Articles | Volume 14, issue 8
https://doi.org/10.5194/amt-14-5859-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-5859-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Validation of a new cavity ring-down spectrometer for measuring tropospheric gaseous hydrogen chloride
Teles C. Furlani
Department of Chemistry, York University, Toronto, ON, Canada
Patrick R. Veres
NOAA Chemical Sciences Laboratory, Boulder, CO, USA
Kathryn E. R. Dawe
Department of Chemistry, Memorial University of Newfoundland, St.
John's, NL, Canada
now at: SEM Ltd., St. John's, NL, Canada
J. Andrew Neuman
NOAA Chemical Sciences Laboratory, Boulder, CO, USA
Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, CO, USA
Steven S. Brown
NOAA Chemical Sciences Laboratory, Boulder, CO, USA
Department of Chemistry, University of Colorado, Boulder, CO, USA
Trevor C. VandenBoer
Department of Chemistry, York University, Toronto, ON, Canada
Department of Chemistry, York University, Toronto, ON, Canada
Related authors
Teles C. Furlani, RenXi Ye, Jordan Stewart, Leigh R. Crilley, Peter M. Edwards, Tara F. Kahan, and Cora J. Young
Atmos. Meas. Tech., 16, 181–193, https://doi.org/10.5194/amt-16-181-2023, https://doi.org/10.5194/amt-16-181-2023, 2023
Short summary
Short summary
This study describes a new technique to measure total gaseous chlorine, which is the sum of gas-phase chlorine-containing chemicals. The method converts any chlorine-containing molecule to hydrogen chloride that can be detected in real time using a cavity ring-down spectrometer. The new method was validated through laboratory experiments, as well as by making measurements of ambient outdoor air and indoor air during cleaning with a chlorine-based cleaner.
Melodie Lao, Leigh R. Crilley, Leyla Salehpoor, Teles C. Furlani, Ilann Bourgeois, J. Andrew Neuman, Andrew W. Rollins, Patrick R. Veres, Rebecca A. Washenfelder, Caroline C. Womack, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech., 13, 5873–5890, https://doi.org/10.5194/amt-13-5873-2020, https://doi.org/10.5194/amt-13-5873-2020, 2020
Short summary
Short summary
Nitrous acid (HONO) is a key intermediate in the generation of oxidants and fate of nitrogen oxides in the atmosphere. High-purity calibration sources that produce stable atmospherically relevant levels under field conditions have not been made to date, reducing measurement accuracy. In this study a simple salt-coated tube humidified with water vapor is demonstrated to produce pure stable low levels of HONO, with modifications allowing the generation of higher amounts.
John W. Halfacre, Lewis Marden, Marvin D. Shaw, Lucy J. Carpenter, Emily Matthews, Thomas J. Bannan, Hugh Coe, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Tara I. Yacovitch, Patrick R. Veres, Michael A. Robinson, Steven S. Brown, and Pete M. Edwards
Atmos. Meas. Tech., 18, 3799–3818, https://doi.org/10.5194/amt-18-3799-2025, https://doi.org/10.5194/amt-18-3799-2025, 2025
Short summary
Short summary
Nitryl chloride (ClNO2) is a reservoir of chlorine atoms and nitrogen oxides, both of which play important roles in atmospheric chemistry. However, all ambient ClNO2 observations so far have been made by a single technique, mass spectrometry, which needs complex calibrations. Here, we present a laser-based method that detects ClNO2 (TD-TILDAS – thermal dissociation–tunable infrared laser direct absorption spectrometry) without the need for complicated calibrations. The results show excellent agreement between these two methods from both laboratory and ambient samples.
Matthew James Rowlinson, Lucy J. Carpenter, Mat J. Evans, James D. Lee, Simone Andersen, Tomas Sherwen, Anna B. Callaghan, Roberto Sommariva, William Bloss, Siqi Hou, Leigh R. Crilley, Klaus Pfeilsticker, Benjamin Weyland, Thomas B. Ryerson, Patrick R. Veres, Pedro Campuzano-Jost, Hongyu Guo, Benjamin A. Nault, Jose L. Jimenez, and Khanneh Wadinga Fomba
EGUsphere, https://doi.org/10.5194/egusphere-2025-830, https://doi.org/10.5194/egusphere-2025-830, 2025
Short summary
Short summary
HONO is key to tropospheric chemistry. Observations show high HONO concentrations in remote air, possibly explained by nitrate aerosol photolysis. We use observational data to parameterize nitrate photolysis, evaluating simulated HONO against observations from multiple sources. We show improved agreement with observed HONO, but large overestimates in NOx and O3, beyond observational constraints. This implies a large uncertainty in the NOx budget and our understanding of atmospheric chemistry.
Hendrik Fuchs, Aaron Stainsby, Florian Berg, René Dubus, Michelle Färber, Andreas Hofzumahaus, Frank Holland, Kelvin H. Bates, Steven S. Brown, Matthew M. Coggon, Glenn S. Diskin, Georgios I. Gkatzelis, Christopher M. Jernigan, Jeff Peischl, Michael A. Robinson, Andrew W. Rollins, Nell B. Schafer, Rebecca H. Schwantes, Chelsea E. Stockwell, Patrick R. Veres, Carsten Warneke, Eleanor M. Waxman, Lu Xu, Kristen Zuraski, Andreas Wahner, and Anna Novelli
Atmos. Meas. Tech., 18, 881–895, https://doi.org/10.5194/amt-18-881-2025, https://doi.org/10.5194/amt-18-881-2025, 2025
Short summary
Short summary
Significant improvements have been made to the instruments used to measure OH reactivity, which is equivalent to the sum of air pollutant concentrations. Accurate and precise measurements with a high time resolution have been achieved, allowing use on aircraft, as demonstrated during flights in the USA.
Chelsea E. Stockwell, Matthew M. Coggon, Rebecca H. Schwantes, Colin Harkins, Bert Verreyken, Congmeng Lyu, Qindan Zhu, Lu Xu, Jessica B. Gilman, Aaron Lamplugh, Jeff Peischl, Michael A. Robinson, Patrick R. Veres, Meng Li, Andrew W. Rollins, Kristen Zuraski, Sunil Baidar, Shang Liu, Toshihiro Kuwayama, Steven S. Brown, Brian C. McDonald, and Carsten Warneke
Atmos. Chem. Phys., 25, 1121–1143, https://doi.org/10.5194/acp-25-1121-2025, https://doi.org/10.5194/acp-25-1121-2025, 2025
Short summary
Short summary
In urban areas, emissions from everyday products like paints, cleaners, and personal care products, along with non-traditional sources such as cooking, are increasingly important and impact air quality. This study uses a box model to evaluate how these emissions impact ozone in the Los Angeles Basin and quantifies the impact of gaseous cooking emissions. Accurate representation of these and other anthropogenic sources in inventories is crucial for informing effective air quality policies.
Fernando Chouza, Thierry Leblanc, Patrick Wang, Steven S. Brown, Kristen Zuraski, Wyndom Chace, Caroline C. Womack, Jeff Peischl, John Hair, Taylor Shingler, and John Sullivan
Atmos. Meas. Tech., 18, 405–419, https://doi.org/10.5194/amt-18-405-2025, https://doi.org/10.5194/amt-18-405-2025, 2025
Short summary
Short summary
The JPL lidar group developed the SMOL (Small Mobile Ozone Lidar), an affordable ozone differential absorption lidar (DIAL) system covering all altitudes from 200 m to 10 km a.g.l. The comparison with airborne in situ and lidar measurements shows very good agreement. An additional comparison with nearby surface ozone measuring instruments indicates unbiased measurements by the SMOL lidars down to 200 m a.g.l.
Zachary Finewax, Aparajeo Chattopadhyay, J. Andrew Neuman, James M. Roberts, and James B. Burkholder
Atmos. Meas. Tech., 17, 6865–6873, https://doi.org/10.5194/amt-17-6865-2024, https://doi.org/10.5194/amt-17-6865-2024, 2024
Short summary
Short summary
This work provides a comprehensive sensitivity calibration of a chemical ionization instrument commonly used in field measurements for the measurement of the toxic isomers methyl isocyanate and hydroxyacetonitrile that are found in the atmosphere. The results from this work have demonstrated that the hydroyacetonitrile isomer was observed in previous field studies rather than the stated identification of methyl isocyanate.
