Articles | Volume 16, issue 15
https://doi.org/10.5194/amt-16-3631-2023
https://doi.org/10.5194/amt-16-3631-2023
Research article
 | 
08 Aug 2023
Research article |  | 08 Aug 2023

Detection of aerosol and cloud features for the EarthCARE atmospheric lidar (ATLID): the ATLID FeatureMask (A-FM) product

Gerd-Jan van Zadelhoff, David P. Donovan, and Ping Wang

Related authors

Aeolus lidar surface return (LSR) at 355 nm as a new Aeolus Level-2A product
Lev D. Labzovskii, Gerd-Jan van Zadelhoff, David P. Donovan, Jos de Kloe, L. Gijsbert Tilstra, Ad Stoffelen, Damien Josset, and Piet Stammes
Atmos. Meas. Tech., 17, 7183–7208, https://doi.org/10.5194/amt-17-7183-2024,https://doi.org/10.5194/amt-17-7183-2024, 2024
Short summary
Evaluation of Aeolus feature mask and particle extinction coefficient profile products using CALIPSO data
Ping Wang, David Patrick Donovan, Gerd-Jan van Zadelhoff, Jos de Kloe, Dorit Huber, and Katja Reissig
Atmos. Meas. Tech., 17, 5935–5955, https://doi.org/10.5194/amt-17-5935-2024,https://doi.org/10.5194/amt-17-5935-2024, 2024
Short summary
The EarthCARE lidar cloud and aerosol profile processor (A-PRO): the A-AER, A-EBD, A-TC, and A-ICE products
David Patrick Donovan, Gerd-Jan van Zadelhoff, and Ping Wang
Atmos. Meas. Tech., 17, 5301–5340, https://doi.org/10.5194/amt-17-5301-2024,https://doi.org/10.5194/amt-17-5301-2024, 2024
Short summary
An intercomparison of EarthCARE cloud, aerosol, and precipitation retrieval products
Shannon L. Mason, Howard W. Barker, Jason N. S. Cole, Nicole Docter, David P. Donovan, Robin J. Hogan, Anja Hünerbein, Pavlos Kollias, Bernat Puigdomènech Treserras, Zhipeng Qu, Ulla Wandinger, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 17, 875–898, https://doi.org/10.5194/amt-17-875-2024,https://doi.org/10.5194/amt-17-875-2024, 2024
Short summary
Cloud optical and physical properties retrieval from EarthCARE multi-spectral imager: the M-COP products
Anja Hünerbein, Sebastian Bley, Hartwig Deneke, Jan Fokke Meirink, Gerd-Jan van Zadelhoff, and Andi Walther
Atmos. Meas. Tech., 17, 261–276, https://doi.org/10.5194/amt-17-261-2024,https://doi.org/10.5194/amt-17-261-2024, 2024
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Optimal estimation of cloud properties from thermal infrared observations with a combination of deep learning and radiative transfer simulation
He Huang, Quan Wang, Chao Liu, and Chen Zhou
Atmos. Meas. Tech., 17, 7129–7141, https://doi.org/10.5194/amt-17-7129-2024,https://doi.org/10.5194/amt-17-7129-2024, 2024
Short summary
3D cloud masking across a broad swath using multi-angle polarimetry and deep learning
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
Atmos. Meas. Tech., 17, 7027–7047, https://doi.org/10.5194/amt-17-7027-2024,https://doi.org/10.5194/amt-17-7027-2024, 2024
Short summary
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024,https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary
Retrieval of cloud fraction and optical thickness of liquid water clouds over the ocean from multi-angle polarization observations
Claudia Emde, Veronika Pörtge, Mihail Manev, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6769–6789, https://doi.org/10.5194/amt-17-6769-2024,https://doi.org/10.5194/amt-17-6769-2024, 2024
Short summary
Severe-hail detection with C-band dual-polarisation radars using convolutional neural networks
Vincent Forcadell, Clotilde Augros, Olivier Caumont, Kévin Dedieu, Maxandre Ouradou, Cloé David, Jordi Figueras i Ventura, Olivier Laurantin, and Hassan Al-Sakka
Atmos. Meas. Tech., 17, 6707–6734, https://doi.org/10.5194/amt-17-6707-2024,https://doi.org/10.5194/amt-17-6707-2024, 2024
Short summary

Cited articles

Avery, M. A., Ryan, R. A., Getzewich, B. J., Vaughan, M. A., Winker, D. M., Hu, Y., Garnier, A., Pelon, J., and Verhappen, C. A.: CALIOP V4 cloud thermodynamic phase assignment and the impact of near-nadir viewing angles, Atmos. Meas. Tech., 13, 4539–4563, https://doi.org/10.5194/amt-13-4539-2020, 2020. a, b
Barker, H. W., Cole, J. N. S., Qu, Z., Villefranque, N., and Shephard, M.: Radiative closure assessment of retrieved cloud and aerosol properties for the EarthCARE mission: the ACMB-DF product, in preparation, 2023. a
do Carmo, J. P., de Villele, G., Wallace, K., Lefebvre, A., Ghose, K., Kanitz, T., Chassat, F., Corselle, B., Belhadj, T., and Bravetti, P.: ATmospheric LIDar (ATLID): Pre-Launch Testing and Calibration of the European Space Agency Instrument That Will Measure Aerosols and Thin Clouds in the Atmosphere, Atmosphere, 12, 76, https://doi.org/10.3390/atmos12010076, 2021. a, b
Donovan, D., van Zadelhoff, G.-J., and Wang, P.: The ATLID L2a profile processor (A-AER, A-EBD, A-TC and A-ICE products), in preparation, 2023a. a, b, c, d, e, f
Donovan, D. P., Kollias, P., Velázquez Blázquez, A., and van Zadelhoff, G.-J.: The Generation of EarthCARE L1 Test Data sets Using Atmospheric Model Data Sets, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-384, 2023b. a, b, c, d, e
Download
Short summary
The Earth Clouds, Aerosols and Radiation (EarthCARE) satellite mission features the UV lidar ATLID. The ATLID FeatureMask algorithm provides a high-resolution detection probability mask which is used to guide smoothing strategies within the ATLID profile retrieval algorithm, one step further in the EarthCARE level-2 processing chain, in which the microphysical retrievals and target classification are performed.