Articles | Volume 16, issue 13
https://doi.org/10.5194/amt-16-3421-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-3421-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Controlled-release testing of the static chamber methodology for direct measurements of methane emissions
James P. Williams
CORRESPONDING AUTHOR
Department of Civil Engineering, McGill University, Montréal, Quebec, Canada
Khalil El Hachem
Department of Civil Engineering, McGill University, Montréal, Quebec, Canada
Mary Kang
Department of Civil Engineering, McGill University, Montréal, Quebec, Canada
Related authors
Katlyn MacKay, Joshua Benmergui, James P. Williams, Mark Omara, Anthony Himmelberger, Maryann Sargent, Jack D. Warren, Christopher C. Miller, Sébastien Roche, Zhan Zhang, Luis Guanter, Steven Wofsy, and Ritesh Gautam
EGUsphere, https://doi.org/10.5194/egusphere-2025-3008, https://doi.org/10.5194/egusphere-2025-3008, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Reducing methane emissions from the oil/gas sector can mitigate near-term climate warming and the losses of a valuable energy resource. We analyze data collected using MethaneAIR to assess methane emissions in regions accounting for 70 % of United States onshore oil/gas production in 2023. We estimate total oil/gas methane emissions across all measured regions to be ~8 Tg/yr, equivalent to 1.6 % of produced gas, which is five times higher than reported by the US Environmental Protection Agency.
James P. Williams, Mark Omara, Anthony Himmelberger, Daniel Zavala-Araiza, Katlyn MacKay, Joshua Benmergui, Maryann Sargent, Steven C. Wofsy, Steven P. Hamburg, and Ritesh Gautam
Atmos. Chem. Phys., 25, 1513–1532, https://doi.org/10.5194/acp-25-1513-2025, https://doi.org/10.5194/acp-25-1513-2025, 2025
Short summary
Short summary
We utilize peer-reviewed facility-level oil and gas methane emission rate data gathered in prior work to estimate the relative contributions of methane sources emitting at different emission rates in the United States. We find that the majority of total methane emissions in the US oil and gas sector stem from a large number of small sources emitting in aggregate, corroborating findings from several other studies.
Jack D. Warren, Maryann Sargent, James P. Williams, Mark Omara, Christopher C. Miller, Sebastien Roche, Katlyn MacKay, Ethan Manninen, Apisada Chulakadabba, Anthony Himmelberger, Joshua Benmergui, Zhan Zhang, Luis Guanter, Steve Wofsy, and Ritesh Gautam
EGUsphere, https://doi.org/10.5194/egusphere-2024-3865, https://doi.org/10.5194/egusphere-2024-3865, 2024
Short summary
Short summary
Mitigating anthropogenic methane emissions requires a detailed understanding of emitting facilities. We use observations of methane point sources from the MethaneAIR instrument from 2021–2023 that covered ~80 % of U.S. onshore oil and gas production regions. We attribute these observations to facility types to explore how emissions vary by industrial sectors. Oil and gas facilities make up most point source emissions nationally, but in certain basins other sectors can make up the majority.
Mark Omara, Anthony Himmelberger, Katlyn MacKay, James P. Williams, Joshua Benmergui, Maryann Sargent, Steven C. Wofsy, and Ritesh Gautam
Earth Syst. Sci. Data, 16, 3973–3991, https://doi.org/10.5194/essd-16-3973-2024, https://doi.org/10.5194/essd-16-3973-2024, 2024
Short summary
Short summary
We review, analyze, and synthesize previous peer-reviewed measurement-based data on facility-level oil and gas methane emissions and use these data to develop a high-resolution spatially explicit inventory of US basin-level and national methane emissions. This work provides an improved assessment of national methane emissions relative to government inventories in support of accurate and comprehensive methane emissions assessment, attribution, and mitigation.
Katlyn MacKay, Joshua Benmergui, James P. Williams, Mark Omara, Anthony Himmelberger, Maryann Sargent, Jack D. Warren, Christopher C. Miller, Sébastien Roche, Zhan Zhang, Luis Guanter, Steven Wofsy, and Ritesh Gautam
EGUsphere, https://doi.org/10.5194/egusphere-2025-3008, https://doi.org/10.5194/egusphere-2025-3008, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Reducing methane emissions from the oil/gas sector can mitigate near-term climate warming and the losses of a valuable energy resource. We analyze data collected using MethaneAIR to assess methane emissions in regions accounting for 70 % of United States onshore oil/gas production in 2023. We estimate total oil/gas methane emissions across all measured regions to be ~8 Tg/yr, equivalent to 1.6 % of produced gas, which is five times higher than reported by the US Environmental Protection Agency.
