Articles | Volume 14, issue 9
https://doi.org/10.5194/amt-14-6305-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-6305-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ALADIN laser frequency stability and its impact on the Aeolus wind error
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, 82234 Oberpfaffenhofen, Germany
Christian Lemmerz
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, 82234 Oberpfaffenhofen, Germany
Fabian Weiler
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, 82234 Oberpfaffenhofen, Germany
Thomas Kanitz
European Space Research and Technology Centre, European Space Agency, Noordwijk, 2201 AZ, the Netherlands
Denny Wernham
European Space Research and Technology Centre, European Space Agency, Noordwijk, 2201 AZ, the Netherlands
Gonçalo Rodrigues
European Space Research and Technology Centre, European Space Agency, Noordwijk, 2201 AZ, the Netherlands
Andrew Hyslop
Vitrociset (a Leonardo company), for ESA, Noordwijk, 2201 DK, the
Netherlands
Olivier Lecrenier
Airbus Defence and Space (Toulouse), Rue des Cosmonautes, 31400
Toulouse, France
Phil McGoldrick
formerly at: Airbus Defence and Space (Stevenage), Gunnels Wood Rd, Stevenage SG1 2AS, United Kingdom
Frédéric Fabre
Les Myriades SAS, Consultancy for Optical Systems, 2 Rue
Temponières, 31000 Toulouse, France
Paolo Bravetti
Airbus Italia S.p.A., Via dei Luxardo, 22-24, 00156 Rome, Italy
Tommaso Parrinello
European Space Research Institute, European Space Agency, 00044
Frascati RM, Italy
Oliver Reitebuch
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, 82234 Oberpfaffenhofen, Germany
Related authors
Oliver Lux, Michael Rennie, Jos de Kloe, and Oliver Reitebuch
EGUsphere, https://doi.org/10.5194/egusphere-2025-4596, https://doi.org/10.5194/egusphere-2025-4596, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The European Space Agency's Aeolus satellite (2018–2023) was the first mission to measure global wind profiles from space. We analysed its performance over five years to understand data quality and coverage under different conditions. By linking instrument behaviour to wind observations, we identified strengths and limitations. These results provide essential guidance for the design and operation of the operational follow-on mission Aeolus-2.
Michael Vaughan, Kevin Ridley, Benjamin Witschas, Oliver Lux, Ines Nikolaus, and Oliver Reitebuch
Atmos. Meas. Tech., 18, 2149–2181, https://doi.org/10.5194/amt-18-2149-2025, https://doi.org/10.5194/amt-18-2149-2025, 2025
Short summary
Short summary
ESA's Aeolus mission, launched in 2018, has exceeded expectations, providing valuable global wind lidar data for nearly 5 years. Its data have improved weather forecasting, with Mie-cloudy winds proving to be especially precise. Challenges have emerged, such as unexpected misalignments in signal angles and reduced signal levels due to beam clipping and laser issues. Lessons from Aeolus highlight the need for better optical alignment and active control systems for future lidar missions.
Benjamin Witschas, Christian Lemmerz, Alexander Geiß, Oliver Lux, Uwe Marksteiner, Stephan Rahm, Oliver Reitebuch, Andreas Schäfler, and Fabian Weiler
Atmos. Meas. Tech., 15, 7049–7070, https://doi.org/10.5194/amt-15-7049-2022, https://doi.org/10.5194/amt-15-7049-2022, 2022
Short summary
Short summary
In August 2018, the first wind lidar Aeolus was launched into space and has since then been providing data of the global wind field. The primary goal of Aeolus was the improvement of numerical weather prediction. To verify the quality of Aeolus wind data, DLR performed four airborne validation campaigns with two wind lidar systems. In this paper, we report on results from the two later campaigns, performed in Iceland and the tropics.
Oliver Lux, Benjamin Witschas, Alexander Geiß, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Stephan Rahm, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 6467–6488, https://doi.org/10.5194/amt-15-6467-2022, https://doi.org/10.5194/amt-15-6467-2022, 2022
Short summary
Short summary
We discuss the influence of different quality control schemes on the results of Aeolus wind product validation and present statistical tools for ensuring consistency and comparability among diverse validation studies with regard to the specific error characteristics of the Rayleigh-clear and Mie-cloudy winds. The developed methods are applied for the validation of Aeolus winds against an ECMWF model background and airborne wind lidar data from the Joint Aeolus Tropical Atlantic Campaign.
Benjamin Witschas, Christian Lemmerz, Oliver Lux, Uwe Marksteiner, Oliver Reitebuch, Fabian Weiler, Frederic Fabre, Alain Dabas, Thomas Flament, Dorit Huber, and Michael Vaughan
Atmos. Meas. Tech., 15, 1465–1489, https://doi.org/10.5194/amt-15-1465-2022, https://doi.org/10.5194/amt-15-1465-2022, 2022
Short summary
Short summary
In August 2018, the ESA launched the first Doppler wind lidar into space. In order to calibrate the instrument and to monitor the overall instrument conditions, instrument spectral registration measurements have been performed with Aeolus on a weekly basis. Based on these measurements, the alignment drift of the Aeolus satellite instrument is estimated by applying tools and mathematical model functions to analyze the spectrometer transmission curves.
Oliver Lux, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Benjamin Witschas, Stephan Rahm, Alexander Geiß, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 1303–1331, https://doi.org/10.5194/amt-15-1303-2022, https://doi.org/10.5194/amt-15-1303-2022, 2022
Short summary
Short summary
The article discusses modifications in the wind retrieval of the ALADIN Airborne Demonstrator (A2D) – one of the key instruments for the validation of Aeolus. Thanks to the retrieval refinements, which are demonstrated in the context of two airborne campaigns in 2019, the systematic and random wind errors of the A2D were significantly reduced, thereby enhancing its validation capabilities. Finally, wind comparisons between A2D and Aeolus for the validation of the satellite data are presented.
