Articles | Volume 16, issue 15
https://doi.org/10.5194/amt-16-3739-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-3739-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Drone-based meteorological observations up to the tropopause – a concept study
Konrad B. Bärfuss
CORRESPONDING AUTHOR
Institute of Flight Guidance, Technische Universität Braunschweig, 38108 Braunschweig, Germany
Holger Schmithüsen
Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, 27570 Bremerhaven, Germany
Astrid Lampert
Institute of Flight Guidance, Technische Universität Braunschweig, 38108 Braunschweig, Germany
Related authors
Anna Voss, Konrad B. Bärfuss, Beatriz Cañadillas, Maik Angermann, Mark Bitter, Matthias Cremer, Thomas Feuerle, Jonas Spoor, Julie K. Lundquist, Patrick Moriarty, and Astrid Lampert
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-113, https://doi.org/10.5194/wes-2025-113, 2025
Preprint under review for WES
Short summary
Short summary
This study analyses onshore wind farm wakes in a semi-complex terrain with data conducted with the research aircraft of TU Braunschweig during the AWAKEN project. Vertical profiles of temperature, humidity and wind give insights into the stratification of the atmospheric boundary layer, while horizontal profiles downwind of wind farms reveal an amplification of the reduction in wind speed in a semi-complex terrain in particular in a distance of 10 km.
Astrid Lampert, Rudolf Hankers, Thomas Feuerle, Thomas Rausch, Matthias Cremer, Maik Angermann, Mark Bitter, Jonas Füllgraf, Helmut Schulz, Ulf Bestmann, and Konrad B. Bärfuss
Earth Syst. Sci. Data, 16, 4777–4792, https://doi.org/10.5194/essd-16-4777-2024, https://doi.org/10.5194/essd-16-4777-2024, 2024
Short summary
Short summary
We conducted flights above the North Sea and investigated changes in the wind field. The research aircraft measured wind speed, wind direction, temperature, humidity and sea surface at high resolution. Wind parks reduce the wind speed, and the data help to determine how long it takes for the wind speed to recover. The coast also plays an important role, and the wind speed varies with distance from the coast. The results help in wind park planning and better estimating the energy yield.
Barbara Harm-Altstädter, Konrad Bärfuss, Lutz Bretschneider, Martin Schön, Jens Bange, Ralf Käthner, Radovan Krejci, Mauro Mazzola, Kihong Park, Falk Pätzold, Alexander Peuker, Rita Traversi, Birgit Wehner, and Astrid Lampert
Aerosol Research, 1, 39–64, https://doi.org/10.5194/ar-1-39-2023, https://doi.org/10.5194/ar-1-39-2023, 2023
Short summary
Short summary
We present observations of aerosol particles and meteorological parameters in the horizontal and vertical distribution measured with uncrewed aerial systems in the Arctic. The field campaign was carried out during the snow melting season, when ultrafine aerosol particles (UFPs) with a size between 3 and 12 nm occurred frequently. A high variability of the measured UFPs was identified in the spatial scale, which was strongly associated with different atmospheric boundary layer properties.
Amanda Sellmaier, Ellen Damm, Torsten Sachs, Benjamin Kirbus, Inge Wiekenkamp, Annette Rinke, Falk Pätzold, Daiki Nomura, Astrid Lampert, and Markus Rex
EGUsphere, https://doi.org/10.5194/egusphere-2025-3778, https://doi.org/10.5194/egusphere-2025-3778, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study presents continuous ship-borne measurements of methane (CH4) concentration and its isotopic composition monitored during the ice drift MOSAiC expedition in 2020. By applying trajectory analysis, we linked atmospheric CH4 variabilities to air mass pathways transported either over open water or sea ice. This study will contribute to reveal the potential role of ship-borne measurements for filing significant observational gaps in the high Arctic.
Anna Voss, Konrad B. Bärfuss, Beatriz Cañadillas, Maik Angermann, Mark Bitter, Matthias Cremer, Thomas Feuerle, Jonas Spoor, Julie K. Lundquist, Patrick Moriarty, and Astrid Lampert
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-113, https://doi.org/10.5194/wes-2025-113, 2025
Preprint under review for WES
Short summary
Short summary
This study analyses onshore wind farm wakes in a semi-complex terrain with data conducted with the research aircraft of TU Braunschweig during the AWAKEN project. Vertical profiles of temperature, humidity and wind give insights into the stratification of the atmospheric boundary layer, while horizontal profiles downwind of wind farms reveal an amplification of the reduction in wind speed in a semi-complex terrain in particular in a distance of 10 km.
