Articles | Volume 16, issue 7
https://doi.org/10.5194/amt-16-1849-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-1849-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Detection and localization of F-layer ionospheric irregularities with the back-propagation method along the radio occultation ray path
Vinícius Ludwig-Barbosa
CORRESPONDING AUTHOR
Department of Mathematics and Natural Sciences, Blekinge Institute of Technology, Karlskrona, Sweden
Joel Rasch
Beyond Gravity Sweden AB, Gothenburg, Sweden
Thomas Sievert
Department of Mathematics and Natural Sciences, Blekinge Institute of Technology, Karlskrona, Sweden
Anders Carlström
Beyond Gravity Sweden AB, Gothenburg, Sweden
Mats I. Pettersson
Department of Mathematics and Natural Sciences, Blekinge Institute of Technology, Karlskrona, Sweden
Viet Thuy Vu
Department of Mathematics and Natural Sciences, Blekinge Institute of Technology, Karlskrona, Sweden
Jacob Christensen
Beyond Gravity Sweden AB, Gothenburg, Sweden
Related authors
Vinícius Ludwig-Barbosa, Johannes Kristoffer Nielsen, Kent Bækgaard Lauritsen, Brian Kerridge, Richard Siddans, and Tim Trent
EGUsphere, https://doi.org/10.5194/egusphere-2025-5578, https://doi.org/10.5194/egusphere-2025-5578, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Water vapour data from microwave, infrared (RAL IMS), and radio occultation (GRAS-RO) instruments onboard Metop-A are compared during 9.5 years under a set of cloud scenarios, land and water coverage, and time of day, while accounting for differences in resolutions. RAL IMS is wetter and GRAS-RO is drier than ERA-Interim analysis and GRUAN (references) in the lower troposphere. Mid-troposphere statistics are similar, suggesting a potential synergy could be exploited in climate data records.
Vinícius Ludwig-Barbosa, Johannes Kristoffer Nielsen, Kent Bækgaard Lauritsen, Brian Kerridge, Richard Siddans, and Tim Trent
EGUsphere, https://doi.org/10.5194/egusphere-2025-5578, https://doi.org/10.5194/egusphere-2025-5578, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Water vapour data from microwave, infrared (RAL IMS), and radio occultation (GRAS-RO) instruments onboard Metop-A are compared during 9.5 years under a set of cloud scenarios, land and water coverage, and time of day, while accounting for differences in resolutions. RAL IMS is wetter and GRAS-RO is drier than ERA-Interim analysis and GRUAN (references) in the lower troposphere. Mid-troposphere statistics are similar, suggesting a potential synergy could be exploited in climate data records.
Joel Rasch, Anders Carlström, Jacob Christensen, and Thomas Liljegren
Atmos. Meas. Tech., 17, 6213–6222, https://doi.org/10.5194/amt-17-6213-2024, https://doi.org/10.5194/amt-17-6213-2024, 2024
Short summary
Short summary
Soon the MetOp Second Generation (Metop-SG) series of polar orbiting meteorological satellites will be launched. On these satellites, the GRAS-2 instrument will be mounted. It will provide GNSS radio occultation measurements with unsurpassed accuracy. The occultation measurements are used routinely for numerical weather prognosis, i.e. predicting the weather. In this paper, we describe the design of this new instrument and the novel methods developed to process the data.
Cited articles
Aarons, J.: Global morphology of ionospheric scintillations, Proceedings of the IEEE, 70, 360–378, https://doi.org/10.1109/PROC.1982.12314, 1982. a, b
Abdu, M. A., Nogueira, P. A. B., Santos, A. M., de Souza, J. R., Batista,
I. S., and Sobral, J. H. A.: Impact of disturbance electric fields in the
evening on prereversal vertical drift and spread F developments in the
equatorial ionosphere, Ann. Geophys., 36, 609–620,
https://doi.org/10.5194/angeo-36-609-2018, 2018. a
Arras, C. and Wickert, J.: Estimation of ionospheric sporadic E intensities
from GPS radio occultation measurements, J. Atmos.
