Articles | Volume 14, issue 11
Atmos. Meas. Tech., 14, 6973–6990, 2021
Atmos. Meas. Tech., 14, 6973–6990, 2021
Research article
 | Highlight paper
04 Nov 2021
Research article  | Highlight paper | 04 Nov 2021

A differential emissivity imaging technique for measuring hydrometeor mass and type

Dhiraj K. Singh et al.

Related authors

Mass and density of individual frozen hydrometeors
Karlie N. Rees, Dhiraj K. Singh, Eric R. Pardyjak, and Timothy J. Garrett
Atmos. Chem. Phys., 21, 14235–14250,,, 2021
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
Infrasound measurement system for real-time in situ tornado measurements
Brandon C. White, Brian R. Elbing, and Imraan A. Faruque
Atmos. Meas. Tech., 15, 2923–2938,,, 2022
Short summary
Quantifying the coastal urban surface layer structure using distributed temperature sensing in Helsinki, Finland
Sasu Karttunen, Ewan O'Connor, Olli Peltola, and Leena Järvi
Atmos. Meas. Tech., 15, 2417–2432,,, 2022
Short summary
On the quality of RS41 radiosonde descent data
Bruce Ingleby, Martin Motl, Graeme Marlton, David Edwards, Michael Sommer, Christoph von Rohden, Holger Vömel, and Hannu Jauhiainen
Atmos. Meas. Tech., 15, 165–183,,, 2022
Short summary
Idealized simulation study of the relationship of disdrometer sampling statistics with the precision of precipitation rate measurement
Karlie N. Rees and Timothy J. Garrett
Atmos. Meas. Tech., 14, 7681–7691,,, 2021
Short summary
Use of thermal signal for the investigation of near-surface turbulence
Matthias Zeeman
Atmos. Meas. Tech., 14, 7475–7493,,, 2021
Short summary

Cited articles

Alcott, T. I. and Steenburgh, W. J.: Snow-to-liquid ratio variability and prediction at a high-elevation site in Utah’s Wasatch Mountains, Weather Forecast., 25, 323–337, 2010. a, b
Barthazy, E., Goke, S., Schefold, R., and Hogl, D.: An optical array instrument for shape and fall velocity measurements of hydrometeors, J. Atmos. Ocean. Tech., 21, 1400–1416, 2004. a
Battaglia, A., Rustemeier, E., Tokay, A., Blahak, U., and Simmer, C.: PARSIVEL snow observations: a critical assessment, J. Atmos. Ocean. Tech., 27, 333–344, 2010. a
Bergman, T. L., Incropera, F. P., Lavine, A. S., and DeWitt, D. P.: Introduction to heat transfer, John Wiley & Sons, Hoboken, New Jersey,​​​​​​​ 2011. a
Brandes, E. A., Ikeda, K., Zhang, G., Schonhuber, M., and Rasmussen, R. M.: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer, J. Appl. Meteorol. Clim., 46, 634–650, 2007. a
Short summary
This paper describes a new instrument for quantifying the physical characteristics of hydrometeors such as snow and rain. The device can measure the mass, size, density and type of individual hydrometeors as well as their bulk properties. The instrument is called the Differential Emissivity Imaging Disdrometer (DEID) and is composed of a thermal camera and hotplate. The DEID measures hydrometeors at sampling frequencies up to 1 Hz with masses and effective diameters greater than 1 µg and 200 µm.