Alexander Mönnig, Ansgar Hahn, Astrid Lampert, and Ulrich Römer
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-112, https://doi.org/10.5194/wes-2025-112, 2025
Preprint under review for WES
Short summary
Short summary
To enable efficient load estimation in wind farms, e.g. to assess Remaining Useful Life, we investigated the feasibility of using surrogate models based on open-source turbine models. In a case study, we adapted such a model to match turbines from a real German onshore wind farm, ran aeroelastic simulations, and trained surrogate models to reconstruct loads observed in 5 years of SCADA data. Comparing predicted and measured values showed promising accuracy, especially for blade bending moments.
Eric Förster, Heidi Huntrieser, Michael Lichtenstern, Falk Pätzold, Lutz Bretschneider, Andreas Schlerf, Sven Bollmann, Astrid Lampert, Jarosław Nęcki, Paweł Jagoda, Justyna Swolkień, Dominika Pasternak, Robert A. Field, and Anke Roiger
EGUsphere, https://doi.org/10.5194/egusphere-2025-1010, https://doi.org/10.5194/egusphere-2025-1010, 2025
Short summary
Short summary
We introduce a helicopter-borne mass balance approach, utilizing the HELiPOD platform, to accurately quantify methane (CH₄) emissions from coal mining activities. The comparison of our top-down mass flux estimates (up to 3000 kg h-1) against those from bottom-up in-mine CH4 safety sensors revealed very good agreement. This approach also has a great potential in quantifying emission source strengths (down to 20 kg h-1) from a wide range of other CH4 emitters (e.g. landfills, oil & gas industry).
Hassnae Erraji, Philipp Franke, Astrid Lampert, Tobias Schuldt, Ralf Tillmann, Andreas Wahner, and Anne Caroline Lange
Atmos. Chem. Phys., 24, 13913–13934, https://doi.org/10.5194/acp-24-13913-2024, https://doi.org/10.5194/acp-24-13913-2024, 2024
Short summary
Short summary
Four-dimensional variational data assimilation allows for the simultaneous optimisation of initial values and emission rates by using trace-gas profiles from drone observations in a regional air quality model. Assimilated profiles positively impact the representation of air pollutants in the model by improving their vertical distribution and ground-level concentrations. This case study highlights the potential of drone data to enhance air quality analyses including local emission evaluation.
Astrid Lampert, Rudolf Hankers, Thomas Feuerle, Thomas Rausch, Matthias Cremer, Maik Angermann, Mark Bitter, Jonas Füllgraf, Helmut Schulz, Ulf Bestmann, and Konrad B. Bärfuss
Earth Syst. Sci. Data, 16, 4777–4792, https://doi.org/10.5194/essd-16-4777-2024, https://doi.org/10.5194/essd-16-4777-2024, 2024
Short summary
Short summary
We conducted flights above the North Sea and investigated changes in the wind field. The research aircraft measured wind speed, wind direction, temperature, humidity and sea surface at high resolution. Wind parks reduce the wind speed, and the data help to determine how long it takes for the wind speed to recover. The coast also plays an important role, and the wind speed varies with distance from the coast. The results help in wind park planning and better estimating the energy yield.
Barbara Harm-Altstädter, Konrad Bärfuss, Lutz Bretschneider, Martin Schön, Jens Bange, Ralf Käthner, Radovan Krejci, Mauro Mazzola, Kihong Park, Falk Pätzold, Alexander Peuker, Rita Traversi, Birgit Wehner, and Astrid Lampert
Aerosol Research, 1, 39–64, https://doi.org/10.5194/ar-1-39-2023, https://doi.org/10.5194/ar-1-39-2023, 2023
Short summary
Short summary
We present observations of aerosol particles and meteorological parameters in the horizontal and vertical distribution measured with uncrewed aerial systems in the Arctic. The field campaign was carried out during the snow melting season, when ultrafine aerosol particles (UFPs) with a size between 3 and 12 nm occurred frequently. A high variability of the measured UFPs was identified in the spatial scale, which was strongly associated with different atmospheric boundary layer properties.
Ladina Steiner, Holger Schmithüsen, Jens Wickert, and Olaf Eisen
The Cryosphere, 17, 4903–4916, https://doi.org/10.5194/tc-17-4903-2023, https://doi.org/10.5194/tc-17-4903-2023, 2023
Short summary
Short summary
The present study illustrates the potential of a combined Global Navigation Satellite System reflectometry and refractometry (GNSS-RR) method for accurate, simultaneous, and continuous estimation of in situ snow accumulation, snow water equivalent, and snow density time series. The combined GNSS-RR method was successfully applied on a fast-moving, polar ice shelf. The combined GNSS-RR approach could be highly advantageous for a continuous quantification of ice sheet surface mass balances.