Brian L. Boys, Randall V. Martin, and Trevor C. VandenBoer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2994, https://doi.org/10.5194/egusphere-2024-2994, 2024
Short summary
Short summary
A widely used dry deposition parameterization for NO2 is updated by including a well-known heterogeneous hydrolysis reaction on deposition surfaces. This mechanistic update eliminates a large low bias of -80 % in simulated NO2 nocturnal deposition velocities evaluated against long-term eddy covariance flux observations over Harvard Forest. We highlight the importance of canopy surface area effects as well as soil NO emission in formulating and evaluating NO2 dry deposition parameterizations.
Andrew O. Langford, Raul J. Alvarez II, Kenneth C. Aikin, Sunil Baidar, W. Alan Brewer, Steven S. Brown, Matthew M. Coggan, Patrick D. Cullis, Jessica Gilman, Georgios I. Gkatzelis, Detlev Helmig, Bryan J. Johnson, K. Emma Knowland, Rajesh Kumar, Aaron D. Lamplugh, Audra McClure-Begley, Brandi J. McCarty, Ann M. Middlebrook, Gabriele Pfister, Jeff Peischl, Irina Petropavlovskikh, Pamela S. Rickley, Andrew W. Rollins, Scott P. Sandberg, Christoph J. Senff, and Carsten Warneke
EGUsphere, https://doi.org/10.5194/egusphere-2024-1938, https://doi.org/10.5194/egusphere-2024-1938, 2024
Preprint withdrawn
Short summary
Short summary
High ozone (O3) formed by reactions of nitrogen oxides (NOx) and volatile organic compounds (VOCs) can harm human health and welfare. High O3 is usually associated with hot summer days, but under certain conditions, high O3 can also form under winter conditions. In this study, we describe a high O3 event that occurred in Colorado during the COVID-19 quarantine that was caused in part by the decrease in traffic, and in part by a shallow inversion created by descent of stratospheric air.
Edward J. Strobach, Sunil Baidar, Brian J. Carroll, Steven S. Brown, Kristen Zuraski, Matthew Coggon, Chelsea E. Stockwell, Lu Xu, Yelena L. Pichugina, W. Alan Brewer, Carsten Warneke, Jeff Peischl, Jessica Gilman, Brandi McCarty, Maxwell Holloway, and Richard Marchbanks
Atmos. Chem. Phys., 24, 9277–9307, https://doi.org/10.5194/acp-24-9277-2024, https://doi.org/10.5194/acp-24-9277-2024, 2024
Short summary
Short summary
Large-scale weather patterns are isolated from local patterns to study the impact that different weather scales have on air quality measurements. While impacts from large-scale meteorology were evaluated by separating ozone (O3) exceedance (>70 ppb) and non-exceedance (<70 ppb) days, we developed a technique that allows direct comparisons of small temporal variations between chemical and dynamics measurements under rapid dynamical transitions.
Alessia A. Colussi, Daniel Persaud, Melodie Lao, Bryan K. Place, Rachel F. Hems, Susan E. Ziegler, Kate A. Edwards, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech., 17, 3697–3718, https://doi.org/10.5194/amt-17-3697-2024, https://doi.org/10.5194/amt-17-3697-2024, 2024
Short summary
Short summary
A new modular and affordable instrument was developed to automatically collect wet deposition continuously with an off-grid solar top-up power package. Monthly collections were performed across the Newfoundland and Labrador Boreal Ecosystem Latitudinal Transect of experimental forest sites from 2015 to 2016. The proof-of-concept systems were validated with baseline measurements of pH and conductivity and then applied to dissolved organic carbon as an analyte of emerging biogeochemical interest.
Qindan Zhu, Rebecca H. Schwantes, Matthew Coggon, Colin Harkins, Jordan Schnell, Jian He, Havala O. T. Pye, Meng Li, Barry Baker, Zachary Moon, Ravan Ahmadov, Eva Y. Pfannerstill, Bryan Place, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Carsten Warneke, Chelsea E. Stockwell, Lu Xu, Kristen Zuraski, Michael A. Robinson, J. Andrew Neuman, Patrick R. Veres, Jeff Peischl, Steven S. Brown, Allen H. Goldstein, Ronald C. Cohen, and Brian C. McDonald
Atmos. Chem. Phys., 24, 5265–5286, https://doi.org/10.5194/acp-24-5265-2024, https://doi.org/10.5194/acp-24-5265-2024, 2024
Short summary
Short summary
Volatile organic compounds (VOCs) fuel the production of air pollutants like ozone and particulate matter. The representation of VOC chemistry remains challenging due to its complexity in speciation and reactions. Here, we develop a chemical mechanism, RACM2B-VCP, that better represents VOC chemistry in urban areas such as Los Angeles. We also discuss the contribution of VOCs emitted from volatile chemical products and other anthropogenic sources to total VOC reactivity and O3.
James M. Roberts, Siyuan Wang, Patrick R. Veres, J. Andrew Neuman, Michael A. Robinson, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Hannah M. Allen, John D. Crounse, Paul O. Wennberg, Samuel R. Hall, Kirk Ullmann, Simone Meinardi, Isobel J. Simpson, and Donald Blake
Atmos. Chem. Phys., 24, 3421–3443, https://doi.org/10.5194/acp-24-3421-2024, https://doi.org/10.5194/acp-24-3421-2024, 2024
Short summary
Short summary
We measured cyanogen bromide (BrCN) in the troposphere for the first time. BrCN is a product of the same active bromine chemistry that destroys ozone and removes mercury in polar surface environments and is a previously unrecognized sink for active Br compounds. BrCN has an apparent lifetime against heterogeneous loss in the range 1–10 d, so it serves as a cumulative marker of Br-radical chemistry. Accounting for BrCN chemistry is an important part of understanding polar Br cycling.
Georgios I. Gkatzelis, Matthew M. Coggon, Chelsea E. Stockwell, Rebecca S. Hornbrook, Hannah Allen, Eric C. Apel, Megan M. Bela, Donald R. Blake, Ilann Bourgeois, Steven S. Brown, Pedro Campuzano-Jost, Jason M. St. Clair, James H. Crawford, John D. Crounse, Douglas A. Day, Joshua P. DiGangi, Glenn S. Diskin, Alan Fried, Jessica B. Gilman, Hongyu Guo, Johnathan W. Hair, Hannah S. Halliday, Thomas F. Hanisco, Reem Hannun, Alan Hills, L. Gregory Huey, Jose L. Jimenez, Joseph M. Katich, Aaron Lamplugh, Young Ro Lee, Jin Liao, Jakob Lindaas, Stuart A. McKeen, Tomas Mikoviny, Benjamin A. Nault, J. Andrew Neuman, John B. Nowak, Demetrios Pagonis, Jeff Peischl, Anne E. Perring, Felix Piel, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Thomas B. Ryerson, Melinda K. Schueneman, Rebecca H. Schwantes, Joshua P. Schwarz, Kanako Sekimoto, Vanessa Selimovic, Taylor Shingler, David J. Tanner, Laura Tomsche, Krystal T. Vasquez, Patrick R. Veres, Rebecca Washenfelder, Petter Weibring, Paul O. Wennberg, Armin Wisthaler, Glenn M. Wolfe, Caroline C. Womack, Lu Xu, Katherine Ball, Robert J. Yokelson, and Carsten Warneke
Atmos. Chem. Phys., 24, 929–956, https://doi.org/10.5194/acp-24-929-2024, https://doi.org/10.5194/acp-24-929-2024, 2024
Short summary
Short summary
This study reports emissions of gases and particles from wildfires. These emissions are related to chemical proxies that can be measured by satellite and incorporated into models to improve predictions of wildfire impacts on air quality and climate.