Oliver Lux, Michael Rennie, Jos de Kloe, and Oliver Reitebuch
EGUsphere, https://doi.org/10.5194/egusphere-2025-4596, https://doi.org/10.5194/egusphere-2025-4596, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
The European Space Agency's Aeolus satellite (2018–2023) was the first mission to measure global wind profiles from space. We analysed its performance over five years to understand data quality and coverage under different conditions. By linking instrument behaviour to wind observations, we identified strengths and limitations. These results provide essential guidance for the design and operation of the operational follow-on mission Aeolus-2.
Peristera Paschou, Nikolaos Siomos, Eleni Marinou, Antonis Gkikas, Samira M. Idrissa, Daniel T. Quaye, Désiré D. Fiogbe Attannon, Kalliopi Artemis Voudouri, Charikleia Meleti, David P. Donovan, George Georgoussis, Tommaso Parrinello, Thorsten Fehr, Jonas von Bismarck, and Vassilis Amiridis
Atmos. Meas. Tech., 18, 4731–4754, https://doi.org/10.5194/amt-18-4731-2025, https://doi.org/10.5194/amt-18-4731-2025, 2025
Short summary
Short summary
This study presents the results from a validation study on the Level 2A products (aerosol optical properties) of the ESA's (European Space Agency) Aeolus mission. Measurements from the eVe lidar, a combined linear/circular polarization and Raman lidar and ESA's ground reference system, that have been collected during the Joint Aeolus Tropical Atlantic Campaign are compared with collocated Aeolus Level 2A profiles obtained from the latest version (Baseline 16) of the Aeolus algorithms.
Michael Vaughan, Kevin Ridley, Benjamin Witschas, Oliver Lux, Ines Nikolaus, and Oliver Reitebuch
Atmos. Meas. Tech., 18, 2149–2181, https://doi.org/10.5194/amt-18-2149-2025, https://doi.org/10.5194/amt-18-2149-2025, 2025
Short summary
Short summary
ESA's Aeolus mission, launched in 2018, has exceeded expectations, providing valuable global wind lidar data for nearly 5 years. Its data have improved weather forecasting, with Mie-cloudy winds proving to be especially precise. Challenges have emerged, such as unexpected misalignments in signal angles and reduced signal levels due to beam clipping and laser issues. Lessons from Aeolus highlight the need for better optical alignment and active control systems for future lidar missions.
Kangwen Sun, Guangyao Dai, Songhua Wu, Oliver Reitebuch, Holger Baars, Jiqiao Liu, and Suping Zhang
Atmos. Chem. Phys., 24, 4389–4409, https://doi.org/10.5194/acp-24-4389-2024, https://doi.org/10.5194/acp-24-4389-2024, 2024
Short summary
Short summary
This paper investigates the correlation between marine aerosol optical properties and wind speeds over remote oceans using the spaceborne lidars ALADIN and CALIOP. Three remote ocean areas are selected. Pure marine aerosol optical properties at 355 nm are derived from ALADIN. The relationships between marine aerosol optical properties and wind speeds are analyzed within and above the marine atmospheric boundary layer, revealing the effect of wind speed on marine aerosols over remote oceans.
Manfred Ern, Mohamadou A. Diallo, Dina Khordakova, Isabell Krisch, Peter Preusse, Oliver Reitebuch, Jörn Ungermann, and Martin Riese
Atmos. Chem. Phys., 23, 9549–9583, https://doi.org/10.5194/acp-23-9549-2023, https://doi.org/10.5194/acp-23-9549-2023, 2023
Short summary
Short summary
Quasi-biennial oscillation (QBO) of the stratospheric tropical winds is an important mode of climate variability but is not well reproduced in free-running climate models. We use the novel global wind observations by the Aeolus satellite and radiosondes to show that the QBO is captured well in three modern reanalyses (ERA-5, JRA-55, and MERRA-2). Good agreement is also found also between Aeolus and reanalyses for large-scale tropical wave modes in the upper troposphere and lower stratosphere.
Athena Augusta Floutsi, Holger Baars, Ronny Engelmann, Dietrich Althausen, Albert Ansmann, Stephanie Bohlmann, Birgit Heese, Julian Hofer, Thomas Kanitz, Moritz Haarig, Kevin Ohneiser, Martin Radenz, Patric Seifert, Annett Skupin, Zhenping Yin, Sabur F. Abdullaev, Mika Komppula, Maria Filioglou, Elina Giannakaki, Iwona S. Stachlewska, Lucja Janicka, Daniele Bortoli, Eleni Marinou, Vassilis Amiridis, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Boris Barja, and Ulla Wandinger
Atmos. Meas. Tech., 16, 2353–2379, https://doi.org/10.5194/amt-16-2353-2023, https://doi.org/10.5194/amt-16-2353-2023, 2023
Short summary
Short summary
DeLiAn is a collection of lidar-derived aerosol intensive optical properties for several aerosol types, namely the particle linear depolarization ratio, the extinction-to-backscatter ratio (lidar ratio) and the Ångström exponent. The data collection is based on globally distributed, long-term, ground-based, multiwavelength, Raman and polarization lidar measurements and currently covers two wavelengths, 355 and 532 nm, for 13 aerosol categories ranging from basic aerosol types to mixtures.