Udo Frieß, Karin Kreher, Richard Querel, Holger Schmithüsen, Dan Smale, Rolf Weller, and Ulrich Platt
Atmos. Chem. Phys., 23, 3207–3232, https://doi.org/10.5194/acp-23-3207-2023, https://doi.org/10.5194/acp-23-3207-2023, 2023
Short summary
Short summary
Reactive bromine compounds, emitted by the sea ice during polar spring, play an important role in the atmospheric chemistry of the coastal regions of Antarctica. We investigate the sources and impacts of reactive bromine in detail using many years of measurements at two Antarctic sites located at opposite sides of the Antarctic continent. Using a multitude of meteorological observations, we were able to identify the main triggers and source regions for reactive bromine in Antarctica.
Beatriz Cañadillas, Maximilian Beckenbauer, Juan J. Trujillo, Martin Dörenkämper, Richard Foreman, Thomas Neumann, and Astrid Lampert
Wind Energ. Sci., 7, 1241–1262, https://doi.org/10.5194/wes-7-1241-2022, https://doi.org/10.5194/wes-7-1241-2022, 2022
Short summary
Short summary
Scanning lidar measurements combined with meteorological sensors and mesoscale simulations reveal the strong directional and stability dependence of the wake strength in the direct vicinity of wind farm clusters.
Stefanie Arndt, Mario Hoppmann, Holger Schmithüsen, Alexander D. Fraser, and Marcel Nicolaus
The Cryosphere, 14, 2775–2793, https://doi.org/10.5194/tc-14-2775-2020, https://doi.org/10.5194/tc-14-2775-2020, 2020
Cited articles
Archer, C. L. and Caldeira, K.: Historical Trends in the Jet Streams, Geophys. Res. Lett., 35, L08803, https://doi.org/10.1029/2008GL033614, 2008. a
Axford, D. N.: On the Accuracy of Wind Measurements Using an Inertial
Platform in an Aircraft, and an Example of a Measurement of the
Vertical Mesostructure of the Atmosphere, J. Appl.
Meteorol. Climatol., 7, 645–666,
https://doi.org/10.1175/1520-0450(1968)007<0645:OTAOWM>2.0.CO;2, 1968. a
Baker, W. E., Atlas, R., Cardinali, C., Clement, A., Emmitt, G. D., Gentry,
B. M., Hardesty, R. M., Källén, E., Kavaya, M. J., Langland, R., Ma,
Z., Masutani, M., McCarty, W., Pierce, R. B., Pu, Z., Riishojgaard, L. P.,
Ryan, J., Tucker, S., Weissmann, M., and Yoe, J. G.: Lidar-Measured Wind
Profiles: The Missing Link in the Global Observing System, B. Am. Meteorol. Soc., 95, 543–564,
https://doi.org/10.1175/BAMS-D-12-00164.1, 2014. a, b
Bange, J., Esposito, M., Lenschow, D. H., Brown, P. R. A., Dreiling, V., Giez,
A., Mahrt, L., Malinowski, S. P., Rodi, A. R., Shaw, R. A., Siebert, H.,
Smit, H., and Zöger, M.: Measurement of Aircraft State and
Thermodynamic and Dynamic Variables, in: Airborne Measurements
for Environmental Research, Chap. 2, 7–75, John Wiley & Sons,
Ltd, https://doi.org/10.1002/9783527653218.ch2, 2013. a, b, c
Bärfuss, K., Pätzold, F., Altstädter, B., Kathe, E., Nowak, S.,
Bretschneider, L., Bestmann, U., and Lampert, A.: New Setup of the UAS
ALADINA for Measuring Boundary Layer Properties, Atmospheric
Particles and Solar Radiation, Atmosphere, 9, 28,
https://doi.org/10.3390/atmos9010028, 2018. a, b, c, d, e, f, g
Bärfuss, K., Schmithüsen, H., Dirksen, R., Bretschneider, L., Pätzold, F., Bollmann, S., Wickboldt, H., von Unwerth, M., Asmussen, M., Schwarting, T., and Lampert, A.: Atmospheric Profile Measurements Conducted by the Unmanned Aerial System LUCA (Panker, Germany, 2020-07-03 and 2021-05-28), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.937555, 2021a. a, b
Bärfuss, K., Schmithüsen, H., Dirksen, R., Bretschneider, L., Pätzold, F., Bollmann, S., Wickboldt, H., von Unwerth, M., Asmussen, M., Schwarting, T., and Lampert, A.: Radiosonde Measurements Co-Located with Ascends of the Unmanned Aerial System LUCA (Panker, Germany 2020-07-03 and 2021-05-28), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.937556, 2021b. a
Bärfuss, K., Wickboldt, H., Schlerf, A., Bollmann, S., Rausch, T., and Lampert, A.: Atmospheric profile measurements conducted by the unmanned aerial system LUCA (Panker, Germany 2021-10-25 to 2021-10-29), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.961200, 2023a. a
Bärfuss, K., Wickboldt, H., Schlerf, A., Bollmann, S., Rausch, T., and Lampert, A.: Radiosonde measurements co-located with ascends of the unmanned aerial system LUCA (Panker, Germany 2021-10-25 and 2021-10-29), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.961223, 2023b. a
Bauer, P., Thorpe, A., and Brunet, G.: The Quiet Revolution of Numerical
Weather Prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a
Bonavita, M., Hólm, E., Isaksen, L., and Fisher, M.: The Evolution of the
ECMWF Hybrid Data Assimilation System, Q. J. Roy.