Sol.-Terr. Phys., 171, 60–63,
https://doi.org/10.1016/j.jastp.2017.08.006, 2018. a, b, c
Béniguel, Y., Romano, V., Alfonsi, L., Aquino, M., Bourdillon, A., Cannon, P.,
Franceschi, G. D., Dubey, S., Forte, B., Gherm, V., Jakowski, N., Materassi,
M., Noack, T., Pozoga, M., Rogers, N., Spalla, P., Strangeways, H. J.,
Warrington, E. M., Wernik, A. W., Wilken, V., and Zernov, N.: Ionospheric
scintillation monitoring and modelling, Ann. Geophys., 52, 391–416,
https://doi.org/10.4401/ag-4595, 2009. a
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware,
R. H.: GPS meteorology: Remote sensing of atmospheric water vapor using the
global positioning system, J. Geophys. Res., 97, 15787,
https://doi.org/10.1029/92JD01517, 1992. a
Carmona, R. A., Nava, O. A., Dao, E. V., and Emmons, D. J.: A Comparison of
Sporadic-E Occurrence Rates Using GPS Radio Occultation and Ionosonde
Measurements, Remote Sens., 14, 1–15, https://doi.org/10.3390/rs14030581, 2022. a, b
Carrano, C. S., Groves, K. M., Mcneil, W. J., and Doherty, P. H.: Scintillation
Characteristics across the GPS Frequency Band, in: 25th International
Technical Meeting of the Satellite Division of The Institute of Navigation
(ION GNSS), 17–21 September 2012, Nashville, TN, Institute of Navigation, 1972–1989, ISBN: 9781622769803, 2012. a
Carrano, C. S., Groves, K. M., Delay, S. H., and Doherty, P. H.: An inverse
diffraction technique for scaling measurements of ionospheric scintillations
on the GPS L1, L2, and L5 carriers to other frequencies, in: Institute of
Navigation International Technical Meeting (ITM), 27–29 January, San Diego, CA, Institute of Navigation, 709–719, ISSN: 2330-3646, 2014. a
Cherniak, I. and Zakharenkova, I.: High-latitude ionospheric irregularities:
differences between ground- and space-based GPS measurements during the 2015
St. Patrick’s Day storm, Earth Planet. Space, 68, 136,
https://doi.org/10.1186/s40623-016-0506-1, 2016. a
Fjeldbo, G., Kliore, A. J., and Eshleman, V. R.: The Neutral Atmosphere of
Venus as Studied with the Mariner V Radio Occultation Experiments,
Astron. J., 76, 123–140, https://doi.org/10.1086/111096, 1971. a
Gorbunov, M. and Gurvich, A. S.: Microlab-1 experiment: Multipath effects in
the lower troposphere, J. Geophys. Res.-Atmos., 103,
13819–13826, https://doi.org/10.1029/98JD00806, 1998a. a, b
Gorbunov, M. and Gurvich, A. S.: Algorithms of inversion of microlab-1
satellite data including effects of multipath propagation, Int.
J. Remote Sens., 19, 2283–2300, https://doi.org/10.1080/014311698214721,
1998b. a, b
Gorbunov, M. E. and Lauritsen, K. B.: Linearized Zverev Transform and its
application for modeling radio occultations, Radio Sci., 42, RS3023,
https://doi.org/10.1029/2006RS003590, 2007. a, b
Gorbunov, M. E., Gurvich, A. S., and Bengtsson, L.: Advanced Algorithms of
Inversion of GPS/MET Satellite Data and Their Application to Reconstruction
of Temperature and Humidity, Tech. Rep. 211, Max-Planck Institute for
Meteorology, Hamburg, Germany, https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3033351 (last access: 30 March 2023), 1996. a, b
Healy, S. B. and Culverwell, I. D.: A modification to the standard ionospheric
correction method used in GPS radio occultation, Atmos. Meas.