Antonis Gkikas, Anna Gialitaki, Ioannis Binietoglou, Eleni Marinou, Maria Tsichla, Nikolaos Siomos, Peristera Paschou, Anna Kampouri, Kalliopi Artemis Voudouri, Emmanouil Proestakis, Maria Mylonaki, Christina-Anna Papanikolaou, Konstantinos Michailidis, Holger Baars, Anne Grete Straume, Dimitris Balis, Alexandros Papayannis, Tomasso Parrinello, and Vassilis Amiridis
Atmos. Meas. Tech., 16, 1017–1042, https://doi.org/10.5194/amt-16-1017-2023, https://doi.org/10.5194/amt-16-1017-2023, 2023
Short summary
Short summary
We perform an assessment analysis of the Aeolus Standard Correct Algorithm (SCA) backscatter coefficient retrievals against reference observations acquired at three Greek lidar stations (Athens, Thessaloniki and Antikythera) of the PANACEA network. Overall, 43 cases are analysed, whereas specific aerosol scenarios in the vicinity of Antikythera island (SW Greece) are emphasised. All key Cal/Val aspects and recommendations, and the ongoing related activities, are thoroughly discussed.
Benjamin Witschas, Christian Lemmerz, Alexander Geiß, Oliver Lux, Uwe Marksteiner, Stephan Rahm, Oliver Reitebuch, Andreas Schäfler, and Fabian Weiler
Atmos. Meas. Tech., 15, 7049–7070, https://doi.org/10.5194/amt-15-7049-2022, https://doi.org/10.5194/amt-15-7049-2022, 2022
Short summary
Short summary
In August 2018, the first wind lidar Aeolus was launched into space and has since then been providing data of the global wind field. The primary goal of Aeolus was the improvement of numerical weather prediction. To verify the quality of Aeolus wind data, DLR performed four airborne validation campaigns with two wind lidar systems. In this paper, we report on results from the two later campaigns, performed in Iceland and the tropics.
Oliver Lux, Benjamin Witschas, Alexander Geiß, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Stephan Rahm, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 6467–6488, https://doi.org/10.5194/amt-15-6467-2022, https://doi.org/10.5194/amt-15-6467-2022, 2022
Short summary
Short summary
We discuss the influence of different quality control schemes on the results of Aeolus wind product validation and present statistical tools for ensuring consistency and comparability among diverse validation studies with regard to the specific error characteristics of the Rayleigh-clear and Mie-cloudy winds. The developed methods are applied for the validation of Aeolus winds against an ECMWF model background and airborne wind lidar data from the Joint Aeolus Tropical Atlantic Campaign.
Isabell Krisch, Neil P. Hindley, Oliver Reitebuch, and Corwin J. Wright
Atmos. Meas. Tech., 15, 3465–3479, https://doi.org/10.5194/amt-15-3465-2022, https://doi.org/10.5194/amt-15-3465-2022, 2022
Short summary
Short summary
The Aeolus satellite measures global height resolved profiles of wind along a certain line-of-sight. However, for atmospheric dynamics research, wind measurements along the three cardinal axes are most useful. This paper presents methods to convert the measurements into zonal and meridional wind components. By combining the measurements during ascending and descending orbits, we achieve good derivation of zonal wind (equatorward of 80° latitude) and meridional wind (poleward of 70° latitude).
Ada Mariska Koning, Louise Nuijens, Christian Mallaun, Benjamin Witschas, and Christian Lemmerz
Atmos. Chem. Phys., 22, 7373–7388, https://doi.org/10.5194/acp-22-7373-2022, https://doi.org/10.5194/acp-22-7373-2022, 2022
Short summary
Short summary
Wind measurements from the mixed layer to cloud tops are scarce, causing a lack of knowledge on wind mixing between and within these layers. We use airborne observations of wind profiles and local wind at high frequency to study wind transport in cloud fields. A case with thick clouds had its maximum transport in the cloud layer, caused by eddies > 700 m, which was not expected from turbulence theory. In other cases large eddies undid transport of smaller eddies resulting in no net transport.
Peristera Paschou, Nikolaos Siomos, Alexandra Tsekeri, Alexandros Louridas, George Georgoussis, Volker Freudenthaler, Ioannis Binietoglou, George Tsaknakis, Alexandros Tavernarakis, Christos Evangelatos, Jonas von Bismarck, Thomas Kanitz, Charikleia Meleti, Eleni Marinou, and Vassilis Amiridis
Atmos. Meas. Tech., 15, 2299–2323, https://doi.org/10.5194/amt-15-2299-2022, https://doi.org/10.5194/amt-15-2299-2022, 2022
Short summary
Short summary
The eVe lidar delivers quality-assured aerosol and cloud optical properties according to the standards of ACTRIS. It is a mobile reference system for the validation of the ESA's Aeolus satellite mission (L2 aerosol and cloud products). eVe provides linear and circular polarisation measurements with Raman capabilities. Here, we describe the system design, the polarisation calibration techniques, and the software for the retrieval of the optical products.
Benjamin Witschas, Christian Lemmerz, Oliver Lux, Uwe Marksteiner, Oliver Reitebuch, Fabian Weiler, Frederic Fabre, Alain Dabas, Thomas Flament, Dorit Huber, and Michael Vaughan
Atmos. Meas. Tech., 15, 1465–1489, https://doi.org/10.5194/amt-15-1465-2022, https://doi.org/10.5194/amt-15-1465-2022, 2022
Short summary
Short summary
In August 2018, the ESA launched the first Doppler wind lidar into space. In order to calibrate the instrument and to monitor the overall instrument conditions, instrument spectral registration measurements have been performed with Aeolus on a weekly basis. Based on these measurements, the alignment drift of the Aeolus satellite instrument is estimated by applying tools and mathematical model functions to analyze the spectrometer transmission curves.