Meteorol. Soc., 142, 287–303, https://doi.org/10.1002/qj.2652, 2016. a
Bormann, N., Lawrence, H., Farnan, J., and Farnan, J.: Global Observing System Experiments in the ECMWF Assimilation System, ECMWF, https://doi.org/10.21957/sr184iyz, 2019. a, b
Bouttier, F. and Kelly, G.: Observing-System Experiments in the ECMWF
4D-Var Data Assimilation System, Q. J. Roy.
Meteorol. Soc., 127, 1469–1488, https://doi.org/10.1002/qj.49712757419, 2001. a, b
Boylan, P., Wang, J., Cohn, S. A., Fetzer, E., Maddy, E. S., and Wong, S.:
Validation of AIRS Version 6 Temperature Profiles and Surface-Based
Inversions over Antarctica Using Concordiasi Dropsonde Data, J. Geophys. Res.-Atmos., 120, 992–1007,
https://doi.org/10.1002/2014JD022551, 2015. a
Cardinali, C.: Monitoring the Observation Impact on the Short-Range Forecast,
Q. J. Roy. Meteorol. Soc., 135, 239–250,
https://doi.org/10.1002/qj.366, 2009. a
Cardinali, C.: Observation Impact on the Short Range Forecast,
https://www.ecmwf.int/node/16937 (last access: 1 August 2023), 2013. a
Carminati, F., Migliorini, S., Ingleby, B., Bell, W., Lawrence, H., Newman, S., Hocking, J., and Smith, A.: Using reference radiosondes to characterise NWP model uncertainty for improved satellite calibration and validation, Atmos. Meas. Tech., 12, 83–106, https://doi.org/10.5194/amt-12-83-2019, 2019. a, b
Chander, G., Hewison, T. J., Fox, N., Wu, X., Xiong, X., and Blackwell, W. J.:
Overview of Intercalibration of Satellite Instruments, IEEE
Trans. Geosci. Remote Sens., 51, 1056–1080,
https://doi.org/10.1109/TGRS.2012.2228654, 2013. a
Chilson, P. B., Bell, T. M., Brewster, K. A., Britto Hupsel de Azevedo, G.,
Carr, F. H., Carson, K., Doyle, W., Fiebrich, C. A., Greene, B. R., Grimsley,
J. L., Kanneganti, S. T., Martin, J., Moore, A., Palmer, R. D.,
Pillar-Little, E. A., Salazar-Cerreno, J. L., Segales, A. R., Weber,
M. E., Yeary, M., and Droegemeier, K. K.: Moving towards a Network of
Autonomous UAS Atmospheric Profiling Stations for Observations in the
Earth's Lower Atmosphere: The 3D Mesonet Concept, Sensors, 19,
2720, https://doi.org/10.3390/s19122720, 2019. a
Choi, B. I., Lee, S.-W., Woo, S.-B., Kim, J. C., Kim, Y.-G., and Yang, S. G.: Evaluation of radiosonde humidity sensors at low temperature using ultralow-temperature humidity chamber, Adv. Sci. Res., 15, 207–212, https://doi.org/10.5194/asr-15-207-2018, 2018. a, b
Cione, J. J., Bryan, G. H., Dobosy, R., Zhang, J. A., de Boer, G., Aksoy, A.,
Wadler, J. B., Kalina, E. A., Dahl, B. A., Ryan, K., Neuhaus, J., Dumas, E.,
Marks, F. D., Farber, A. M., Hock, T., and Chen, X.: Eye of the Storm:
Observing Hurricanes with a Small Unmanned Aircraft System, B. Am. Meteorol. Soc., 101, E186–E205,
https://doi.org/10.1175/BAMS-D-19-0169.1, 2020. a
Cohn, S. A., Hock, T., Cocquerez, P., Wang, J., Rabier, F., Parsons, D., Harr,
P., Wu, C.-C., Drobinski, P., Karbou, F., Vénel, S., Vargas, A.,
Fourrié, N., Saint-Ramond, N., Guidard, V., Doerenbecher, A., Hsu,
H.-H., Lin, P.-H., Chou, M.-D., Redelsperger, J.-L., Martin, C., Fox, J.,
Potts, N., Young, K., and Cole, H.: Driftsondes: Providing In Situ
Long-Duration Dropsonde Observations over Remote Regions, B. Am. Meteorol. Soc., 94, 1661–1674,
https://doi.org/10.1175/BAMS-D-12-00075.1, 2013. a
Cooper, W. A., Spuler, S. M., Spowart, M., Lenschow, D. H., and Friesen, R. B.: Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor, Atmos. Meas. Tech., 7, 3215–3231, https://doi.org/10.5194/amt-7-3215-2014, 2014. a
Dabberdt, W. F., Schlatter, T. W., Carr, F. H., Friday, E. W. J., Jorgensen,
D., Koch, S., Pirone, M., Ralph, F. M., Sun, J., Welsh, P., Wilson, J. W.,
and Zou, X.: Multifunctional Mesoscale Observing Networks, B. Am. Meteorol. Soc., 86, 961–982,
https://doi.org/10.1175/BAMS-86-7-961, 2005. a, b
de Boer, G., Diehl, C., Jacob, J., Houston, A., Smith, S. W., Chilson, P.,
Schmale, D. G., Intrieri, J., Pinto, J., Elston, J., Brus, D., Kemppinen, O.,
Clark, A., Lawrence, D., Bailey, S. C. C., Sama, M. P., Frazier, A., Crick,
C., Natalie, V., Pillar-Little, E., Klein, P., Waugh, S., Lundquist, J. K.,
Barbieri, L., Kral, S. T., Jensen, A. A., Dixon, C., Borenstein, S.,
Hesselius, D., Human, K., Hall, P., Argrow, B., Thornberry, T., Wright, R.,
and Kelly, J. T.: Development of Community, Capabilities, and
Understanding through Unmanned Aircraft-Based Atmospheric Research:
The LAPSE-RATE Campaign, B. Am. Meteorol. Soc.,
101, E684–E699, https://doi.org/10.1175/BAMS-D-19-0050.1, 2020. a
de Haan, S., de Jong, P. M. A., and van der Meulen, J.: Characterizing and correcting the warm bias observed in Aircraft Meteorological Data Relay (AMDAR) temperature observations, Atmos. Meas. Tech., 15, 811–818, https://doi.org/10.5194/amt-15-811-2022, 2022. a
Drüe, C., Frey, W., Hoff, A., and Hauf, Th.: Aircraft
Type-Specific Errors in AMDAR Weather Reports from Commercial Aircraft,
Q. J. Roy. Meteorol. Soc., 134, 229–239,
https://doi.org/10.1002/qj.205, 2008. a, b
Dupont, J.-C., Haeffelin, M., Badosa, J., Clain, G., Raux, C., and Vignelles,
D.: Characterization and Corrections of Relative Humidity Measurement
from Meteomodem M10 Radiosondes at Midlatitude Stations, J.