Lisa Azzarello, Rebecca A. Washenfelder, Michael A. Robinson, Alessandro Franchin, Caroline C. Womack, Christopher D. Holmes, Steven S. Brown, Ann Middlebrook, Tim Newberger, Colm Sweeney, and Cora J. Young
Atmos. Chem. Phys., 23, 15643–15654, https://doi.org/10.5194/acp-23-15643-2023, https://doi.org/10.5194/acp-23-15643-2023, 2023
Short summary
Short summary
We present a molecular size-resolved offline analysis of water-soluble brown carbon collected on an aircraft during FIREX-AQ. The smoke plumes were aged 0 to 5 h, where absorption was dominated by small molecular weight molecules, brown carbon absorption downwind did not consistently decrease, and the measurements differed from online absorption measurements of the same samples. We show how differences between online and offline absorption could be related to different measurement conditions.
John W. Halfacre, Jordan Stewart, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Tara I. Yacovitch, Michael Flynn, Stephen J. Andrews, Steven S. Brown, Patrick R. Veres, and Pete M. Edwards
Atmos. Meas. Tech., 16, 1407–1429, https://doi.org/10.5194/amt-16-1407-2023, https://doi.org/10.5194/amt-16-1407-2023, 2023
Short summary
Short summary
This study details a new sampling method for the optical detection of hydrogen chloride (HCl). HCl is an important atmospheric reservoir for chlorine atoms, which can affect nitrogen oxide cycling and the lifetimes of volatile organic compounds and ozone. However, HCl has a high affinity for interacting with surfaces, thereby preventing fast, quantitative measurements. The sampling technique in this study minimizes these surface interactions and provides a high-quality measurement of HCl.
Philip T. M. Carlsson, Luc Vereecken, Anna Novelli, François Bernard, Steven S. Brown, Bellamy Brownwood, Changmin Cho, John N. Crowley, Patrick Dewald, Peter M. Edwards, Nils Friedrich, Juliane L. Fry, Mattias Hallquist, Luisa Hantschke, Thorsten Hohaus, Sungah Kang, Jonathan Liebmann, Alfred W. Mayhew, Thomas Mentel, David Reimer, Franz Rohrer, Justin Shenolikar, Ralf Tillmann, Epameinondas Tsiligiannis, Rongrong Wu, Andreas Wahner, Astrid Kiendler-Scharr, and Hendrik Fuchs
Atmos. Chem. Phys., 23, 3147–3180, https://doi.org/10.5194/acp-23-3147-2023, https://doi.org/10.5194/acp-23-3147-2023, 2023
Short summary
Short summary
The investigation of the night-time oxidation of the most abundant hydrocarbon, isoprene, in chamber experiments shows the importance of reaction pathways leading to epoxy products, which could enhance particle formation, that have so far not been accounted for. The chemical lifetime of organic nitrates from isoprene is long enough for the majority to be further oxidized the next day by daytime oxidants.
Christopher E. Lawrence, Paul Casson, Richard Brandt, James J. Schwab, James E. Dukett, Phil Snyder, Elizabeth Yerger, Daniel Kelting, Trevor C. VandenBoer, and Sara Lance
Atmos. Chem. Phys., 23, 1619–1639, https://doi.org/10.5194/acp-23-1619-2023, https://doi.org/10.5194/acp-23-1619-2023, 2023
Short summary
Short summary
Atmospheric aqueous chemistry can have profound effects on our environment, as illustrated by historical data from Whiteface Mountain (WFM) that were critical for uncovering the process of acid rain. The current study updates the long-term trends in cloud water composition at WFM for the period 1994 to 2021. We highlight the emergence of a new chemical regime at WFM dominated by organics and ammonium, quite different from the highly acidic regime observed in the past but not necessarily
clean.
Teles C. Furlani, RenXi Ye, Jordan Stewart, Leigh R. Crilley, Peter M. Edwards, Tara F. Kahan, and Cora J. Young
Atmos. Meas. Tech., 16, 181–193, https://doi.org/10.5194/amt-16-181-2023, https://doi.org/10.5194/amt-16-181-2023, 2023
Short summary
Short summary
This study describes a new technique to measure total gaseous chlorine, which is the sum of gas-phase chlorine-containing chemicals. The method converts any chlorine-containing molecule to hydrogen chloride that can be detected in real time using a cavity ring-down spectrometer. The new method was validated through laboratory experiments, as well as by making measurements of ambient outdoor air and indoor air during cleaning with a chlorine-based cleaner.
Lu Xu, Matthew M. Coggon, Chelsea E. Stockwell, Jessica B. Gilman, Michael A. Robinson, Martin Breitenlechner, Aaron Lamplugh, John D. Crounse, Paul O. Wennberg, J. Andrew Neuman, Gordon A. Novak, Patrick R. Veres, Steven S. Brown, and Carsten Warneke
Atmos. Meas. Tech., 15, 7353–7373, https://doi.org/10.5194/amt-15-7353-2022, https://doi.org/10.5194/amt-15-7353-2022, 2022
Short summary
Short summary
We describe the development and operation of a chemical ionization mass spectrometer using an ammonium–water cluster (NH4+·H2O) as a reagent ion. NH4+·H2O is a highly versatile reagent ion for measurements of a wide range of oxygenated organic compounds. The major product ion is the cluster with NH4+ produced via ligand-switching reactions. The instrumental sensitivities of analytes depend on the binding energy of the analyte–NH4+ cluster; sensitivities can be estimated using voltage scanning.
Caroline C. Womack, Steven S. Brown, Steven J. Ciciora, Ru-Shan Gao, Richard J. McLaughlin, Michael A. Robinson, Yinon Rudich, and Rebecca A. Washenfelder
Atmos. Meas. Tech., 15, 6643–6652, https://doi.org/10.5194/amt-15-6643-2022, https://doi.org/10.5194/amt-15-6643-2022, 2022
Short summary
Short summary
We present a new miniature instrument to measure nitrogen dioxide (NO2) using cavity-enhanced spectroscopy. NO2 contributes to the formation of pollutants such as ozone and particulate matter, and its concentration can vary widely near sources. We developed this lightweight (3.05 kg) low-power (<35 W) instrument to measure NO2 on uncrewed aircraft vehicles (UAVs) and demonstrate that it has the accuracy and precision needed for atmospheric field measurements.
Ilann Bourgeois, Jeff Peischl, J. Andrew Neuman, Steven S. Brown, Hannah M. Allen, Pedro Campuzano-Jost, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Jessica B. Gilman, Georgios I. Gkatzelis, Hongyu Guo, Hannah A. Halliday, Thomas F. Hanisco, Christopher D. Holmes, L. Gregory Huey, Jose L. Jimenez, Aaron D. Lamplugh, Young Ro Lee, Jakob Lindaas, Richard H. Moore, Benjamin A. Nault, John B. Nowak, Demetrios Pagonis, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Vanessa Selimovic, Jason M. St. Clair, David Tanner, Krystal T. Vasquez, Patrick R. Veres, Carsten Warneke, Paul O. Wennberg, Rebecca A. Washenfelder, Elizabeth B. Wiggins, Caroline C. Womack, Lu Xu, Kyle J. Zarzana, and Thomas B. Ryerson
Atmos. Meas. Tech., 15, 4901–4930, https://doi.org/10.5194/amt-15-4901-2022, https://doi.org/10.5194/amt-15-4901-2022, 2022
Short summary
Short summary
Understanding fire emission impacts on the atmosphere is key to effective air quality management and requires accurate measurements. We present a comparison of airborne measurements of key atmospheric species in ambient air and in fire smoke. We show that most instruments performed within instrument uncertainties. In some cases, further work is needed to fully characterize instrument performance. Comparing independent measurements using different techniques is important to assess their accuracy.
Michael A. Robinson, J. Andrew Neuman, L. Gregory Huey, James M. Roberts, Steven S. Brown, and Patrick R. Veres
Atmos. Meas. Tech., 15, 4295–4305, https://doi.org/10.5194/amt-15-4295-2022, https://doi.org/10.5194/amt-15-4295-2022, 2022
Short summary
Short summary
Iodide chemical ionization mass spectrometry (CIMS) is commonly used in atmospheric chemistry laboratory studies and field campaigns. Deployment of the NOAA iodide CIMS instrument in the summer of 2021 indicated a significant and overlooked temperature dependence of the instrument sensitivity. This work explores which analytes are influenced by this phenomena. Additionally, we recommend controls to reduce this effect for future field deployments.