James P. Williams, Mark Omara, Anthony Himmelberger, Daniel Zavala-Araiza, Katlyn MacKay, Joshua Benmergui, Maryann Sargent, Steven C. Wofsy, Steven P. Hamburg, and Ritesh Gautam
Atmos. Chem. Phys., 25, 1513–1532, https://doi.org/10.5194/acp-25-1513-2025, https://doi.org/10.5194/acp-25-1513-2025, 2025
Short summary
Short summary
We utilize peer-reviewed facility-level oil and gas methane emission rate data gathered in prior work to estimate the relative contributions of methane sources emitting at different emission rates in the United States. We find that the majority of total methane emissions in the US oil and gas sector stem from a large number of small sources emitting in aggregate, corroborating findings from several other studies.
Jack D. Warren, Maryann Sargent, James P. Williams, Mark Omara, Christopher C. Miller, Sebastien Roche, Katlyn MacKay, Ethan Manninen, Apisada Chulakadabba, Anthony Himmelberger, Joshua Benmergui, Zhan Zhang, Luis Guanter, Steve Wofsy, and Ritesh Gautam
EGUsphere, https://doi.org/10.5194/egusphere-2024-3865, https://doi.org/10.5194/egusphere-2024-3865, 2024
Short summary
Short summary
Mitigating anthropogenic methane emissions requires a detailed understanding of emitting facilities. We use observations of methane point sources from the MethaneAIR instrument from 2021–2023 that covered ~80 % of U.S. onshore oil and gas production regions. We attribute these observations to facility types to explore how emissions vary by industrial sectors. Oil and gas facilities make up most point source emissions nationally, but in certain basins other sectors can make up the majority.
Mark Omara, Anthony Himmelberger, Katlyn MacKay, James P. Williams, Joshua Benmergui, Maryann Sargent, Steven C. Wofsy, and Ritesh Gautam
Earth Syst. Sci. Data, 16, 3973–3991, https://doi.org/10.5194/essd-16-3973-2024, https://doi.org/10.5194/essd-16-3973-2024, 2024
Short summary
Short summary
We review, analyze, and synthesize previous peer-reviewed measurement-based data on facility-level oil and gas methane emissions and use these data to develop a high-resolution spatially explicit inventory of US basin-level and national methane emissions. This work provides an improved assessment of national methane emissions relative to government inventories in support of accurate and comprehensive methane emissions assessment, attribution, and mitigation.
Lawson David Gillespie, Sébastien Ars, James Phillip Williams, Louise Klotz, Tianjie Feng, Stephanie Gu, Mishaal Kandapath, Amy Mann, Michael Raczkowski, Mary Kang, Felix Vogel, and Debra Wunch
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-193, https://doi.org/10.5194/amt-2023-193, 2023
Preprint withdrawn
Short summary
Short summary
We investigate techniques for calculating emissions from mobile in situ gas concentrations recorded during downwind plume transects. We find that using the enhancement area to estimate emissions is the most consistent method when comparing different setups and instruments. Observations from a multi year urban methane survey and controlled release experiment are analyzed, and emissions rates for combined sewage overflow basins and a large wastewater treatment plant in Toronto are calculated.
David R. Lyon, Benjamin Hmiel, Ritesh Gautam, Mark Omara, Katherine A. Roberts, Zachary R. Barkley, Kenneth J. Davis, Natasha L. Miles, Vanessa C. Monteiro, Scott J. Richardson, Stephen Conley, Mackenzie L. Smith, Daniel J. Jacob, Lu Shen, Daniel J. Varon, Aijun Deng, Xander Rudelis, Nikhil Sharma, Kyle T. Story, Adam R. Brandt, Mary Kang, Eric A. Kort, Anthony J. Marchese, and Steven P. Hamburg
Atmos. Chem. Phys., 21, 6605–6626, https://doi.org/10.5194/acp-21-6605-2021, https://doi.org/10.5194/acp-21-6605-2021, 2021
Short summary
Short summary
The Permian Basin (USA) is the world’s largest oil field. We use tower- and aircraft-based approaches to measure how methane emissions in the Permian Basin changed throughout 2020. In early 2020, 3.3 % of the region’s gas was emitted; then in spring 2020, the loss rate temporarily dropped to 1.9 % as oil price crashed. We find this short-term reduction to be a result of reduced well development, less gas flaring, and fewer abnormal events despite minimal reductions in oil and gas production.