Tech., 8, 3385–3393, https://doi.org/10.5194/amt-8-3385-2015, 2015. a
Jiao, Y. and Morton, Y. T.: Comparison of the effect of high‐latitude and
equatorial ionospheric scintillation on GPS signals during the maximum of
solar cycle 24, Radio Sci., 50, 886–903, https://doi.org/10.1002/2015RS005719,
2015. a, b
Kelley, M. C., Larsen, M. F., LaHoz, C., and McClure, J. P.: Gravity wave
initiation of equatorial spread F: A case study, J. Geophys.
Res., 86, 9087, https://doi.org/10.1029/JA086iA11p09087, 1981. a
Kelly, M. A., Comberiate, J. M., Miller, E. S., and Paxton, L. J.: Progress
toward forecasting of space weather effects on UHF SATCOM after Operation
Anaconda, Space Weather, 12, 601–611, https://doi.org/10.1002/2014SW001081, 2014. a
Kepkar, A., Arras, C., Wickert, J., Schuh, H., Alizadeh, M., and Tsai, L.-C.:
Occurrence climatology of equatorial plasma bubbles derived using
FormoSat-3/COSMIC GPS radio occultation data, Ann. Geophys., 38,
611–623, https://doi.org/10.5194/angeo-38-611-2020, 2020. a, b
Knepp, D.: Multiple phase-screen calculation of the temporal behavior of
stochastic waves, Proceedings of the IEEE, 71, 722–737,
https://doi.org/10.1109/PROC.1983.12660, 1983. a, b
Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P., and Hardy,
K. R.: Observing Earth's atmosphere with radio occultation measurements
using the Global Positioning System, J. Geophys. Res.-Atmos., 102, 23429–23465, https://doi.org/10.1029/97JD01569, 1997. a, b
Liu, C., Kirchengast, G., Syndergaard, S., Schwaerz, M., Danzer, J., and Sun,
Y.: New higher‐order correction of GNSS-RO bending angles accounting for
ionospheric asymmetry: Evaluation of performance and added value, Remote
Sens., 12, 1–23, https://doi.org/10.3390/rs12213637, 2020. a
Ludwig-Barbosa, V., Rasch, J., Carlström, A., Pettersson, M. I., and Vu,
V. T.: GNSS Radio Occultation Simulation Using Multiple Phase Screen Orbit
Sampling, IEEE Geosci. Remote Sens. Lett., 17, 1323–1327,
https://doi.org/10.1109/LGRS.2019.2944537, 2020. a
Ludwig‐Barbosa, V., Sievert, T., Rasch, J., Carlström, A., Pettersson,
M. I., and Thuy Vu, V.: Evaluation of Ionospheric Scintillation in GNSS
Radio Occultation Measurements and Simulations, Radio Sci., 55, e2019RS006996,
https://doi.org/10.1029/2019RS006996, 2020. a
Ma, G., Hocke, K., Li, J., Wan, Q., Lu, W., and Fu, W.: GNSS Ionosphere
Sounding of Equatorial Plasma Bubbles, Atmosphere, 10, 1–11,
https://doi.org/10.3390/atmos10110676, 2019. a
Resende, L. C. A., Arras, C., Batista, I. S., Denardini, C. M., Bertollotto,
T. O., and Moro, J.: Study of sporadic E layers based on GPS radio
occultation measurements and digisonde data over the Brazilian region,
Ann. Geophys., 36, 587–593, https://doi.org/10.5194/angeo-36-587-2018, 2018. a
Sokolovskiy, S., Schreiner, W. S., Zeng, Z., Hunt, D. C., Kuo, Y.-H., Meehan,
T. K., Stecheson, T. W., Mannucci, A. J., and Ao, C. O.: Use of the L2C
signal for inversions of GPS radio occultation data in the neutral
atmosphere, GPS Solutions, 18, 405–416, https://doi.org/10.1007/s10291-013-0340-x,
2014. a, b, c
Stolle, C., Lühr, H., Rother, M., and Balasis, G.: Magnetic signatures
of equatorial spread F as observed by the CHAMP satellite, J.