Martin Breitenlechner, Gordon A. Novak, J. Andrew Neuman, Andrew W. Rollins, and Patrick R. Veres
Atmos. Meas. Tech., 15, 1159–1169, https://doi.org/10.5194/amt-15-1159-2022, https://doi.org/10.5194/amt-15-1159-2022, 2022
Short summary
Short summary
We coupled a new ion source to a commercially available state-of-the-art trace gas analyzer. The instrument is particularly well suited for conducting high-altitude observations, addressing the challenges of low ambient pressures and a complex sample matrix. The new instrument and ion source provides significant advantages to more traditional modes of operation, without sacrificing the sensitivity and flexibility of this technique.
Andrew O. Langford, Christoph J. Senff, Raul J. Alvarez II, Ken C. Aikin, Sunil Baidar, Timothy A. Bonin, W. Alan Brewer, Jerome Brioude, Steven S. Brown, Joel D. Burley, Dani J. Caputi, Stephen A. Conley, Patrick D. Cullis, Zachary C. J. Decker, Stéphanie Evan, Guillaume Kirgis, Meiyun Lin, Mariusz Pagowski, Jeff Peischl, Irina Petropavlovskikh, R. Bradley Pierce, Thomas B. Ryerson, Scott P. Sandberg, Chance W. Sterling, Ann M. Weickmann, and Li Zhang
Atmos. Chem. Phys., 22, 1707–1737, https://doi.org/10.5194/acp-22-1707-2022, https://doi.org/10.5194/acp-22-1707-2022, 2022
Short summary
Short summary
The Fires, Asian, and Stratospheric Transport–Las Vegas Ozone Study (FAST-LVOS) combined lidar, aircraft, and in situ measurements with global models to investigate the contributions of stratospheric intrusions, regional and Asian pollution, and wildfires to background ozone in the southwestern US during May and June 2017 and demonstrated that these processes contributed to background ozone levels that exceeded 70 % of the US National Ambient Air Quality Standard during the 6-week campaign.
Ka Ming Fung, Colette L. Heald, Jesse H. Kroll, Siyuan Wang, Duseong S. Jo, Andrew Gettelman, Zheng Lu, Xiaohong Liu, Rahul A. Zaveri, Eric C. Apel, Donald R. Blake, Jose-Luis Jimenez, Pedro Campuzano-Jost, Patrick R. Veres, Timothy S. Bates, John E. Shilling, and Maria Zawadowicz
Atmos. Chem. Phys., 22, 1549–1573, https://doi.org/10.5194/acp-22-1549-2022, https://doi.org/10.5194/acp-22-1549-2022, 2022
Short summary
Short summary
Understanding the natural aerosol burden in the preindustrial era is crucial for us to assess how atmospheric aerosols affect the Earth's radiative budgets. Our study explores how a detailed description of dimethyl sulfide (DMS) oxidation (implemented in the Community Atmospheric Model version 6 with chemistry, CAM6-chem) could help us better estimate the present-day and preindustrial concentrations of sulfate and other relevant chemicals, as well as the resulting aerosol radiative impacts.
Jin Liao, Glenn M. Wolfe, Reem A. Hannun, Jason M. St. Clair, Thomas F. Hanisco, Jessica B. Gilman, Aaron Lamplugh, Vanessa Selimovic, Glenn S. Diskin, John B. Nowak, Hannah S. Halliday, Joshua P. DiGangi, Samuel R. Hall, Kirk Ullmann, Christopher D. Holmes, Charles H. Fite, Anxhelo Agastra, Thomas B. Ryerson, Jeff Peischl, Ilann Bourgeois, Carsten Warneke, Matthew M. Coggon, Georgios I. Gkatzelis, Kanako Sekimoto, Alan Fried, Dirk Richter, Petter Weibring, Eric C. Apel, Rebecca S. Hornbrook, Steven S. Brown, Caroline C. Womack, Michael A. Robinson, Rebecca A. Washenfelder, Patrick R. Veres, and J. Andrew Neuman
Atmos. Chem. Phys., 21, 18319–18331, https://doi.org/10.5194/acp-21-18319-2021, https://doi.org/10.5194/acp-21-18319-2021, 2021
Short summary
Short summary
Formaldehyde (HCHO) is an important oxidant precursor and affects the formation of O3 and other secondary pollutants in wildfire plumes. We disentangle the processes controlling HCHO evolution from wildfire plumes sampled by NASA DC-8 during FIREX-AQ. We find that OH abundance rather than normalized OH reactivity is the main driver of fire-to-fire variability in HCHO secondary production and estimate an effective HCHO yield per volatile organic compound molecule oxidized in wildfire plumes.
Zachary C. J. Decker, Michael A. Robinson, Kelley C. Barsanti, Ilann Bourgeois, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Frank M. Flocke, Alessandro Franchin, Carley D. Fredrickson, Georgios I. Gkatzelis, Samuel R. Hall, Hannah Halliday, Christopher D. Holmes, L. Gregory Huey, Young Ro Lee, Jakob Lindaas, Ann M. Middlebrook, Denise D. Montzka, Richard Moore, J. Andrew Neuman, John B. Nowak, Brett B. Palm, Jeff Peischl, Felix Piel, Pamela S. Rickly, Andrew W. Rollins, Thomas B. Ryerson, Rebecca H. Schwantes, Kanako Sekimoto, Lee Thornhill, Joel A. Thornton, Geoffrey S. Tyndall, Kirk Ullmann, Paul Van Rooy, Patrick R. Veres, Carsten Warneke, Rebecca A. Washenfelder, Andrew J. Weinheimer, Elizabeth Wiggins, Edward Winstead, Armin Wisthaler, Caroline Womack, and Steven S. Brown
Atmos. Chem. Phys., 21, 16293–16317, https://doi.org/10.5194/acp-21-16293-2021, https://doi.org/10.5194/acp-21-16293-2021, 2021
Short summary
Short summary
To understand air quality impacts from wildfires, we need an accurate picture of how wildfire smoke changes chemically both day and night as sunlight changes the chemistry of smoke. We present a chemical analysis of wildfire smoke as it changes from midday through the night. We use aircraft observations from the FIREX-AQ field campaign with a chemical box model. We find that even under sunlight typical
nighttimechemistry thrives and controls the fate of key smoke plume chemical processes.
Quanfu He, Zheng Fang, Ofir Shoshanim, Steven S. Brown, and Yinon Rudich
Atmos. Chem. Phys., 21, 14927–14940, https://doi.org/10.5194/acp-21-14927-2021, https://doi.org/10.5194/acp-21-14927-2021, 2021
Short summary
Short summary
Rayleigh scattering and absorption cross sections for CO2, N2O, SF6, O2, and CH4 were measured between 307 and 725 nm. New dispersion relations for N2O, SF6, and CH4 in the UV–vis range were derived. This study provides refractive index dispersion relations, scattering, and absorption cross sections which are highly needed for accurate instrument calibration and for improved accuracy of Rayleigh scattering parameterizations for major greenhouse gases in Earth's atmosphere.
Xuan Wang, Daniel J. Jacob, William Downs, Shuting Zhai, Lei Zhu, Viral Shah, Christopher D. Holmes, Tomás Sherwen, Becky Alexander, Mathew J. Evans, Sebastian D. Eastham, J. Andrew Neuman, Patrick R. Veres, Theodore K. Koenig, Rainer Volkamer, L. Gregory Huey, Thomas J. Bannan, Carl J. Percival, Ben H. Lee, and Joel A. Thornton
Atmos. Chem. Phys., 21, 13973–13996, https://doi.org/10.5194/acp-21-13973-2021, https://doi.org/10.5194/acp-21-13973-2021, 2021
Short summary
Short summary
Halogen radicals have a broad range of implications for tropospheric chemistry, air quality, and climate. We present a new mechanistic description and comprehensive simulation of tropospheric halogens in a global 3-D model and compare the model results with surface and aircraft measurements. We find that halogen chemistry decreases the global tropospheric burden of ozone by 11 %, NOx by 6 %, and OH by 4 %.