Cited articles
Albertson, J. D., Harvey, T., Foderaro, G., Zhu, P., Zhou, X., Ferrari, S., Amin, M. S., Modrak, M., Brantley, H., and Thoma, E. D.: A mobile sensing approach for regional surveillance of fugitive methane emissions in oil and gas production, Environ. Sci. Technol., 50, 2487–2497, https://doi.org/10.1021/acs.est.5b05059, 2016.
Allen, G., Shah, A., Williams, P. I., Ricketts, H., Hollingsworth, P., Kabbabe, K., Bourn, M., Pitt, J. R., Helmore, J., Lowry, D., and Robinson, R. A.: The development and validation of an unmanned aerial system (UAS) for the measurement of methane flux, AGU Fall Meeting Abstracts, Vol. 2017, A44F-05, https://ui.adsabs.harvard.edu/abs/2017AGUFM.A44F..05A (last access: 28 June 2023), 2017.
Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R., Brandt, A. R., Davis Kenneth, J., Herndon, S. C., Jacob, D. J., Karion, A.,
Kort, E. A., Lamb, B. K., Lauvaux, T., Maasakkers, J. D., Marchese, A. J.,
Omara, M., Pacala, S. W., Peischl, J., Robinson, A. L., Shepson, P. B., Sweeney, C., Townsend-Small, A., Wofsy, S. C., and Hamburg, S. P.: Assessment of methane emissions from the U.S. oil and gas supply chain, Science, 361, 186–188, 2018. a
Ars, S., Broquet, G., Yver Kwok, C., Roustan, Y., Wu, L., Arzoumanian, E., and Bousquet, P.: Statistical atmospheric inversion of local gas emissions by coupling the tracer release technique and local-scale transport modelling: a test case with controlled methane emissions, Atmos. Meas. Tech., 10, 5017–5037, https://doi.org/10.5194/amt-10-5017-2017, 2017.
Aubrey, A. D., Thorpe, A. K., Christensen, L. E., Dinardo, S. Frankenberg, C., Rahn, T. A., and Dubey, M.: Demonstration of Technologies for Remote and in Situ Sensing of Atmospheric Methane Abundances-a Controlled Release Experiment, AGU Fall Meeting Abstracts, Vol. 2013, A44E-05, https://ui.adsabs.harvard.edu/abs/2013AGUFM.A44E..05A/abstract (last access: 28 June 2023), 2013. a
Ayasse, A. K., Dennison, P. E., Foote, M., Thorpe, A. K., Joshi, S., Green, R. O., Duren, R. M., Thompson, D. R., and Roberts, D. A.: Methane mapping with future satellite imaging spectrometers, Remote Sensing, 11, 3054, https://doi.org/10.3390/rs11243054, 2019. a
Brandt, A. R., Heath, G. A., and Cooley, D.: Methane leaks from natural gas systems follow extreme distributions, Environ. Sci. Technol., 50, 12512–12520, https://doi.org/10.1021/acs.est.6b04303, 2016. a, b
Brantley, H. L., Thoma, E. D., Squier, W. C., Guven, B. B., and Lyon, D.: Assessment of methane emissions from oil and gas production pads using mobile measurements, Environ. Sci. Technol., 48, 14508–14515, https://doi.org/10.1021/es503070q, 2014.
Chopra, C.: Quantification and mapping of methane emissions using eddy covariance in a controlled subsurface synthetic natural gas release experiment, PhD dissertation, University of British Columbia, https://doi.org/10.14288/1.0395399, 2020. a
Conen, F. and Smith, K. A.: A re‐examination of closed flux chamber methods for the measurement of trace gas emissions from soils to the atmosphere, Eur. J. Soil Sci., 49, 701–707, https://doi.org/10.1046/j.1365-2389.1998.4940701.x, 1998. a
Conley, S., Faloona, I., Mehrotra, S., Suard, M., Lenschow, D. H., Sweeney, C., Herndon, S., Schwietzke, S., Pétron, G., Pifer, J., Kort, E. A., and Schnell, R.: Application of Gauss's theorem to quantify localized surface emissions from airborne measurements of wind and trace gases, Atmos. Meas. Tech., 10, 3345–3358, https://doi.org/10.5194/amt-10-3345-2017, 2017.