Atmos. Ocean. Technol., 37, 857–871,
https://doi.org/10.1175/JTECH-D-18-0205.1, 2020. a
Elston, J., Argrow, B., Stachura, M., Weibel, D., Lawrence, D., and Pope, D.:
Overview of Small Fixed-Wing Unmanned Aircraft for Meteorological
Sampling, J. Atmos. Ocean. Technol., 32, 97–115,
https://doi.org/10.1175/JTECH-D-13-00236.1, 2015. a
Elston, J. S., Roadman, J., Stachura, M., Argrow, B., Houston, A., and Frew,
E.: The Tempest Unmanned Aircraft System for in Situ Observations of Tornadic
Supercells: Design and VORTEX2 Flight Results, J. Field
Robot., 28, 461–483, https://doi.org/10.1002/rob.20394, 2011. a
Evtushevsky, O. M., Grytsai, A. V., Klekociuk, A. R., and Milinevsky, G. P.: Total Ozone and Tropopause Zonal Asymmetry during the Antarctic Spring, J. Geophys. Res.-Atmos., 113, D00B06, https://doi.org/10.1029/2008JD009881, 2008. a
Eyre, J.: An Introduction to GPS Radio Occultation and Its Use in Numerical
Weather Prediction., in: ECMWF GRAS SAF Workshop on Applications of
GPS Radio Occultation Measurements, 16–18 June 2008, 1–10,
ECMWF, Shinfield Park, Reading, 2008. a
Faccani, C., Rabier, F., Fourrié, N., Agusti-Panareda, A., Karbou, F.,
Moll, P., Lafore, J.-P., Nuret, M., Hdidou, F., and Bock, O.: The Impacts
of AMMA Radiosonde Data on the French Global Assimilation and
Forecast System, Weather Forecast., 24, 1268–1286,
https://doi.org/10.1175/2009WAF2222237.1, 2009. a, b
Fiedler, F. and Panofsky, H. A.: Atmospheric Scales and Spectral Gaps, B. Am. Meteorol. Soc., 51, 1114–1120,
https://doi.org/10.1175/1520-0477(1970)051<1114:ASASG>2.0.CO;2, 1970. a, b, c
Flagg, D. D., Doyle, J. D., Holt, T. R., Tyndall, D. P., Amerault, C. M.,
Geiszler, D., Haack, T., Moskaitis, J. R., Nachamkin, J., and Eleuterio,
D. P.: On the Impact of Unmanned Aerial System Observations on
Numerical Weather Prediction in the Coastal Zone, Mon. Weather
Rev., 146, 599–622, https://doi.org/10.1175/MWR-D-17-0028.1, 2018. a
Fleming, R. J.: The Use of Commercial Aircraft as Platforms for
Environmental Measurements, B. Am. Meteorol.
Soc., 77, 2229–2242,
https://doi.org/10.1175/1520-0477(1996)077<2229:TUOCAA>2.0.CO;2, 1996. a
Fujiwara, M., Shiotani, M., Hasebe, F., Vömel, H., Oltmans, S. J., Ruppert,
P. W., Horinouchi, T., and Tsuda, T.: Performance of the Meteolabor
“Snow White” Chilled-Mirror Hygrometer in the Tropical
Troposphere: Comparisons with the Vaisala RS80 A/H-Humicap
Sensors, J. Atmos. Ocean. Technol., 20, 1534–1542,
https://doi.org/10.1175/1520-0426(2003)020<1534:POTMSW>2.0.CO;2, 2003. a
Geerts, B., Raymond, D. J., Grubišić, V., Davis, C. A., Barth, M. C.,
Detwiler, A., Klein, P. M., Lee, W.-C., Markowski, P. M., Mullendore, G. L.,
and Moore, J. A.: Recommendations for In Situ and Remote Sensing
Capabilities in Atmospheric Convection and Turbulence, B. Am. Meteorol. Soc., 99, 2463–2470,
https://doi.org/10.1175/BAMS-D-17-0310.1, 2018. a, b
Gelaro, R. and Zhu, Y.: Examination of Observation Impacts Derived from
Observing System Experiments (OSEs) and Adjoint Models, Tellus A, 61, 179–193,
https://doi.org/10.1111/j.1600-0870.2008.00388.x, 2009. a
Gettelman, A., Hoor, P., Pan, L. L., Randel, W. J., Hegglin, M. I., and Birner,
T.: The Extratropical Upper Troposphere and Lower Stratosphere,
Rev. Geophys., 49, RG3003, https://doi.org/10.1029/2011RG000355, 2011. a
Goldberg, M., Ohring, G., Butler, J., Cao, C., Datla, R., Doelling, D.,
Gärtner, V., Hewison, T., Iacovazzi, B., Kim, D., Kurino, T., Lafeuille,
J., Minnis, P., Renaut, D., Schmetz, J., Tobin, D., Wang, L., Weng, F., Wu,
X., Yu, F., Zhang, P., and Zhu, T.: The Global Space-Based