Yangang Ren, Li Zhou, Abdelwahid Mellouki, Véronique Daële, Mahmoud Idir, Steven S. Brown, Branko Ruscic, Robert S. Paton, Max R. McGillen, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 13537–13551, https://doi.org/10.5194/acp-21-13537-2021, https://doi.org/10.5194/acp-21-13537-2021, 2021
Short summary
Short summary
Aromatic aldehydes are a family of compounds emitted into the atmosphere from both anthropogenic and biogenic sources that are formed from the degradation of aromatic hydrocarbons. Their atmospheric degradation may impact air quality. We report on their atmospheric degradation through reaction with NO3, which is useful to estimate their atmospheric lifetimes. We have also attempted to elucidate the mechanism of these reactions via studies of isotopic substitution and quantum chemistry.
Rongrong Wu, Luc Vereecken, Epameinondas Tsiligiannis, Sungah Kang, Sascha R. Albrecht, Luisa Hantschke, Defeng Zhao, Anna Novelli, Hendrik Fuchs, Ralf Tillmann, Thorsten Hohaus, Philip T. M. Carlsson, Justin Shenolikar, François Bernard, John N. Crowley, Juliane L. Fry, Bellamy Brownwood, Joel A. Thornton, Steven S. Brown, Astrid Kiendler-Scharr, Andreas Wahner, Mattias Hallquist, and Thomas F. Mentel
Atmos. Chem. Phys., 21, 10799–10824, https://doi.org/10.5194/acp-21-10799-2021, https://doi.org/10.5194/acp-21-10799-2021, 2021
Short summary
Short summary
Isoprene is the biogenic volatile organic compound with the largest emissions rates. The nighttime reaction of isoprene with the NO3 radical has a large potential to contribute to SOA. We classified isoprene nitrates into generations and proposed formation pathways. Considering the potential functionalization of the isoprene nitrates we propose that mainly isoprene dimers contribute to SOA formation from the isoprene NO3 reactions with at least a 5 % mass yield.
Amy Hrdina, Jennifer G. Murphy, Anna Gannet Hallar, John C. Lin, Alexander Moravek, Ryan Bares, Ross C. Petersen, Alessandro Franchin, Ann M. Middlebrook, Lexie Goldberger, Ben H. Lee, Munkh Baasandorj, and Steven S. Brown
Atmos. Chem. Phys., 21, 8111–8126, https://doi.org/10.5194/acp-21-8111-2021, https://doi.org/10.5194/acp-21-8111-2021, 2021
Short summary
Short summary
Wintertime air pollution in the Salt Lake Valley is primarily composed of ammonium nitrate, which is formed when gas-phase ammonia and nitric acid react. The major point in this work is that the chemical composition of snow tells a very different story to what we measured in the atmosphere. With the dust–sea salt cations observed in PM2.5 and particle sizing data, we can estimate how much nitric acid may be lost to dust–sea salt that is not accounted for and how much more PM2.5 this could form.
Caroline C. Womack, Katherine M. Manfred, Nicholas L. Wagner, Gabriela Adler, Alessandro Franchin, Kara D. Lamb, Ann M. Middlebrook, Joshua P. Schwarz, Charles A. Brock, Steven S. Brown, and Rebecca A. Washenfelder
Atmos. Chem. Phys., 21, 7235–7252, https://doi.org/10.5194/acp-21-7235-2021, https://doi.org/10.5194/acp-21-7235-2021, 2021
Short summary
Short summary
Microscopic particles interact with sunlight and affect the earth's climate in ways that are not fully understood. Aerosols from wildfire smoke present particular challenges due to their complexity in shape and composition. We demonstrate that we can experimentally measure aerosol optical properties for many types of smoke particles, using measurements of smoke from controlled burns, but that the method does not work well for smoke with high soot content.
Melodie Lao, Leigh R. Crilley, Leyla Salehpoor, Teles C. Furlani, Ilann Bourgeois, J. Andrew Neuman, Andrew W. Rollins, Patrick R. Veres, Rebecca A. Washenfelder, Caroline C. Womack, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech., 13, 5873–5890, https://doi.org/10.5194/amt-13-5873-2020, https://doi.org/10.5194/amt-13-5873-2020, 2020
Short summary
Short summary
Nitrous acid (HONO) is a key intermediate in the generation of oxidants and fate of nitrogen oxides in the atmosphere. High-purity calibration sources that produce stable atmospherically relevant levels under field conditions have not been made to date, reducing measurement accuracy. In this study a simple salt-coated tube humidified with water vapor is demonstrated to produce pure stable low levels of HONO, with modifications allowing the generation of higher amounts.
Li Zhang, Meiyun Lin, Andrew O. Langford, Larry W. Horowitz, Christoph J. Senff, Elizabeth Klovenski, Yuxuan Wang, Raul J. Alvarez II, Irina Petropavlovskikh, Patrick Cullis, Chance W. Sterling, Jeff Peischl, Thomas B. Ryerson, Steven S. Brown, Zachary C. J. Decker, Guillaume Kirgis, and Stephen Conley
Atmos. Chem. Phys., 20, 10379–10400, https://doi.org/10.5194/acp-20-10379-2020, https://doi.org/10.5194/acp-20-10379-2020, 2020
Short summary
Short summary
Measuring and quantifying the sources of elevated springtime ozone in the southwestern US is challenging but relevant to the implications for control policy. Here we use intensive field measurements and two global models to study ozone sources in the region. We find that ozone from the stratosphere, wildfires, and Asia is an important source of high-ozone events in the region. Our analysis also helps understand the uncertainties in ozone simulations with individual models.
Patrick Dewald, Jonathan M. Liebmann, Nils Friedrich, Justin Shenolikar, Jan Schuladen, Franz Rohrer, David Reimer, Ralf Tillmann, Anna Novelli, Changmin Cho, Kangming Xu, Rupert Holzinger, François Bernard, Li Zhou, Wahid Mellouki, Steven S. Brown, Hendrik Fuchs, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 10459–10475, https://doi.org/10.5194/acp-20-10459-2020, https://doi.org/10.5194/acp-20-10459-2020, 2020
Short summary
Short summary
We present direct measurements of NO3 reactivity resulting from the oxidation of isoprene by NO3 during an intensive simulation chamber study. Measurements were in excellent agreement with values calculated from measured isoprene amounts and the rate coefficient for the reaction of NO3 with isoprene. Comparison of the measurement with NO3 reactivities from non-steady-state and model calculations suggests that isoprene-derived RO2 and HO2 radicals account to ~ 50 % of overall NO3 losses.
Cited articles
Benskin, J. P., Muir, D. C. G., Scott, B. F., Spencer, C., De Silva, A. O.,
Kylin, H., Martin, J. W., Morris, A., Lohmann, R., Tomy, G., Rosenberg, B.,
Taniyasu, S., and Yamashita, N.: Perfluoroalkyl Acids in the Atlantic and
Canadian Arctic Oceans, Environ. Sci. Technol., 46, 5815–5823,
https://doi.org/10.1021/es300578x, 2012.
Bondy, A. L., Wang, B., Laskin, A., Craig, R. L., Nhliziyo, M. V, Bertman,
S. B., Pratt, K. A., Shepson, P. B., and Ault, A. P.: Inland Sea Spray
Aerosol Transport and Incomplete Chloride Depletion: Varying Degrees of
Reactive Processing Observed during SOAS, Environ. Sci. Technol., 51,
9533–9542, https://doi.org/10.1021/acs.est.7b02085, 2017.
Butz, A., Dinger, A. S., Bobrowski, N., Kostinek, J., Fieber, L., Fischerkeller, C., Giuffrida, G. B., Hase, F., Klappenbach, F., Kuhn, J., Lübcke, P., Tirpitz, L., and Tu, Q.: Remote sensing of volcanic CO2, HF, HCl, SO2, and BrO in the downwind plume of Mt. Etna, Atmos. Meas. Tech., 10, 1–14, https://doi.org/10.5194/amt-10-1-2017, 2017.
Clegg, S. L., and Brimblecombe, P.: Potential degassing of hydrogen chloride
from acidified sodium chloride droplets, Atmos. Environ., 19, 465–470,
https://doi.org/10.1016/0004-6981(85)90167-2, 1985.
Cousins, I. T., Dewitt, J. C., Glüge, J., Goldenman, G., Herzke, D.,
Lohmann, R., Ng, C. A., Scheringer, M., and Wang, Z.: The high persistence of
PFAS is sufficient for their management as a chemical class, Environ. Sci.
Process. Impacts, 22, 2307–2312, https://doi.org/10.1039/d0em00355g, 2020.