Connolly, J. I., Robinson, R. A., and Gardiner, T. D.: Assessment of the Bacharach Hi Flow® Sampler characteristics and potential failure modes when measuring methane emissions, Measurement, 145, 226–233, 2019. a
Cooper, J., Dubey, L., and Hawkes, A.: Methane detection and quantification in the upstream oil and gas sector: the role of satellites in emissions detection, reconciling and reporting, Environmental Science: Atmospheres, 2, 9–23, 2022. a
Cusworth, D. H., Thorpe, A. K., Ayasse, A. K., Stepp, D., Heckler, J., Asner, G. P., Miller, C. E., Yadav, V., Chapman, J. W., Eastwood, M. L., Green, R. O., Hmiel, B., Lyon, D. R., and Duren, R. M.: Strong methane point sources contribute a disproportionate fraction of total emissions across multiple basins in the United States, P. Natl. Acad. Sci. USA, 119, e2202338119, https://doi.org/10.1073/pnas.2202338119, 2022. a
de Foy, B., Schauer, J. J., Lorente, A., and Borsdorff, T.: Investigating high methane emissions from urban areas detected by TROPOMI and their association with untreated wastewater, Environ. Res. Lett., 18, 044004, https://doi.org/10.1088/1748-9326/acc118, 2023. a
EC (European Commission): Joint EU-US Press Release on the Global Methane Pledge, European Commission - Press release, https://ec.europa.eu/commission/presscorner/detail/en/IP_21_4785 (last access: 19 September 2021), 2021. a
ECCC (Environment and Climate Change Canada): National Inventory Report 1990–2021: Greenhouse Gas Sources and Sinks in Canada, ECCC, https://publications.gc.ca/collections/collection_2023/eccc/En81-4-2021-1-eng.pdf (last access: 20 March 2023), 2021. a
Edie, R., Robertson, A. M., Field, R. A., Soltis, J., Snare, D. A., Zimmerle, D., Bell, C. S., Vaughn, T. L., and Murphy, S. M.: Constraining the accuracy of flux estimates using OTM 33A, Atmos. Meas. Tech., 13, 341–353, https://doi.org/10.5194/amt-13-341-2020, 2020. a, b
El Hachem, K. and Kang, M.: Methane and hydrogen sulfide emissions from abandoned, active, and marginally producing oil and gas wells in Ontario, Canada, Sci. Total Environ., 823, 153491, https://doi.org/10.1016/j.scitotenv.2022.153491, 2022. a, b
EPA (U.S. Environmental Protection Agency): Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021, EPA 430-R-23-002, https://www.epa.gov/system/files/documents/2023-04/US-GHG-Inventory-2023-Main-Text.pdf (last access: 25 April 2023), 2021. a
Etiope, G. and Schwietzke, S.: Global geological methane emissions: An update of top-down and bottom-up estimates, Elementa: Science of the Anthropocene, 7, 47, https://doi.org/10.1525/elementa.383, 2019.
Feitz, A., Schroder, I., Phillips, F., Coates, T., Negandhi, K., Day, S., Luhar, A., Bhatia, S., Edwards, G., Hrabar, S., and Hernandez, E.: The Ginninderra CH4 and CO2 release experiment: An evaluation of gas detection and quantification techniques, Int. J. Greenh. Gas Con., 70, 202–224, https://doi.org/10.1016/j.ijggc.2017.11.018, 2018.
Fox, T. A., Barchyn, T. E., Risk, D., Ravikumar, A. P., and Hugenholtz, C. H.: A review of close-range and screening technologies for mitigating fugitive methane emissions in upstream oil and gas, Environ. Res. Lett., 14, 053002, https://doi.org/10.1088/1748-9326/ab0cc3, 2019. a, b
Fries, A. E., Schifman, L. A., Shuster, W. D., and Townsend-Small, A.: Street-level emissions of methane and nitrous oxide from the wastewater collection system in Cincinnati, Ohio. Environ. Pollut., 236, 247–256, https://doi.org/10.1016/j.envpol.2018.01.076, 2018. a
Gardiner, T., Helmore, J., Innocenti, F., and Robinson, R.: Field validation of remote sensing methane emission measurements, Remote Sensing, 9, 956, https://doi.org/10.3390/rs9090956, 2017.
Heltzel, R., Johnson, D., Zaki, M., Gebreslase, A., and Abdul-Aziz, O. I.: Understanding the Accuracy Limitations of Quantifying Methane Emissions Using Other Test Method 33A, Environments, 9, 47, https://doi.org/10.3390/environments9040047, 2022.
Hendrick, M. F., Ackley, R., Sanaie-Movahed, B., Tang, X., and Phillips, N. G.: Fugitive methane emissions from leak-prone natural gas distribution infrastructure in urban environments, Environ. Pollut., 213, 710–716, https://doi.org/10.1016/j.envpol.2016.01.094, 2016. a
Howard, T., Ferrara, T. W., and Townsend-Small, A.: Sensor transition failure in the high flow sampler: Implications for methane emission inventories of natural gas infrastructure, J. Air Waste Manage., 65, 856–862, https://doi.org/10.1080/10962247.2015.1025925, 2015. a
IEA: Net Zero by 2050, IEA, Paris, https://www.iea.org/reports/net-zero-by-2050 (last access: 25 October 2022), 2021. a
Johnson, M. R., Tyner, D. R., and Szekeres, A. J.: Blinded evaluation of airborne methane source detection using Bridger Photonics LiDAR, Remote Sens. Environ., 259, 112418, https://doi.org/10.1016/j.rse.2021.112418, 2021.