Oliver Lux, Christian Lemmerz, Fabian Weiler, Uwe Marksteiner, Benjamin Witschas, Stephan Rahm, Alexander Geiß, Andreas Schäfler, and Oliver Reitebuch
Atmos. Meas. Tech., 15, 1303–1331, https://doi.org/10.5194/amt-15-1303-2022, https://doi.org/10.5194/amt-15-1303-2022, 2022
Short summary
Short summary
The article discusses modifications in the wind retrieval of the ALADIN Airborne Demonstrator (A2D) – one of the key instruments for the validation of Aeolus. Thanks to the retrieval refinements, which are demonstrated in the context of two airborne campaigns in 2019, the systematic and random wind errors of the A2D were significantly reduced, thereby enhancing its validation capabilities. Finally, wind comparisons between A2D and Aeolus for the validation of the satellite data are presented.
Songhua Wu, Kangwen Sun, Guangyao Dai, Xiaoye Wang, Xiaoying Liu, Bingyi Liu, Xiaoquan Song, Oliver Reitebuch, Rongzhong Li, Jiaping Yin, and Xitao Wang
Atmos. Meas. Tech., 15, 131–148, https://doi.org/10.5194/amt-15-131-2022, https://doi.org/10.5194/amt-15-131-2022, 2022
Short summary
Short summary
During the VAL-OUC campaign, we established a coherent Doppler lidar (CDL) network over China to verify the Level 2B (L2B) products from Aeolus. By the simultaneous wind measurements with CDLs at 17 stations, the L2B products from Aeolus are compared with those from CDLs. To our knowledge, the VAL-OUC campaign is the most extensive so far between CDLs and Aeolus in the lower troposphere for different atmospheric scenes. The vertical velocity impact on the HLOS retrieval from Aeolus is evaluated.
Fabian Weiler, Michael Rennie, Thomas Kanitz, Lars Isaksen, Elena Checa, Jos de Kloe, Ngozi Okunde, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 7167–7185, https://doi.org/10.5194/amt-14-7167-2021, https://doi.org/10.5194/amt-14-7167-2021, 2021
Short summary
Short summary
This paper summarizes the identification and correction of one of the most important systematic error sources for the wind measurements of the ESA satellite Aeolus. It depicts the effects of small temperature variations in the primary telescope mirror on the quality of the wind products and describes the approach to correct for it in the near-real-time processing. Moreover, the performance of the correction approach is assessed, and alternative approaches are discussed.
Fabian Weiler, Thomas Kanitz, Denny Wernham, Michael Rennie, Dorit Huber, Marc Schillinger, Olivier Saint-Pe, Ray Bell, Tommaso Parrinello, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 5153–5177, https://doi.org/10.5194/amt-14-5153-2021, https://doi.org/10.5194/amt-14-5153-2021, 2021
Short summary
Short summary
This paper reports on dark current signal anomalies of the detectors used on board the ESA's Earth Explorer satellite Aeolus during the first 1.5 years in orbit. After introducing sophisticated algorithms to classify dark current anomalies according to their characteristics, the impact of the different kinds of anomalies on wind measurements is discussed. In addition, mitigation approaches for the wind retrieval are presented and potential root causes are discussed.
Anne Martin, Martin Weissmann, Oliver Reitebuch, Michael Rennie, Alexander Geiß, and Alexander Cress
Atmos. Meas. Tech., 14, 2167–2183, https://doi.org/10.5194/amt-14-2167-2021, https://doi.org/10.5194/amt-14-2167-2021, 2021
Short summary
Short summary
This study provides an overview of validation activities to determine the Aeolus HLOS wind errors and to understand the biases by investigating possible dependencies and testing bias correction approaches. To ensure meaningful validation statistics, collocated radiosondes and two different global NWP models, the ECMWF IFS and the ICON model (DWD), are used as reference data. To achieve an estimate for the Aeolus instrumental error the representativeness errors for the comparisons are evaluated.
Cited articles
Abich, K., Abramovici, A., Amparan, B., Baatzsch, A., Okihiro, B. B., Barr,
D. C., Bize, M. P., Bogan, C., Braxmaier, C., Burke, M. J., Clark, K. C.,
Dahl, C., Dahl, K., Danzmann, K., Davis, M. A., Vine, G. de, Dickson, J. A.,
Dubovitsky, S., Eckardt, A., Ester, T., Barranco, G. F., Flatscher, R.,
Flechtner, F., Folkner, W. M., Francis, S., Gilbert, M. S., Gilles, F.,
Gohlke, M., Grossard, N., Guenther, B., Hager, P., Hauden, J., Heine, F.,
Heinzel, G., Herding, M., Hinz, M., Howell, J., Katsumura, M., Kaufer, M.,
Klipstein, W., Koch, A., Kruger, M., Larsen, K., Lebeda, A., Lebeda, A.,
Leikert, T., Liebe, C. C., Liu, J., Lobmeyer, L., Mahrdt, C., Mangoldt, T.,
McKenzie, K., Misfeldt, M., Morton, P. R., Müller, V., Murray, A. T.,
Nguyen, D. J., Nicklaus, K., Pierce, R., Ravich, J. A., Reavis, G., Reiche,
J., Sanjuan, J., Schütze, D., Seiter, C., Shaddock, D., Sheard, B.,
Sileo, M., Spero, R., Spiers, G., Stede, G., Stephens, M., Sutton, A.,
Trinh, J., Voss, K., Wang, D., Wang, R. T., Ware, B., Wegener, H., Windisch,
S., Woodruff, C., Zender, B., and Zimmermann, M.: In-Orbit Performance of
the GRACE Follow-on Laser Ranging Interferometer, Phys. Rev. Lett.,
123, 31101, https://doi.org/10.1103/PhysRevLett.123.031101, 2019.