Geophys. Res., 111, A02304, https://doi.org/10.1029/2005JA011184, 2006. a, b
Stolle, C., Lühr, H., and Fejer, B. G.: Relation between the occurrence
rate of ESF and the equatorial vertical plasma drift velocity at sunset
derived from global observations, Ann. Geophys., 26, 3979–3988,
https://doi.org/10.5194/angeo-26-3979-2008, 2008.
a
Syndergaard, S.: COSMIC S4 Data,
https://cdaac-www.cosmic.ucar.edu/cdaac/doc/documents/s4_description.pdf (last access: 30 March 2023),
2006. a
Vorob'ev, V. V. and Krasil'nikova, T. G.: Estimation of the accuracy of the
atmospheric refractive index recovery from doppler shift measurements at
frequencies used in the NAVSTAR system, USSR Phys. Atmos. Ocean, Engl.
Transl., 29, 602–609, 1994. a
Wickert, J., Pavelyev, A. G., Liou, Y. A., Schmidt, T., Reigber, C., Igarashi,
K., Pavelyev, A. A., and Matyugov, S. S.: Amplitude variations in GPS
signals as a possible indicator of ionospheric structures, Geophys.
Res. Lett., 31, L24801, https://doi.org/10.1029/2004GL020607, 2004. a, b
Xiong, C., Stolle, C., Lühr, H., Park, J., Fejer, B. G., and
Kervalishvili, G. N.: Scale analysis of equatorial plasma irregularities
derived from Swarm constellation, Earth Planet. Space, 68, 121,
https://doi.org/10.1186/s40623-016-0502-5, 2016. a, b
Yeh, K. and Liu, C.-H.: Radio wave scintillations in the ionosphere,
Proceedings of the IEEE, 70, 324–360, https://doi.org/10.1109/PROC.1982.12313, 1982. a, b, c
Yu, B., Xue, X., Yue, X., Yang, C., Yu, C., Dou, X., Ning, B., and Hu, L.: The
global climatology of the intensity of the ionospheric sporadic E layer,
Atmos. Chem. Phys., 19, 4139–4151,
https://doi.org/10.5194/acp-19-4139-2019, 2019. a
Yu, B., Scott, C. J., Xue, X., Yue, X., and Dou, X.: Derivation of global
ionospheric Sporadic E critical frequency f0Es data from the amplitude
variations in GPS/GNSS radio occultations, Roy. Soc. Open Sci., 7,
200320, https://doi.org/10.1098/rsos.200320, 2020. a, b
Zeng, Z. and Sokolovskiy, S.: Effect of sporadic E clouds on GPS radio
occultation signals, Geophys. Res. Lett., 37, 1–5,
https://doi.org/10.1029/2010GL044561, 2010. a, b, c
Zeng, Z., Sokolovskiy, S., Schreiner, W. S., and Hunt, D.: Representation of
Vertical Atmospheric Structures by Radio Occultation Observations in the
Upper Troposphere and Lower Stratosphere: Comparison to High-Resolution
Radiosonde Profiles, J. Atmos. Ocean. Technol., 36,
655–670, https://doi.org/10.1175/JTECH-D-18-0105.1, 2019. a
Short summary
In this paper, the back-propagation method's capabilities and limitations regarding the location of irregularity regions in the ionosphere, e.g. equatorial plasma bubbles, are evaluated. The assessment was performed with simulations in which different scenarios were assumed. The results showed that the location estimate is possible if the amplitude of the ionospheric disturbance is stronger than the instrument noise level. Further, multiple patches can be located if regions are well separated.
In this paper, the back-propagation method's capabilities and limitations regarding the location...