Johnson, M. R., Tyner, D. R., and Conrad, B. M.: Origins of oil and gas sector methane emissions: on-site investigations of aerial measured sources, Environ. Sci. Technol., 57, 2484–2494, https://doi.org/10.1021/acs.est.2c07318, 2023. a
Kang, M., Kanno, C. M., Reid, M. C., Zhang, X., Mauzerall, D. L., Celia, M. A., Chen, Y., and Onstott, T. C.: Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania, P. Natl. Acad. Sci. USA, 111, 18173–18177, https://doi.org/10.1073/pnas.1408315111, 2014. a, b
Kang, M., Christian, S., Celia, M. A., Mauzerall, D. L., Bill, M., Miller, A. R., Chen, Y., Conrad, M. E., Darrah, T. H., and R. B. Jackson, R. B.: Identification and characterization of high methane-emitting abandoned oil and gas wells, P. Natl. Acad. Sci. USA, 113, 13636–13641, https://doi.org/10.1073/pnas.1605913113, 2016. a, b, c
Kang, M., Mauzerall, D. L., Ma, D. Z., and Celia, M. A.: Reducing methane emissions from abandoned oil and gas wells: Strategies and costs, Energ. Policy, 132, 594–601, https://doi.org/10.1016/j.enpol.2019.05.045, 2019. a
Kumar, P., Broquet, G., Caldow, C., Laurent, O., Gichuki, S., Cropley, F., Yver‐Kwok, C., Fontanier, B., Lauvaux, T., Ramonet, M., and Shah, A.: Near‐field atmospheric inversions for the localization and quantification of controlled methane releases using stationary and mobile measurements, Q. J. Roy. Meteor. Soc., 148, 1886–1912, https://doi.org/10.1002/qj.4283, 2022. a
Lamb, B. K., Edburg, S. L., Ferrara, T. W., Howard, T., Harrison, M. R.,
Kolb, C. E., Townsend-Small, A., Dyck, W., Possolo, A., and Whetstone, J. R.: Direct measurements show decreasing methane emissions from natural gas local distribution systems in the United States, Environ. Sci. Technol., 49, 5161–5169, https://doi.org/10.1021/es505116p, 2015. a
Lamb, B. K., Cambaliza, M. O. L., Davis, K. J., Edburg, S. L., Ferrara, T. W., Floerchinger, C., Heimburger, A. M. F., Herndon, S., Lauvaux, T., Lavoie, T., Lyon, D. R., Miles, N., Prasad, K. R., Richardson, S., Roscioli, J. R., Salmon, O. E., Shepson, P. B., Stirm, B. H., and Whetstone, J.: Direct and indirect measurements and modeling of methane emissions in Indianapolis, Indiana, Environ. Sci. Technol., 50, 8910–8917, https://doi.org/10.1021/acs.est.6b01198, 2016. a
Levy, P. E., Gray, A., Leeson, S. R., Gaiawyn, J., Kelly, M. P. C., Cooper, M. D. A., Dinsmore, K. J., Jones, S. K., and Sheppard, L. J.: Quantification of uncertainty in trace gas fluxes measured by the static chamber method, Eur. J. Soil Sci., 62, 811–821, https://doi.org/10.1111/j.1365-2389.2011.01403.x, 2011. a
MacKay, K., Lavoie, M., Bourlon, E., Atherton, E., O’Connell, E., Baillie, J., Fougère, C., and Risk, D.: Methane emissions from upstream oil and gas production in Canada are underestimated, Scientific Reports, 11, 8041, https://doi.org/10.1038/s41598-021-87610-3, 2021. a
Martinez, B., Miller, T. W., and Yalin, A. P.: Cavity ring-down methane sensor for small unmanned aerial systems, Sensors, 20, 454, https://doi.org/10.3390/s20020454, 2020.
Morales, R., Ravelid, J., Vinkovic, K., Korbeń, P., Tuzson, B., Emmenegger, L., Chen, H., Schmidt, M., Humbel, S., and Brunner, D.: Controlled-release experiment to investigate uncertainties in UAV-based emission quantification for methane point sources, Atmos. Meas. Tech., 15, 2177–2198, https://doi.org/10.5194/amt-15-2177-2022, 2022.