Abshire, J. B., Sun, X., Riris, H., Sirota, J. M., McGarry, J. F., Palm, S.,
Yi, D., and Liiva, P.: Geoscience Laser Altimeter System (GLAS) on the
ICESat Mission: On-orbit measurement performance, Geophys. Res. Lett., 32, L21S02, https://doi.org/10.1029/2005GL024028, 2005.
Allan, D. W.: Statistics of atomic frequency standards, Proc. IEEE, 54,
221–230, https://doi.org/10.1109/PROC.1966.4634, 1966.
Andersson, E.: Statement of Guidance for Global Numerical Weather Prediction
(NWP), World Meteorological Organisation, available at:
https://docplayer.net/194586713-Statement-of-guidance-for-global-numerical-
weather-prediction-nwp.html
(last access: 15 September 2021), 2018.
Baidar, S., Tucker, S. C., Beaubien, M., and Hardesty, R. M.: The Optical
Autocovariance Wind Lidar. Part II: Green OAWL (GrOAWL) Airborne Performance
and Validation, J. Atmos. Oceanic Technol., 35, 2099–2116,
https://doi.org/10.1175/JTECH-D-18-0025.1, 2018.
Baker, W. E., Atlas, R., Cardinali, C., Clement, A., Emmitt, G. D., Gentry,
B. M., Hardesty, R. M., Källén, E., Kavaya, M. J., Langland, R., Ma,
Z., Masutani, M., McCarty, W., Pierce, R. B., Pu, Z., Riishojgaard, L. P.,
Ryan, J., Tucker, S., Weissmann, M., and Yoe, J. G.: Lidar-Measured Wind
Profiles: The Missing Link in the Global Observing System, Bull. Amer.
Meteor. Soc., 95, 543–564, https://doi.org/10.1175/BAMS-D-12-00164.1, 2014.
Bosart, B. L., Lee, W.-C., and Wakimoto, R. M.: Procedures to Improve the
Accuracy of Airborne Doppler Radar Data, J. Atmos. Ocean. Tech., 19,
322–339, https://doi.org/10.1175/1520-0426-19.3.322, 2002.
Bradford space:
https://static1.squarespace.com/static/603ed12be884730013401d7a/t/6054f630baf06f76bbabe02a/1616180789682/be_datasheet_rwu_2019dec.pdf last access: 15 September 2021.
Bruneau, D. and Pelon, J.: A new lidar design for operational atmospheric wind and cloud/aerosol survey from space, Atmos. Meas. Tech., 14, 4375–4402, https://doi.org/10.5194/amt-14-4375-2021, 2021.
Chanin, M. L., Garnier, A., Hauchecorne, A., and Porteneuve, J.: A Doppler
lidar for measuring winds in the middle atmosphere, Geophys. Res. Lett., 16,
1273–1276, https://doi.org/10.1029/GL016i011p01273, 1989.
Chen, S.-B., Xuan, M., Zhang, L., Gu, S., Gong, X.-X., and Sun, H.-Y.:
Simulating and Testing Microvibrations on an Optical Satellite Using
Acceleration Sensor-Based Jitter Measurements, Sensors, 19, 1797,
https://doi.org/10.3390/s19081797, 2019.
Chouza, F., Reitebuch, O., Jähn, M., Rahm, S., and Weinzierl, B.: Vertical wind retrieved by airborne lidar and analysis of island induced gravity waves in combination with numerical models and in situ particle measurements, Atmos. Chem. Phys., 16, 4675–4692, https://doi.org/10.5194/acp-16-4675-2016, 2016.
Cosentino, A., D'Ottavi, A., Sapia, A., and Suetta, E.: Spaceborne Lasers
Development for ALADIN and ATLID Instruments, in: 2012 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), 22–27 July 2012, Munich, Germany, 5673–5676, 2012.
Cosentino, A., Mondello, A., Sapia, A., D'Ottavi, A., Brotini, M., Nava, E.,
Stucchi, E., Trespidi, F., Mariottini, C., Wazen, P., Falletto, N., and
Fruit, M.: High energy, single frequency, tunable laser source operating in
burst mode for space based lidar applications, Proc. SPIE, 10568, 1056817,
https://doi.org/10.1117/12.2308024, 2017.
de Kloe, J., Stoffelen, A., Tan, D., Andersson, E., Rennie, M., Dabas, A., Poli, P., and Huber, D.: ADM-Aeolus Level-2B/2C Processor Input/Output DataDefinitions Interface Control Document,
AED-SD-ECMWF-L2B-037, v. 3.4, 110 pp., available at: https://earth.esa.int/eogateway/documents/20142/37627/Aeolus-L2B-2C-Input-Output-DD-ICD.pdf (last access: 10 September 2021), 2020.
Dennehy, C. and Alvarez-Salazar, O. S.: Spacecraft Micro-Vibration: A Survey
of Problems, Experiences, Potential Solutions, and Some Lessons Learned,
NASA/TM-2018-220075, available at:
https://ntrs.nasa.gov/api/citations/20180006315/downloads/20180006315.pdf, (last access: 12 January 2021), 2018.
Ehret, G., Bousquet, P., Pierangelo, C., Alpers, M., Millet, B., Abshire,
J., Bovensmann, H., Burrows, J., Chevallier, F., Ciais, P., Crevoisier, C.,
Fix, A., Flamant, P., Frankenberg, C., Gibert, F., Heim, B., Heimann, M.,
Houweling, S., Hubberten, H., Jöckel, P., Law, K., Löw, A.,
Marshall, J., Agusti-Panareda, A., Payan, S., Prigent, C., Rairoux, P.,
Sachs, T., Scholze, M., and Wirth, M.: MERLIN: A French-German Space Lidar
Mission Dedicated to Atmospheric Methane, Remote Sens., 9, 1052,
https://doi.org/10.3390/rs9101052, 2017.