Crisp, T. A., Lerner, B. M., Williams, E. J., Quinn, P. K., Bates, T. S., and
Bertram, T. H.: Observations of gas phase hydrochloric acid in the polluted
marine boundary layer, J. Geophys. Res., 119, 6897–6915,
https://doi.org/10.1002/2013JD020992, 2014.
Crosson, E. R.: A cavity ring-down analyzer for measuring atmospheric levels
of methane, carbon dioxide, and water vapor, Appl. Phys. B Lasers Opt., 92,
403–408, https://doi.org/10.1007/s00340-008-3135-y, 2008.
Dawe, K. E. R., Furlani, T. C., Kowal, S. F., Kahan, T. F., Vandenboer, T.
C., and Young, C. J.: Formation and emission of hydrogen chloride in indoor
air, Indoor Air, 29, 70–78, https://doi.org/10.1111/ina.12509, 2019.
Deming, B. L., Pagonis, D., Liu, X., Day, D. A., Talukdar, R., Krechmer, J. E., de Gouw, J. A., Jimenez, J. L., and Ziemann, P. J.: Measurements of delays of gas-phase compounds in a wide variety of tubing materials due to gas–wall interactions, Atmos. Meas. Tech., 12, 3453–3461, https://doi.org/10.5194/amt-12-3453-2019, 2019.
Eisele, F. L. and Tanner, D. J.: Measurement of the gas phase concentration
of H2SO4 and methane sulfonic acid and estimates of H2SO4 production and
loss in the atmosphere, J. Geophys. Res.-Atmos., 98, 9001–9010,
https://doi.org/10.1029/93JD00031, 1993.
Ellis, R. A., Murphy, J. G., Pattey, E., van Haarlem, R., O'Brien, J. M., and Herndon, S. C.: Characterizing a Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS) for measurements of atmospheric ammonia, Atmos. Meas. Tech., 3, 397–406, https://doi.org/10.5194/amt-3-397-2010, 2010.
European Chemicals Agency (ECHA): Four new substances added to Candidate
List, available at:
https://echa.europa.eu/-/four-new-substances-added-to-candidate-list, last access: 20 November 2020.
Finlayson-Pitts, B. J., Ezell, M. J., and Pitts Jr., J. N.: Formation of
chemically active chlorine compounds by reactions of atmospheric NaCl
particles with gaseous N2O5 and ClONO2, Nature, 337, 241–244,
https://doi.org/10.1038/337241a0, 1989.
Furlani, T. C., Veres, P. R., Dawe, K. E. R., Neuman, J. A., Brown, S. S.,
VandenBoer, T. C., and Young, C. J.: Gaseous HCl ambient intercomparison in
Toronto Canada April 2019, Federated Research Data Repository [data set], https://doi.org/10.20383/102.0486, 2021.
Gard, E. E., Kleeman, M. J., Gross, D. S., Hughes, L. S., Allen, J. O.,
Morrical, B. D., Fergenson, D. P., Dienes, T., Gälli, M. E., Johnson, R.
J., Cass, G. R., and Prather, K. A.: Direct observation of heterogeneous
chemistry in the atmosphere, Science, 279, 1184–1187,
https://doi.org/10.1126/science.279.5354.1184, 1998.
Gordon, I. E., Rothman, L. S., Hill, C., Kochanov, R. V, Tan, Y., Bernath,
P. F., Birk, M., Boudon, V., Campargue, A., Chance, K. V, Drouin, B. J.,
Flaud, J.-M., Gamache, R. R., Hodges, J. T., Jacquemart, D., Perevalov, V.
I., Perrin, A., Shine, K. P., Smith, M.-A. H., Tennyson, J., Toon, G. C.,
Tran, H., Tyuterev, V. G., Barbe, A., Császár, A. G., Devi, V. M.,
Furtenbacher, T., Harrison, J. J., Hartmann, J.-M., Jolly, A., Johnson, T.
J., Karman, T., Kleiner, I., Kyuberis, A. A., Loos, J., Lyulin, O. M.,
Massie, S. T., Mikhailenko, S. N., Moazzen-Ahmadi, N., Müller, H. S. P.,
Naumenko, O. V, Nikitin, A. V, Polyansky, O. L., Rey, M., Rotger, M.,
Sharpe, S. W., Sung, K., Starikova, E., Tashkun, S. A., Auwera, J. Vander,
Wagner, G., Wilzewski, J., Wcisło, P., Yu, S., and Zak, E. J.: The
HITRAN2016 molecular spectroscopic database, J. Quant. Spectrosc. Radiat.
Transf., 203, 3–69, https://doi.org/10.1016/j.jqsrt.2017.06.038, 2017.
Hagen, C. L., Lee, B. C., Franka, I. S., Rath, J. L., VandenBoer, T. C., Roberts, J. M., Brown, S. S., and Yalin, A. P.: Cavity ring-down spectroscopy sensor for detection of hydrogen chloride, Atmos. Meas. Tech., 7, 345–357, https://doi.org/10.5194/amt-7-345-2014, 2014.
Haskins, J. D., Jaeglé, L., Shah, V., Lee, B. H., Lopez-Hilfiker, F. D.,
Campuzano-Jost, P., Schroder, J. C., Day, D. A., Guo, H., Sullivan, A. P.,
Weber, R., Dibb, J., Campos, T., Jimenez, J. L., Brown, S. S., and Thornton,
J. A.: Wintertime gas-particle partitioning and speciation of inorganic
chlorine in the lower troposphere over the northeast United States and
coastal ocean, J. Geophys. Res.-Atmos., 123, 12897–12916,
https://doi.org/10.1029/2018JD028786, 2018.
Huey, L. G., Villalta, P. W., Dunlea, E. J., Hanson, D. R., and Howard, C.
J.: Reactions of CF3O- with atmospheric trace gases, J. Phys. Chem., 100,
190–194, https://doi.org/10.1021/jp951928u, 1996.
Jurkat, T., Voigt, C., Arnold, F., Schlager, H., Aufmhoff, H., Schmale, J.,
Schneider, J., Lichtenstern, M., and Dörnbrack, A.: Airborne
stratospheric ITCIMS measurements of SO2, HCl, and HNO3 in the aged plume of volcano Kasatochi, J. Geophys. Res.-Atmos., 115, D00L17,
https://doi.org/10.1029/2010JD013890, 2010.
Karellas, N. S., Chen, Q. F., De Brou, G. B., and Milburn, R. K.: Real time
air monitoring of hydrogen chloride and chlorine gas during a chemical fire,
J. Hazard. Mater., 102, 105–120,
https://doi.org/10.1016/S0304-3894(03)00205-X, 2003.
Keene, W. C., Khalil, M. A. K., Erickson, D. J., McCulloch, A., Graedel, T.
E., Lobert, J. M., Aucott, M. L., Gong, S. L., Harper, D. B., Kleiman, G.,
Midgley, P., Moore, R. M., Seuzaret, C., Sturges, W. T., Benkovitz, C. M.,
Koropalov, V., Barrie, L. A., and Li, Y. F.: Composite global emissions of
reactive chlorine from anthropogenic and natural sources: Reactive chlorine
emissions inventory, J. Geophys. Res., 104, 8429–8440, 1999.
Keene, W. C., Stutz, J., Pszenny, A. A. P., Maben, J. R., Fischer, E. V.,
Smith, A. M., von Glasow, R., Pechtl, S., Sive, B. C., and Varner, R. K.:
Inorganic chlorine and bromine in coastal New England air during summer, J. Geophys. Res.-Atmos., 112, 1–15, https://doi.org/10.1029/2006JD007689, 2007.
Keene, W. C., Long, M. S., Pszenny, A. A. P., Sander, R., Maben, J. R., Wall, A. J., O'Halloran, T. L., Kerkweg, A., Fischer, E. V., and Schrems, O.: Latitudinal variation in the multiphase chemical processing of inorganic halogens and related species over the eastern North and South Atlantic Oceans, Atmos. Chem. Phys., 9, 7361–7385, https://doi.org/10.5194/acp-9-7361-2009, 2009.