NACEM (National Academies of Sciences, Engineering, and Medicine): Improving Characterization of Anthropogenic Methane Emissions in the United States, The National Academies Press, Washington, DC, https://doi.org/10.17226/24987, 2018. a, b
Nottrott, A., Rahn, T. A., Costigan, K. R., Canfield, J., Arata, C., Dubey, M., Frankenberg, C., Thorpe, A. K., and Aubrey, A. D.: Measurements and Simulations of Methane Concentration During a Controlled Release Experiment for Top-down Emission Quantification by In Situ and Remote Sensing.” AGU Fall Meeting Abstracts, Vol. 2013, https://ui.adsabs.harvard.edu/abs/2013AGUFM.A53A0151N (last access: 28 June 2023), 2013.
Pedersen, A. R., Petersen, S. O., and Schelde, K.: A comprehensive approach to soil‐atmosphere trace‐gas flux estimation with static chambers, Eur. J. Soil Sci., 61, 888–902, https://doi.org/10.1111/j.1365-2389.2010.01291.x, 2010. a
Pihlatie, M. K., Christiansen, J. R., Aaltonen, H., Korhonen, J. F. J., Nordbo, A., Rasilo, T., Benanti, G., Giebels, M., Helmy, M., Sheehy, J., Jones, S., Juszczak, R., Klefoth, R., Lobo-do-Vale, R., Rosa, A. P.,
Schreiber, P., Serça, D., Vicca, S., Wolf, B., and Pumpanen, J: Comparison of static chambers to measure CH4 emissions from soils, Agr. Forest Meteorol., 171, 124–136, https://doi.org/10.1016/j.agrformet.2012.11.008, 2013. a, b, c, d, e
Raich, J. W., Bowden, R. D., and Steudler, P. A.: Comparison of two static chamber techniques for determining carbon dioxide efflux from forest soils, Soil Sci. Soc. Am. J, 54, 1754–1757, https://doi.org/10.2136/sssaj1990.03615995005400060041x, 1990. a
Ravikumar, A. P., Wang, J., and Brandt, A. R.: Are optical gas imaging technologies effective for methane leak detection?, Environ. Sci. Technol., 51, 718–724, https://doi.org/10.1021/acs.est.6b03906, 2017. a, b, c
Ravikumar, A. P., Wang, J., McGuire, M., Bell, C. S., Zimmerle, D., and Brandt, A. R.: “Good versus good enough?” Empirical tests of methane leak detection sensitivity of a commercial infrared camera, Environ. Sci. Technol., 52, 2368–2374, https://doi.org/10.1021/acs.est.7b04945, 2018.
Ravikumar, A. P., Sreedhara, S., Wang, J., Englander, J., Roda-Stuart, D., Bell, C., Zimmerle, D., Lyon, D., Mogstad, I., Ratner, B., and Brandt, A. R.:
Single-blind inter-comparison of methane detection technologies–results from the Stanford/EDF Mobile Monitoring Challenge, Elementa: Science of the Anthropocene, 7, 37, https://doi.org/10.1525/elementa.373, 2019.
Riddick, S. N., Mauzerall, D. L., Celia, M. A., Kang, M., Bressler, K., Chu, C., and Gum, C. D.: Measuring methane emissions from abandoned and active oil and gas wells in West Virginia, Sci. Total Environ., 651, 1849–1856, https://doi.org/10.1016/j.scitotenv.2018.10.082, 2019. a
Riddick, S. N., Ancona, R., Mbua, M., Bell, C. S., Duggan, A., Vaughn, T. L., Bennett, K., and Zimmerle, D. J.: A quantitative comparison of methods used to measure smaller methane emissions typically observed from superannuated oil and gas infrastructure, Atmos. Meas. Tech., 15, 6285–6296, https://doi.org/10.5194/amt-15-6285-2022, 2022. a, b, c, d, e, f, g
Robertson, A. M., Edie, R., Snare, D., Soltis, J., Field, R. A., Burkhart, M. D., Bell, C. S., Zimmerle, D., and Murphy, S. M.: Variation in methane emission rates from well pads in four oil and gas basins with contrasting production volumes and compositions, Environ. Sci. Technol., 51, 8832–8840, https://doi.org/10.1021/acs.est.7b00571, 2017. a, b
Rutherford, J. S., Sherwin, E. D., Ravikumar, A. P., Heath, G. A., Englander, J., Cooley, D., Lyon, D., Omara, M., Langfitt, Q., and Brandt, A. R.: Closing the methane gap in US oil and natural gas production emissions inventories, Nat. Commun., 12, 4715, https://doi.org/10.1038/s41467-021-25017-4, 2021. a
Saint-Vincent, P. M. B., Reeder, M. D., Sams, J. I., and Pekney, N. J.: An analysis of abandoned oil well characteristics affecting methane emissions estimates in the Cherokee platform in Eastern Oklahoma, Geophys. Res. Lett., 47, e2020GL089663, https://doi.org/10.1029/2020GL089663, 2020. a
Scafutto, R. D. M., de Souza Filho, C. R., Riley, D. N., and de Oliveira, W. J.: Evaluation of thermal infrared hyperspectral imagery for the detection of onshore methane plumes: Significance for hydrocarbon exploration and monitoring, Int. J. Appl. Earth Obs., 64, 311–325, https://doi.org/10.1016/j.jag.2017.07.002, 2018.