European Space Agency (ESA): ADM-Aeolus Science Report, ESA SP-1311, 121 pp.,
available at: https://earth.esa.int/documents/10174/1590943/AEOL002.pdf (last access: 15 September 2021), 2008.
European Space Agency (ESA): L2C assimilated wind products, available at: http://aeolus-ds.eo.esa.int/oads/access/collection/L2C_Wind_Products, last access: 10 September 2021.
Flesia, C. and Korb, C. L.: Theory of the double-edge molecular technique
for Doppler lidar wind measurement, Appl. Opt., 38, 432–440,
https://doi.org/10.1364/AO.38.000432, 1999.
Garnier, A. and Chanin, M. L.: Description of a Doppler Rayleigh LIDAR for
measuring winds in the middle atmosphere, Appl. Phys. B, 55, 35–40,
https://doi.org/10.1007/BF00348610, 1992.
Henderson, S. W., Yuen, E. H., and Fry, E. S.: Fast resonance-detection
technique for single-frequency operation of injection-seeded Nd:YAG lasers,
Opt. Lett., 11, 715–717, https://doi.org/10.1364/OL.11.000715, 1986.
Hovis, F. E., Edelman, J., Schum, T., Rudd, J., and Andes, K.: Recent
progress on single frequency lasers for space and high altitude aircraft
applications, Proc. SPIE, 6871, 68710E, https://doi.org/10.1117/12.768278,
2008.
Illingworth, A. J., Barker, H. W., Beljaars, A., Ceccaldi, M., Chepfer, H.,
Clerbaux, N., Cole, J., Delanoë, J., Domenech, C., Donovan, D. P.,
Fukuda, S., Hirakata, M., Hogan, R. J., Huenerbein, A., Kollias, P., Kubota,
T., Nakajima, T., Nakajima, T. Y., Nishizawa, T., Ohno, Y., Okamoto, H.,
Oki, R., Sato, K., Satoh, M., Shephard, M. W., Velázquez-Blázquez,
A., Wandinger, U., Wehr, T., and van Zadelhoff, G.-J.: The EarthCARE
Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols,
Precipitation, and Radiation, Bull. Amer. Meteor. Soc., 96, 1311–1332,
https://doi.org/10.1175/BAMS-D-12-00227.1, 2015.
Kanitz, T., Lochard, J., Marshall, J., McGoldrick, P., Lecrenier, O.,
Bravetti, P., Reitebuch, O., Rennie, M., Wernham, D., and Elfving, A.:
Aeolus First Light – First Glimpse, Proc. SPIE, 11180, 111801R, https://doi.org/10.1117/12.2535982, 2019.
Kanitz, T., Witschas, B., Marksteiner, U., Flament, T., Rennie, M.,
Schillinger, M., Parrinello, T., Wernham, D., and Reitebuch, O.: ESA's Wind
Lidar Mission Aeolus: Instrument Performance and Stability, EGU General
Assembly 2020, 4–8 May 2020, Online, EGU2020-7146,
https://doi.org/10.5194/egusphere-egu2020-7146, 2020.
Kavaya, M. J., Beyon, J. Y., Koch, G. J., Petros, M., Petzar, P. J., Singh,
U. N., Trieu, B. C., and Yu, J.: The Doppler Aerosol Wind (DAWN) Airborne,
Wind-Profiling Coherent-Detection Lidar System: Overview and Preliminary
Flight Results, J. Atmos. Ocean. Tech., 31, 826–842, 2014.
Le, M. P.: Micro-disturbances in reaction wheels, PhD thesis, Technische
Universiteit Eindhoven, 166 pp., available at:
https://research.tue.nl/en/publications/micro-disturbances-in-reaction-wheels
(last access: 29 December 2020), 2017.
Lecrenier, O., Fabre, F., and Lochard, J.: The ALADIN instrument and its
on-ground characterization, ADM-Aeolus Science and Cal/Val Workshop 2015, 10–13 February 2015, Frascati, Italy, available at:
https://earth.esa.int/documents/700255/3433344/Day1_PM_O.Lecrenier_J.Lochard.pdf (last access: 15 September 2021), 2015.
Lemmerz, C., Lux, O., Reitebuch, O., Witschas, B., and Wührer, C.:
Frequency and timing stability of an airborne injection-seeded Nd: YAG laser
system for direct-detection wind lidar, Appl. Opt., 56, 9057,
https://doi.org/10.1364/ao.56.009057, 2017.
Liu, D., Zheng, Z., Chen, W., Wang, Z., Li, W., Ke, J., Zhang, Y., Chen, S.,
Cheng, C., and Wang, S.: Performance estimation of space-borne
high-spectral-resolution lidar for cloud and aerosol optical properties at
532 nm, Opt. Express, 27, A481–A494, https://doi.org/10.1364/OE.27.00A481,
2019.
Lux, O., Lemmerz, C., Weiler, F., Marksteiner, U., Witschas, B., Rahm, S., Schäfler, A., and Reitebuch, O.: Airborne wind lidar observations over the North Atlantic in 2016 for the pre-launch validation of the satellite mission Aeolus, Atmos. Meas. Tech., 11, 3297–3322, https://doi.org/10.5194/amt-11-3297-2018, 2018.
Lux, O., Lemmerz, C., Weiler, F., Marksteiner, U., Witschas, B., Nagel, E.,
and Reitebuch, O.: Speckle Noise Reduction by Fiber Scrambling for Improving
the Measurement Precision of an Airborne Wind Lidar System, in: 2019
Conference on Lasers and Electro-Optics Europe & European Quantum
Electronics Conference (CLEO/Europe-EQEC), CLEO Europe,
23–27 June 2019, Munich, Germany, OSA Technical Digest, paper ch_2_2, 2019.