Kim, S., Huey, L. G., Stickel, R. E., Pierce, R. B., Chen, G., Avery, M. A., Dibb, J. E., Diskin, G. S., Sachse, G. W., McNaughton, C. S., Clarke, A. D., Anderson, B. E., and Blake, D. R.: Airborne measurements of HCl from the marine boundary layer to the lower stratosphere over the North Pacific Ocean during INTEX-B, Atmos. Chem. Phys. Discuss., 8, 3563–3595, https://doi.org/10.5194/acpd-8-3563-2008, 2008.
Kochanov, R. V, Gordon, I. E., Rothman, L. S., Shine, K. P., Sharpe, S. W.,
Johnson, T. J., Wallington, T. J., Harrison, J. J., Bernath, P. F., Birk,
M., Wagner, G., Le Bris, K., Bravo, I., and Hill, C.: Infrared absorption
cross-sections in HITRAN2016 and beyond: Expansion for climate, environment,
and atmospheric applications, J. Quant. Spectrosc. Radiat. Transf., 230,
172–221, https://doi.org/10.1016/j.jqsrt.2019.04.001, 2019.
Lao, M., Crilley, L. R., Salehpoor, L., Furlani, T. C., Bourgeois, I., Neuman, J. A., Rollins, A. W., Veres, P. R., Washenfelder, R. A., Womack, C. C., Young, C. J., and VandenBoer, T. C.: A portable, robust, stable, and tunable calibration source for gas-phase nitrous acid (HONO), Atmos. Meas. Tech., 13, 5873–5890, https://doi.org/10.5194/amt-13-5873-2020, 2020.
Lee, B. H., Lopez-Hilfiker, F. D., Schroder, J. C., Campuzano-Jost, P.,
Jimenez, J. L., McDuffie, E. E., Fibiger, D. L., Veres, P. R., Brown, S. S.,
Campos, T. L., Weinheimer, A. J., Flocke, F. F., Norris, G., O'Mara, K.,
Green, J. R., Fiddler, M. N., Bililign, S., Shah, V., Jaeglé, L., and
Thornton, J. A.: Airborne Observations of Reactive Inorganic Chlorine and
Bromine Species in the Exhaust of Coal-Fired Power Plants, J. Geophys. Res.-Atmos., 123, 11225-11237, https://doi.org/10.1029/2018JD029284, 2018.
Ma, Y., He, Y., Yu, X., Chen, C., Sun, R., and Tittel, F. K.: HCl ppb-level
detection based on QEPAS sensor using a low resonance frequency quartz
tuning fork, Sensor. Actuat. B-Chem., 233, 388–393,
https://doi.org/10.1016/j.snb.2016.04.114, 2016.
MacInnis, J. J., VandenBoer, T. C., and Young, C. J.: Development of a gas
phase source for perfluoroalkyl acids to examine atmospheric sampling
methods, Analyst, 141, 3765–3775, https://doi.org/10.1039/C6AN00313C, 2016.
Marcy, T. P., Fahey, D. W., Gao, R. S., Popp, P. J., Richard, E. C.,
Thompson, T. L., Rosenlof, K. H., Ray, E. A., Salawitch, R. J., Atherton, C.
S., Bergmann, D. J., Ridley, B. A., Weinheimer, A. J., Loewenstein, M.,
Weinstock, E. M., and Mahoney, M. J.: Quantifying Stratospheric Ozone in the
Upper Troposphere with in Situ Measurements of HCl, Science,
304, 261–265, https://doi.org/10.1126/science.1093418, 2004.
Mattila, J. M., Lakey, P. S. J., Shiraiwa, M., Wang, C., Abbatt, J. P. D.,
Arata, C., Goldstein, A. H., Ampollini, L., Katz, E. F., Decarlo, P. F.,
Zhou, S., Kahan, T. F., Cardoso-saldan, F. J., Ruiz, L. H., Abeleira, A.,
Boedicker, E. K., Vance, M. E., and Farmer, D. K.: Multiphase chemistry
controls inorganic chlorinated and nitrogenated compounds in indoor air
during bleach cleaning, Environ. Sci. Technol., 54, 1730–1739,
https://doi.org/10.1021/acs.est.9b05767, 2020.
Moravek, A., Singh, S., Pattey, E., Pelletier, L., and Murphy, J. G.: Measurements and quality control of ammonia eddy covariance fluxes: a new strategy for high-frequency attenuation correction, Atmos. Meas. Tech., 12, 6059–6078, https://doi.org/10.5194/amt-12-6059-2019, 2019.
Neuman, J. A., Huey, L. G., Ryerson, T. B., and Fahey, D. W.: Study of inlet
materials for sampling atmospheric nitric acid, Environ. Sci. Technol., 33,
1133–1136, https://doi.org/10.1021/es980767f, 1999.
Osthoff, H. D., Roberts, J. M., Ravishankara, A. R., Williams, E. J.,
Lerner, B. M., Sommariva, R., Bates, T. S., Coffman, D., Quinn, P. K., Dibb,
J. E., Stark, H., Burkholder, J. B., Talukdar, R. K., Meagher, J.,
Fehsenfeld, F. C., and Brown, S. S.: High levels of nitryl chloride in the
polluted subtropical marine boundary layer, Nat. Geosci., 1, 324–328,
https://doi.org/10.1038/ngeo177, 2008.
Pagonis, D., Krechmer, J. E., de Gouw, J., Jimenez, J. L., and Ziemann, P. J.: Effects of gas–wall partitioning in Teflon tubing and instrumentation on time-resolved measurements of gas-phase organic compounds, Atmos. Meas. Tech., 10, 4687–4696, https://doi.org/10.5194/amt-10-4687-2017, 2017.
Place, B. K., Young, C. J., Ziegler, S. E., Edwards, K. A., Salehpoor, L., and VandenBoer, T. C.: Passive sampling capabilities for ultra-trace
quantitation of atmospheric nitric acid (HNO3) in remote environments, Atmos. Environ., 191, 360–369, https://doi.org/10.1016/j.atmosenv.2018.08.030,
2018.
Pollack, I. B., Lindaas, J., Roscioli, J. R., Agnese, M., Permar, W., Hu, L., and Fischer, E. V.: Evaluation of ambient ammonia measurements from a research aircraft using a closed-path QC-TILDAS operated with active continuous passivation, Atmos. Meas. Tech., 12, 3717–3742, https://doi.org/10.5194/amt-12-3717-2019, 2019.
Pszenny, A. A. P., Keene, W. C., Jacob, D. J., Fan, S., Maben, J. R., Zetwo,
M. P., Springer-Young, M., and Galloway, J. N.: Evidence of inorganic
chlorine gases other than hydrogen chloride in marine surface air,
Geophys. Res. Lett., 20, 699–702, https://doi.org/10.1029/93GL00047, 1993.
Roberts, J. M., Osthoff, H. D., Brown, S. S., and Ravishankara, A. R.: N2O5 oxidizes chloride to Cl2 in acidic atmospheric aerosol, Science, 321, 1059, https://doi.org/10.1126/science.1158777, 2008.
Roscioli, J. R., Zahniser, M. S., Nelson, D. D., Herndon, S. C., and Kolb, C.
E.: New Approaches to Measuring Sticky Molecules: Improvement of
Instrumental Response Times Using Active Passivation, J. Phys. Chem. A, 120,
1347–1357, https://doi.org/10.1021/acs.jpca.5b04395, 2016.
Sherwen, T., Schmidt, J. A., Evans, M. J., Carpenter, L. J., Großmann, K., Eastham, S. D., Jacob, D. J., Dix, B., Koenig, T. K., Sinreich, R., Ortega, I., Volkamer, R., Saiz-Lopez, A., Prados-Roman, C., Mahajan, A. S., and Ordóñez, C.: Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem, Atmos. Chem. Phys., 16, 12239–12271, https://doi.org/10.5194/acp-16-12239-2016, 2016.
Simpson, W. R., von Glasow, R., Riedel, K., Anderson, P., Ariya, P., Bottenheim, J., Burrows, J., Carpenter, L. J., Frieß, U., Goodsite, M. E., Heard, D., Hutterli, M., Jacobi, H.-W., Kaleschke, L., Neff, B., Plane, J., Platt, U., Richter, A., Roscoe, H., Sander, R., Shepson, P., Sodeau, J., Steffen, A., Wagner, T., and Wolff, E.: Halogens and their role in polar boundary-layer ozone depletion, Atmos. Chem. Phys., 7, 4375–4418, https://doi.org/10.5194/acp-7-4375-2007, 2007.