Seiler, W., Holzapfel-Pschorn, A., Conrad, R., and D. Scharffe, D.: Methane emission from rice paddies, J. Atmos. Chem., 1, 241–268, https://doi.org/10.1007/BF00058731, 1983. a
Sherwin, E. D., Chen, Y., Ravikumar, A. P., and Brandt, Adam R.: Single-blind test of airplane-based hyperspectral methane detection via controlled releases, Elementa: Science of the Anthropocene, 9, 00063, https://doi.org/10.1525/elementa.2021.00063, 2021. a
Sherwin, E. D., Rutherford, J. S., Chen, Y., Aminfard, S., Kort, E. A., Jackson, R. B., and Brandt, A. R.: Single-blind validation of space-based point-source detection and quantification of onshore methane emissions, Scientific Reports, 13, 3836, https://doi.org/10.1038/s41598-023-30761-2, 2023. a
Singh, D., Barlow, B., Hugenholtz, C., Funk, W., Robinson, C., and Ravikumar, A. P.: Field Performance of New Methane Detection Technologies: Results from the Alberta Methane Field Challenge, EarthArXiv, https://doi.org/10.31223/X5GS46, 2021. a
Smith, B. J., John, G., Christensen, L. E., and Chen, Y.: Fugitive methane leak detection using sUAS and miniature laser spectrometer payload: System, application and groundtruthing tests, in: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017, IEEE, https://doi.org/10.1109/ICUAS.2017.7991403, 2017.
Smith, K. A. and Cresser, M. S.: Measurement of trace gases, I: gas analysis, chamber methods, and related procedures, in: Soil and Environmental Analysis, CRC Press, 394–433, https://www.taylorfrancis.com/chapters/edit/10.1201/9780203913024-16, 2003. a
Tannant, D., Smith, K., Cahill, A., Hawthorne, I., Ford, O., Black, A., and Beckie, R.: Evaluation of a drone and laser-based methane sensor for detection of fugitive methane emissions, British Columbia Oil and Gas Research and Innovation Society, Vancouver, BC, Canada, 2018.
Thorpe, A. K., Frankenberg, C., Aubrey, A. D., Roberts, D. A., Nottrott, A. A., Rahn, T. A., Sauer, J. A., Dubey, M. K., Costigan, K. R., Arata, C., Steffke, A. M., Hills, S., Haselwimmer, C., Charlesworth, D., Funk, C. C., Green, R. O., Lundeen, S. R., Boardman, J. W., Eastwood, M. L., Sarture, C. M., Nolte, S. H., Mccubbin, I. B., Thompson, D. R., and McFadden, J. P.: Mapping methane concentrations from a controlled release experiment using the next generation airborne visible/infrared imaging spectrometer (AVIRIS-NG), Remote Sens. Environ., 179, 104–115, https://doi.org/10.1016/j.rse.2016.03.032, 2016.
Thorpe, A. K., O'Handley, C., Emmitt, G. D., DeCola, P. L., Hopkins, F. M., Yadav, V., Guha, A., Newman, S., Herner, J. D., Falk, M., and Duren, R. M.: Improved methane emission estimates using AVIRIS-NG and an Airborne Doppler Wind Lidar, Remote Sens. Environ., 266, 112681, https://doi.org/10.1016/j.rse.2021.112681, 2021.
Titchener, J., Millington-Smith, D., Goldsack, C., Harrison, G., Dunning, A., Ai, X., and Reed, M.: Single photon Lidar gas imagers for practical and widespread continuous methane monitoring, Appl. Energ., 306, 118086, https://doi.org/10.1016/j.apenergy.2021.118086, 2022.