Lux, O., Wernham, D., Bravetti, P., McGoldrick, P., Lecrenier, O., Riede,
W., D'Ottavi, A., Sanctis, V. de, Schillinger, M., Lochard, J., Marshall,
J., Lemmerz, C., Weiler, F., Mondin, L., Ciapponi, A., Kanitz, T., Elfving,
A., Parrinello, T., and Reitebuch, O.: High-power and frequency-stable
ultraviolet laser performance in space for the wind lidar on Aeolus,
Opt. Lett., 45, 1443–1446, https://doi.org/10.1364/OL.387728, 2020a.
Lux, O., Lemmerz, C., Weiler, F., Marksteiner, U., Witschas, B., Rahm, S., Geiß, A., and Reitebuch, O.: Intercomparison of wind observations from the European Space Agency's Aeolus satellite mission and the ALADIN Airborne Demonstrator, Atmos. Meas. Tech., 13, 2075–2097, https://doi.org/10.5194/amt-13-2075-2020, 2020b.
Markley, F. L. and Crassidis, J. L.: Fundamentals of Spacecraft Attitude
Determination and Control, Springer New York, New York, USA, 2014.
Marksteiner, U., Reitebuch, O., and Huber, D.: Mie and Rayleigh Algorithm
Performance Assessment, DLR, Technical Note, AE.TN.DLR.5100.1.150930, V. 1.3, 64 pp., 2015.
Martin, A., Weissmann, M., Reitebuch, O., Rennie, M., Geiß, A., and Cress, A.: Validation of Aeolus winds using radiosonde observations and numerical weather prediction model equivalents, Atmos. Meas. Tech., 14, 2167–2183, https://doi.org/10.5194/amt-14-2167-2021, 2021.
Martino, A. J., Neumann, T. A., Kurtz, N. T., and McLennan, D.: ICESat-2
mission overview and early performance, Proc. SPIE, 11151, 111510C,
https://doi.org/10.1117/12.2534938, 2019.
McKay, J. A.: Assessment of a multibeam Fizeau wedge interferometer for
Doppler wind lidar, Appl. Opt., 41, 1760, https://doi.org/10.1364/AO.41.001760, 2002.
Mondin, L. and Bravetti, P.: Aeolus high energy UV Laser wavelength
measurement and frequency stability analysis, Proc. SPIE, 10563, 105633B,
https://doi.org/10.1117/12.2304238, 2017.
NAS: Thriving on Our Changing Planet: A Decadal Strategy for Earth
Observation from Space, The National Academies Press, 700 pp., https://doi.org/10.17226/24938, 2018.
Nelder, J. A. and Mead, R.: A Simplex Method for Function Minimization,
Comput. J., 7, 308–313, https://doi.org/10.1093/comjnl/7.4.308, 1965.
Parrinello, T., Straume, A. G., von Bismark, J., Bley, S., Tran, V. D.,
Fischer, P., Kanitz, T., Wernham, D., Fehr, T., Alvarez, E., Reitebuch, O.,
and Krisch, I.: Aeolus: ESA's wind mission. Status and future challenges,
EGU General Assembly 2020, 4–8 May 2020, Online, EGU2020-4091,
https://doi.org/10.5194/egusphere-egu2020-4091, 2020.
Preda, V., Cieslak, J., Henry, D., Bennani, S., and Falcoz, A.: Robust
microvibration mitigation and pointing performance analysis for high
stability spacecraft, Int. J. Robust Nonlin., 28, 5688–5716,
https://doi.org/10.1002/rnc.4338, 2018.
Reitebuch, O.: The Spaceborne Wind Lidar Mission ADM-Aeolus, in: Atmospheric
physics: Background, methods, trends, edited by: Schumann, U., Research Topics in Aerospace, Springer, Berlin, Germany, London, UK, 815–827, 2012.
Reitebuch, O., Huber, D., and Nikolaus, I.: “ADM-Aeolus Algorithm
Theoretical Basis Document (ATBD) Level-1B Products”, AE-RP-DLR-L1B-001, v. 4.4, 117 pp., available at: https://earth.esa.int/eogateway/missions/aeolus/data (last
access: 3 December 2020), 2018.
Reitebuch, O., Lemmerz, C., Lux, O., Marksteiner, U., Rahm, S., Weiler, F.,
Witschas, B., Meringer, M., Schmidt, K., Huber, D., Nikolaus, I., Geiss, A.,
Vaughan, M., Dabas, A., Flament, T., Stieglitz, H., Isaksen, L., Rennie, M.,
Kloe, J. D., Marseille, G.-J., Stoffelen, A., Wernham, D., Kanitz, T.,
Straume, A.-G., Fehr, T., Bismarck, J. von, Floberghagen, R., and
Parrinello, T.: Initial Assessment of the Performance of the First Wind
Lidar in Space on Aeolus, EPJ Web Conf., 237, 1010,
https://doi.org/10.1051/epjconf/202023701010, 2020.
Rennie, M. and Isaksen, L.: The NWP impact of Aeolus Level-2B winds at
ECMWF, Technical Memorandum ECMWF, https://doi.org/10.21957/alift7mhr, 2020.
Rennie, M., Tan, D., Andersson, E., Poli, P., Dabas, A., De Kloe, J.,
Marseille, G.-J. and Stoffelen, A.: Aeolus Level-2B Algorithm Theoretical
Basis Document (Mathematical Description of the Aeolus L2B Processor),
AED-SD-ECMWF-L2B-038, V. 3.4, 124 pp., available at:
https://earth.esa.int/eogateway/missions/aeolus/data (last access: 25 January 2021), 2020.