Simpson, W. R., Brown, S. S., Saiz-Lopez, A., Thornton, J. A., and Von
Glasow, R.: Tropospheric halogen chemistry: Sources, cycling, and impacts,
Chem. Rev., 115, 4035–4062, https://doi.org/10.1021/cr5006638, 2015.
Sintermann, J., Spirig, C., Jordan, A., Kuhn, U., Ammann, C., and Neftel, A.: Eddy covariance flux measurements of ammonia by high temperature chemical ionisation mass spectrometry, Atmos. Meas. Tech., 4, 599–616, https://doi.org/10.5194/amt-4-599-2011, 2011.
Solomon, S.: Stratospheric ozone depletion: A review of concepts and
history, Rev. Geophys., 37, 275–316, https://doi.org/10.1029/1999RG900008, 1999.
Sunderland, E. M., Hu, X. C., Dassuncao, C., Tokranov, A. K., Wagner, C. C., and Allen, J. G.: A review of the pathways of human exposure to poly- and
perfluoroalkyl substances (PFASs) and present understanding of health
effects, J. Expo. Sci. Environ. Epidemiol., 29, 131–147,
https://doi.org/10.1038/s41370-018-0094-1, 2019.
Thaler, R. D., Mielke, L. H., and Osthoff, H. D.: Quantification of Nitryl
Chloride at Part Per Trillion Mixing Ratios by Thermal Dissociation Cavity
Ring-Down Spectroscopy, Anal. Chem., 83, 2761–2766, https://doi.org/10.1021/ac200055z,
2011.
Thornton, J. A., Kercher, J. P., Riedel, T. P., Wagner, N. L., Cozic, J.,
Holloway, J. S., Dube, W. P., Wolfe, G. M., Quinn, P. K., Middlebrook, A.
M., Alexander, B., and Brown, S. S.: A large atomic chlorine source inferred
from mid-continental reactive nitrogen chemistry, Nature, 464, 271–274,
https://doi.org/10.1038/nature08905, 2010.
United States Environmental Protection Agency: Compendium of Methods for the
Determination of Inorganic Compounds in Ambient Air: Determination of
reactive acidic and basic gases and strong acidity of atmospheric fine
particles (< 2.5 µm) (Compendium Method IO-4.2), Cincinnati, OH, USA, 1999.
Valach, R.: The origin of the gaseous form of natural atmospheric chlorine,
Tellus, 19, 509–516, https://doi.org/10.3402/tellusa.v19i3.9819, 1967.
Veres, P. R., Roberts, J. M., Warneke, C., Welsh-Bon, D., Zahniser, M.,
Herndon, S., Fall, R., and de Gouw, J.: Development of negative-ion
proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) for the
measurement of gas-phase organic acids in the atmosphere,
Int. J. Mass Spectrom., 274, 48–55, https://doi.org/10.1016/j.ijms.2008.04.032, 2008.
Voss, P. B., Stimpfle, R. M., Cohen, R. C., Hanisco, T. F., Bonne, G. P.,
Perkins, K. K., Lanzendorf, E. J., Anderson, J. G., Salawitch, R. J.,
Webster, C. R., Scott, D. C., May, R. D., Wennberg, P. O., Newman, P. A.,
Lait, L. R., Elkins, J. W., and Bui, T. P.: Inorganic chlorine partitioning
in the summer lower stratosphere: Modeled and measured [ClONO2]/[HCl] during POLARIS, J. Geophys. Res.-Atmos., 106, 1713–1732,
https://doi.org/10.1029/2000JD900494, 2001.
Wang, X., Jacob, D. J., Eastham, S. D., Sulprizio, M. P., Zhu, L., Chen, Q., Alexander, B., Sherwen, T., Evans, M. J., Lee, B. H., Haskins, J. D., Lopez-Hilfiker, F. D., Thornton, J. A., Huey, G. L., and Liao, H.: The role of chlorine in global tropospheric chemistry, Atmos. Chem. Phys., 19, 3981–4003, https://doi.org/10.5194/acp-19-3981-2019, 2019.
Webster, C. R., May, R. D., Trimble, C. A., Chave, R. G., and Kendall, J.:
Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in situ
stratospheric measurements of HCl, N2O, CH4, NO2, and HNO3, Appl. Optics, 33, 454–472, https://doi.org/10.1364/AO.33.000454, 1994.
Whitehead, J. D., Twigg, M., Famulari, D., Nemitz, E., Sutton, M. A.,
Gallagher, M. W., and Fowler, D.: Evaluation of Laser Absorption
Spectroscopic Techniques for Eddy Covariance Flux Measurements of Ammonia,
Environ. Sci. Technol., 42, 2041–2046, https://doi.org/10.1021/es071596u, 2008.
Wilkerson, J., Sayres, D. S., Smith, J. B., Allen, N., Rivero, M., Greenberg, M., Martin, T., and Anderson, J. G.: In situ observations of stratospheric HCl using three-mirror integrated cavity output spectroscopy, Atmos. Meas. Tech., 14, 3597–3613, https://doi.org/10.5194/amt-14-3597-2021, 2021.
Young, A. H., Keene, W. C., Pszenny, A. A. P., Sander, R., Thornton, J. A.,
Riedel, T. P., and Maben, J. R.: Phase partitioning of souble trace gases
with size-resolved aerosols in near-surface continental air over northern
Colorado, USA, during winter, J. Geophys. Res., 118, 9414–9427,
https://doi.org/10.1002/jgrd.50655, 2013.
Young, C. J., Washenfelder, R. A., Roberts, J. M., Mielke, L. H., Osthoff,
H. D., Tsai, C., Pikelnaya, O., Stutz, J., Veres, P. R., Cochran, A. K.,
Vandenboer, T. C., Flynn, J., Grossberg, N., Haman, C. L., Lefer, B., Stark,
H., Graus, M., De Gouw, J., Gilman, J. B., Kuster, W. C., and Brown, S. S.:
Vertically resolved measurements of nighttime radical reservoirs in los
angeles and their contribution to the urban radical budget, Environ. Sci. Technol., 46, 10965–10973, https://doi.org/10.1021/es302206a, 2012.
Young, C. J., Washenfelder, R. A., Edwards, P. M., Parrish, D. D., Gilman, J. B., Kuster, W. C., Mielke, L. H., Osthoff, H. D., Tsai, C., Pikelnaya, O., Stutz, J., Veres, P. R., Roberts, J. M., Griffith, S., Dusanter, S., Stevens, P. S., Flynn, J., Grossberg, N., Lefer, B., Holloway, J. S., Peischl, J., Ryerson, T. B., Atlas, E. L., Blake, D. R., and Brown, S. S.: Chlorine as a primary radical: evaluation of methods to understand its role in initiation of oxidative cycles, Atmos. Chem. Phys., 14, 3427–3440, https://doi.org/10.5194/acp-14-3427-2014, 2014.
Young, C. J., Zhou, S., Siegel, J. A., and Kahan, T. F.: Illuminating the
dark side of indoor oxidants, Environ. Sci. Process. Impacts, 21,
1229–1239, https://doi.org/10.1039/C9EM00111E, 2019.
Zahniser, M. S., Nelson, D. D., McManus, B., Kebabian, P. L., Lloyd, D.,
Fowler, D., Jenkinson, D. S., Monteith, J. L., and Unsworth, M. H.:
Measurement of trace gas fluxes using tunable diode laser spectroscopy,
Philos. Trans. R. Soc. London Ser. A Phys. Eng. Sci., 351, 371–382,
https://doi.org/10.1098/rsta.1995.0040, 1995.
Short summary
This study characterized and validated a commercial spectroscopic instrument for the measurement of hydrogen chloride (HCl) in the atmosphere. Near the Earth’s surface, HCl acts as the dominant reservoir for other chlorine-containing reactive chemicals that play an important role in atmospheric chemistry. The properties of HCl make it challenging to measure. This instrument can overcome many of these challenges, enabling reliable HCl measurements.
This study characterized and validated a commercial spectroscopic instrument for the measurement...