Townsend-Small, A. and Hoschouer, J.: Direct measurements from shut-in and other abandoned wells in the Permian Basin of Texas indicate some wells are a major source of methane emissions and produced water, Environ. Res. Lett., 16, 054081, https://doi.org/10.1088/1748-9326/abf06f, 2021. a
Townsend-Small, A., Ferrara, T. W., Lyon, D. R., Fries, A. E., and Lamb, B. K.: Emissions of coalbed and natural gas methane from abandoned oil and gas wells in the United States, Geophys. Res. Lett., 43, 2283–2290, https://doi.org/10.1002/2015GL067623, 2016. a
Tratt, D. M., Buckland, K. N., Hall, J. L., Johnson, P. D., Keim, E. R., Leifer, I., Westberg, K., and Young, S. J.: Airborne visualization and quantification of discrete methane sources in the environment, Remote Sens. Environ., 154, 74–88, https://doi.org/10.1016/j.rse.2014.08.011, 2014.
Tyner, D. R. and Johnson, M. R.: Where the methane is–Insights from novel airborne LiDAR measurements combined with ground survey data, Environ. Sci. Technol., 55, 9773–9783, https://doi.org/10.1021/acs.est.1c01572, 2021. a
Varon, D. J., Jacob, D. J., McKeever, J., Jervis, D., Durak, B. O. A., Xia, Y., and Huang, Y.: Quantifying methane point sources from fine-scale satellite observations of atmospheric methane plumes, Atmos. Meas. Tech., 11, 5673–5686, https://doi.org/10.5194/amt-11-5673-2018, 2018. a
von Fischer, J. C., Ham, J. M., Griebenow, C., Schumacher, R. S., and Salo, J.: Quantifying urban natural gas leaks from street-level methane mapping: measurements and uncertainty, AGU Fall Meeting Abstracts, 2013, A31G-0176, 2013.
von Fischer, J. C., Cooley, D., Chamberlain, S., Gaylord, A., Griebenow, C. J., Hamburg, S. P., Salo, J., Schumacher, R., Theobald, D., and Ham, J.: Rapid, vehicle-based identification of location and magnitude of urban natural gas pipeline leaks, Environ. Sci. Technol., 51, 4091–4099, https://doi.org/10.1021/acs.est.6b06095, 2017. a
Wang, J., Tchapmi, L. P., Ravikumar, A. P., McGuire, M., Bell, C. S., Zimmerle, D., Savarese, S., and Brandt, A. R.: Machine vision for natural gas methane emissions detection using an infrared camera, Appl. Energ., 257, 113998, https://doi.org/10.1016/j.apenergy.2019.113998, 2020.
Wang, J., Ji, J., Ravikumar, A. P., Savarese, S., and Brandt, A. R.: VideoGasNet: Deep learning for natural gas methane leak classification using an infrared camera, Energy, 238, 121516, https://doi.org/10.1016/j.energy.2021.121516, 2022.
Weller, Z. D., Yang, D. K., and von Fischer, J. C.: An open source algorithm to detect natural gas leaks from mobile methane survey data, PLoS One, 14, e0212287, https://doi.org/10.1371/journal.pone.0212287, 2019.
Williams, J. P., Regehr, A., and Kang, M.: Methane emissions from abandoned oil and gas wells in Canada and the United States, Environ. Sci. Technol., 55, 563–570, https://doi.org/10.1021/acs.est.0c04265, 2020. a, b, c
Williams, J. P., Ars, S., Vogel, F., Regehr, A., and Kang, M.: Differentiating and Mitigating Methane Emissions from Fugitive Leaks from Natural Gas Distribution, Historic Landfills, and Manholes in Montréal, Canada, Environ. Sci. Technol., 56, 16686–16694, https://doi.org/10.1021/acs.est.2c06254, 2022. a, b, c, d, e
Zhou, X., Peng, X., Montazeri, A., McHale, L. E., Gaßner, S., Lyon, D. R., Yalin, A. P., and Albertson, J. D.: Mobile measurement system for the rapid and cost-effective surveillance of methane and volatile organic compound emissions from oil and gas production sites, Environ. Sci. Technol., 55, 581–592, https://doi.org/10.1021/acs.est.0c06545, 2020.
Short summary
Methane is powerful greenhouse gas; thus, to reduce methane emissions, it is important that the methods used to measure methane are tested and validated. The static chamber method is an enclosure-based technique that directly measures methane emissions; however, it has not been thoroughly tested for the new variety of methane sources that it is currently being used for. We find that the static chamber method can accurately measure methane emissions under a wide range of methane emission rates.
Methane is powerful greenhouse gas; thus, to reduce methane emissions, it is important that the...