Rennie, M. P., Isaksen, L., Weiler, F., Kloe, J., Kanitz, T., and Reitebuch,
O.: The impact of Aeolus wind retrievals in ECMWF global weather forecasts,
Q. J. R. Meteorol. Soc., 1–32, https://doi.org/10.1002/qj.4142, 2021.
Sanfedino, F., Preda, V., Pommier-Budinger, V., Alazard, D., Boquet, F., and
Bennani, S.: Robust Active Mirror Control Based on Hybrid Sensing for
Spacecraft Line-of-Sight Stabilization, IEEE Trans. Contr. Syst. Technol.,
29, 220–235, https://doi.org/10.1109/TCST.2020.2970658, 2021.
Stith, J. L., Baumgardner, D., Haggerty, J., Hardesty, R. M., Lee, W.-C.,
Lenschow, D., Pilewskie, P., Smith, P. L., Steiner, M., and Vömel, H.:
100 Years of Progress in Atmospheric Observing Systems, Meteor. Mon., 59, 2.1–2.55, https://doi.org/10.1175/amsmonographs-d-18-0006.1, 2018.
Stoffelen, A., Pailleux, J., Källen, E., Vaughan, M., Isaksen, L.,
Flamant, P., Wergen, W., Andersson, E., Schyberg, H., Culoma, A., Meynart,
R., Endemann, M., and Ingmann, P.: The Atmospheric Dynamics Mission for
Global Wind Field Measurement, Bull. Amer. Meteor. Soc. 86, 73–87,
https://doi.org/10.1175/BAMS-86-1-73, 2005.
Stoffelen, A., Benedetti, A., Borde, R., Dabas, A., Flamant, P., Forsythe,
M., Hardesty, M., Isaksen, L., Källén, E., Körnich, H., Lee, T.,
Reitebuch, O., Rennie, M., Riishøjgaard, L.-P., Schyberg, H., Straume, A.
G., and Vaughan, M.: Wind Profile Satellite Observation Requirements and
Capabilities, Bull. Amer. Meteor. Soc., 101, E2005–E2021,
https://doi.org/10.1175/BAMS-D-18-0202.1, 2020.
Straume, A. G., Rennie, M., Isaksen, L., Kloe, J. de, Marseille, G.-J.,
Stoffelen, A., Flament, T., Stieglitz, H., Dabas, A., Huber, D., Reitebuch,
O., Lemmerz, C., Lux, O., Marksteiner, U., Weiler, F., Witschas, B.,
Meringer, M., Schmidt, K., Nikolaus, I., Geiss, A., Flamant, P., Kanitz, T.,
Wernham, D., Bismarck, J. von, Bley, S., Fehr, T., Floberghagen, R., and
Parinello, T.: ESA's Space-Based Doppler Wind Lidar Mission Aeolus – First
Wind and Aerosol Product Assessment Results, EPJ Web Conf., 237, 1007,
https://doi.org/10.1051/epjconf/202023701007, 2020.
Toyoshima, M.: In-orbit measurements of spacecraft microvibrations for
satellite laser communication links, Opt. Eng., 49, 83604,
https://doi.org/10.1117/1.3482165, 2010.
Trespidi, F., Stucchi, E., and Nava, E.: A novel cavity control technique
for the stabilization of a burst, pulsed laser, Proc. SPIE, 10567, 1056730,
https://doi.org/10.1117/12.2308050, 2017.
Tucker, S. C., Weimer, C. S., Baidar, S., and Hardesty, R. M.: The Optical
Autocovariance Wind Lidar. Part I: OAWL Instrument Development and
Demonstration, J. Atmos. Ocean. Technol., 35, 2079–2097,
https://doi.org/10.1175/JTECH-D-18-0024.1, 2018.
Weiler, F.: Bias correction using ground echoes for the airborne
demonstrator of the wind lidar on the ADM-Aeolus mission, Master's thesis,
University of Innsbruck, 96 pp., available at:
https://resolver.obvsg.at/urn:nbn:at:at-ubi:1-7104 (last access: 11 October 2020), 2017.
Weiler, F., Kanitz, T., Wernham, D., Rennie, M., Huber, D., Schillinger, M., Saint-Pe, O., Bell, R., Parrinello, T., and Reitebuch, O.: Characterization of dark current signal measurements of the ACCDs used on board the Aeolus satellite, Atmos. Meas. Tech., 14, 5153–5177, https://doi.org/10.5194/amt-14-5153-2021, 2021a.
Weiler, F., Rennie, M., Kanitz, T., Isaksen, L., Checa, E., de Kloe, J., Okunde, N., and Reitebuch, O.: Correction of wind bias for the lidar on-board Aeolus using telescope temperatures, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2021-171, in review, 2021b.
Winker, D., Vaughan, M., and Hunt, B.: The CALIPSO mission and initial
results from CALIOP, Proc. SPIE, 6409, 640902,
https://doi.org/10.1117/12.698003, 2006.
Witschas, B., Lemmerz, C., Geiß, A., Lux, O., Marksteiner, U., Rahm, S., Reitebuch, O., and Weiler, F.: First validation of Aeolus wind observations by airborne Doppler wind lidar measurements, Atmos. Meas. Tech., 13, 2381–2396, https://doi.org/10.5194/amt-13-2381-2020, 2020.
Short summary
The work assesses the frequency stability of the laser transmitters on board Aeolus and discusses its influence on the quality of the global wind data. Excellent frequency stability of the space lasers is evident, although enhanced frequency noise occurs at certain locations along the orbit due to micro-vibrations that are introduced by the satellite’s reaction wheels. The study elaborates on this finding and investigates the extent to which the enhanced frequency noise increases the wind error.
The work assesses the frequency stability of the laser transmitters on board Aeolus and...