Inter-Calibration System, B. Am. Meteorol. Soc.,
92, 467–475, https://doi.org/10.1175/2010BAMS2967.1, 2011. a
Hacker, J., Draper, C., and Madaus, L.: Challenges and Opportunities for
Data Assimilation in Mountainous Environments, Atmosphere, 9, 127,
https://doi.org/10.3390/atmos9040127, 2018. a
Haering, E. Jr.: Airdata Calibration of a High-Performance
Aircraft for Measuring Atmospheric Wind Profiles, in: 28th Aerospace
Sciences Meeting, Aerospace Sciences Meetings, American Institute of
Aeronautics and Astronautics, https://doi.org/10.2514/6.1990-230, 1990. a
Hann, R.: Atmospheric Ice Accretions, Aerodynamic Icing Penalties, and
Ice Protection Systems on Unmanned Aerial Vehicles, NTNU,
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2657638 (last access: 1 August 2023), 2020. a
Hann, R., Enache, A., Nielsen, M. C., Stovner, B. N., van Beeck, J.,
Johansen, T. A., and Borup, K. T.: Experimental Heat Loads for
Electrothermal Anti-Icing and De-Icing on UAVs, Aerospace, 8, 83,
https://doi.org/10.3390/aerospace8030083, 2021. a
Hartmann, J., Gehrmann, M., Kohnert, K., Metzger, S., and Sachs, T.: New calibration procedures for airborne turbulence measurements and accuracy of the methane fluxes during the AirMeth campaigns, Atmos. Meas. Tech., 11, 4567–4581, https://doi.org/10.5194/amt-11-4567-2018, 2018. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023. a, b
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
Global Reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020. a, b, c
Hock, T. F. and Franklin, J. L.: The NCAR GPS Dropwindsonde, B. Am. Meteorol. Soc., 80, 407–420, 1999. a
Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B.,
and Pfister, L.: Stratosphere-Troposphere Exchange, Rev. Geophys.,
33, 403–439, https://doi.org/10.1029/95RG02097, 1995. a
Houston, A. L., PytlikZillig, L. M., and Walther, J. C.: National Weather
Service Data Needs for Short-Term Forecasts and the Role of
Unmanned Aircraft in Filling the Gap: Results from a
Nationwide Survey, B. Am. Meteorol. Soc., 102,
E2106–E2120, https://doi.org/10.1175/BAMS-D-20-0183.1, 2021. a, b
Huang, X., Tepylo, N., Pommier-Budinger, V., Budinger, M., Bonaccurso, E.,
Villedieu, P., and Bennani, L.: A Survey of Icephobic Coatings and Their
Potential Use in a Hybrid Coating/Active Ice Protection System for Aerospace
Applications, Prog. Aerospace Sci., 105, 74–97,
https://doi.org/10.1016/j.paerosci.2019.01.002, 2019. a
Ingleby, B. and Edwards, D.: Changes to Radiosonde Reports and Their Processing
for Numerical Weather Prediction, Atmos. Sc. Lett., 16, 44–49,
https://doi.org/10.1002/asl2.518, 2015. a, b, c
Ingleby, B., Pauley, P., Kats, A., Ator, J., Keyser, D., Doerenbecher, A.,
Fucile, E., Hasegawa, J., Toyoda, E., Kleinert, T., Qu, W., James, J. S.,
Tennant, W., and Weedon, R.: Progress toward High-Resolution, Real-Time
Radiosonde Reports, B. Am. Meteorol. Soc., 97,
2149–2161, https://doi.org/10.1175/BAMS-D-15-00169.1, 2016a. a
Ingleby, B., Rodwell, M., and Isaksen, L.: Global Radiosonde Network under
Pressure, Tech. Rep. 149, ECMWF, https://doi.org/10.21957/cblxtg, 2016b. a
Ingleby, B., Isaksen, L., Kral, T., and Kral, T.: Evaluation and Impact of
Aircraft Humidity Data in ECMWF's NWP System,
https://doi.org/10.21957/4e825dtiy, 2020. a, b
Ingleby, B., Candy, B., Eyre, J., Haiden, T., Hill, C., Isaksen, L., Kleist,
D., Smith, F., Steinle, P., Taylor, S., Tennant, W., and Tingwell, C.: The
Impact of COVID-19 on Weather Forecasts: A Balanced View,
Geophys. Res. Lett., 48, e2020GL090699,
https://doi.org/10.1029/2020GL090699, 2021. a
