi.org/10.1175/JTECH-D-18-0024.1, 2018.
Vaughan, J. M., Geddes, N. J., Flamant, P. H., and Flesia C.: Establishment of a backscatter coefficient and atmospheric database, ESA contract
12510/97/NL/RE, 110 pp., 1998.
Weiler, F., Kanitz, T., Huber, D., and Reitebuch, O.: Aeolus dark current and
hot pixels, Aeolus CAL.VAL & Science Workshop, Frascatti, ESA-ESRIN,
26–29 March 2019.
Winker, D. M., Pelon, J., Coakley Jr., J. A., Ackerman, S. A., Charlson, R. J., Colarco, P. R., Flamant P., Fu, Q., Hoff, R. M., Kittaka, C., Kubar, T. L., Le Treut H., McCormick, P., Mégie, G., Poole, L., Powell, K., Trepte, C., Vaughan, M. A., and Wielicki, B. A.: The CALIPSO Mission: A global 3D view of aerosols and clouds, B. Am. Meteorol. Soc., 91, 1211–1229, https://doi.org/10.1175/2010BAMS3009.1, 2010.
Witschas, B., Vieitez, M. O., van Duijn, E.-J., Reitebuch, O., van de Water,
W., and Ubachs, W.: Spontaneous Rayleigh–Brillouin scattering of
ultraviolet light in nitrogen, dry air, and moist air, Appl. Optics, 49,
4217–4227, 2010.
Witschas, B., Lemmerz, C., Geiß, A., Lux, O., Marksteiner, U., Rahm, S., Reitebuch, O., and Weiler, F.: First validation of Aeolus wind observations by airborne Doppler wind lidar measurements, Atmos. Meas. Tech., 13, 2381–2396, https://doi.org/10.5194/amt-13-2381-2020, 2020.
WMO: Guide to meteorological instruments and methods of observation, 6th edn., WMO-8, 681 pp., 1996.
WMO: WIGOS: WMO Integrated Global Observing System; Final report of the
Fifth WMO Workshop on the Impact of Various Observing Systems on Numerical
Weather Prediction, WMO Tech. Rep. 2012-1, 23 pp., 2012.
Young, S. A.,: Lidar analysis of lidar backscatter profiles in optically thin
clouds, Appl. Optics, 34, 7019–7031, 1995.
Young, S. A. and Vaughan, M. A.: The retrieval of profiles of particulate
extinction from Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description, J. Atmos. Ocean. Tech.,
26, 1105–1119, https://doi.org/10.1175/2008JTECHA1221.1, 2009.
Zhai, X., Marksteiner, U., Weiler, F., Lemmerz, C., Lux, O., Witschas, B., and Reitebuch, O.: Rayleigh wind retrieval for the ALADIN airborne demonstrator of the Aeolus mission using simulated response calibration, Atmos. Meas. Tech., 13, 445–465, https://doi.org/10.5194/amt-13-445-2020,
2020.
Short summary
Taking advantage of Aeolus success and of our airborne lidar system expertise, we present a new spaceborne wind lidar design for operational Aeolus follow-on missions, keeping most of the initial lidar system but relying on a single Mach–Zehnder interferometer to relax operational constraints and reduce measurement bias. System parameters are optimized. Random and systematic errors are shown to be compliant with the initial mission requirements. In addition, the system allows unbiased retrieval.
Taking advantage of Aeolus success and of our airborne lidar system expertise, we present a new...