Ingleby, B., Motl, M., Marlton, G., Edwards, D., Sommer, M., von Rohden, C., Vömel, H., and Jauhiainen, H.: On the quality of RS41 radiosonde descent data, Atmos. Meas. Tech., 15, 165–183, https://doi.org/10.5194/amt-15-165-2022, 2022. a, b, c, d
Inoue, J. and Sato, K.: Toward Sustainable Meteorological Profiling in Polar
Regions: Case Studies Using an Inexpensive UAS on Measuring Lower
Boundary Layers with Quality of Radiosondes, Environ. Res., 205,
112468, https://doi.org/10.1016/j.envres.2021.112468, 2022. a, b, c
Jacob, J. D., Chilson, P. B., Houston, A. L., and Smith, S. W.: Considerations
for Atmospheric Measurements with Small Unmanned Aircraft Systems,
Atmosphere, 9, 252, https://doi.org/10.3390/atmos9070252, 2018. a
Jeck, R. K.: Icing Design Envelopes (14 CFR Parts 25 and 29, Appendix C) Converted to a Distance-Based Format, Federal Aviation Administration Report DOT/FAA/AR-00/30, US Department of Transportation, Washington, DC, USA, 2002. a
Jensen, A. A., Pinto, J. O., Bailey, S. C., Sobash, R. A., de Boer, G.,
Houston, A. L., Chilson, P. B., Bell, T., Romine, G., Smith, S. W., Lawrence,
D. A., Dixon, C., Lundquist, J. K., Jacob, J. D., Elston, J., Waugh, S., and
Steiner, M.: Assimilation of a Coordinated Fleet of Uncrewed Aircraft
System Observations in Complex Terrain: EnKF System Design and
Preliminary Assessment, Mon. Weather Rev., 149, 1459–1480,
https://doi.org/10.1175/mwr-d-20-0359.1, 2021. a
Jensen, A. A., Pinto, J. O., Bailey, S. C. C., Sobash, R. A., Romine, G.,
de Boer, G., Houston, A. L., Smith, S. W., Lawrence, D. A., Dixon, C.,
Lundquist, J. K., Jacob, J. D., Elston, J., Waugh, S., Brus, D., and Steiner,
M.: Assimilation of a Coordinated Fleet of Uncrewed Aircraft System
Observations in Complex Terrain: Observing System Experiments,
Mon. Weather Rev., 150, 2737–2763, https://doi.org/10.1175/MWR-D-22-0090.1, 2022. a
Jonassen, M. O., Ólafsson, H., Ágústsson, H., Rögnvaldsson,
Ó., and Reuder, J.: Improving High-Resolution Numerical Weather
Simulations by Assimilating Data from an Unmanned Aerial System,
Mon. Weather Rev., 140, 3734–3756, https://doi.org/10.1175/MWR-D-11-00344.1,
2012. a
Joyce, K. E., Anderson, K., and Bartolo, R. E.: Of Course We Fly
Unmanned – We're Women!, Drones, 5, 21,
https://doi.org/10.3390/drones5010021, 2021. a
Kalinka, F., Roloff, K., Tendel, J., and Hauf, T.: The In-flight Icing
Warning System ADWICE for European Airspace – Current
Structure, Recent Improvements and Verification Results, Meteorologische
Z., 26, 441–455, https://doi.org/10.1127/metz/2017/0756, 2017. a
Kalman, R. E.: A New Approach to Linear Filtering and Prediction
Problems, J. Basic Eng., 82, 35–45,
https://doi.org/10.1115/1.3662552, 1960. a
Karbou, F., Aires, F., Prigent, C., and Eymard, L.: Potential of Advanced
Microwave Sounding Unit-A (AMSU-A) and AMSU-B Measurements for
Atmospheric Temperature and Humidity Profiling over Land, J.
Geophys. Res.-Atmos., 110, D07109, https://doi.org/10.1029/2004JD005318, 2005. a, b
Kim, S.-M. and Kim, H. M.: Forecast Sensitivity Observation Impact in the
4DVAR and Hybrid-4DVAR Data Assimilation Systems, J.
Atmos. Ocean. Technol., 36, 1563–1575,
https://doi.org/10.1175/JTECH-D-18-0240.1, 2019. a
Koch, S. E., Fengler, M., Chilson, P. B., Elmore, K. L., Argrow, B., Andra,
D. L., and Lindley, T.: On the Use of Unmanned Aircraft for
Sampling Mesoscale Phenomena in the Preconvective Boundary Layer,
J. Atmos. Ocean. Technol., 35, 2265–2288,
https://doi.org/10.1175/JTECH-D-18-0101.1, 2018. a
König-Langlo, G., King, J. C., and Pettré, P.: Climatology of the
Three Coastal Antarctic Stations Dumont d'Urville, Neumayer,
and Halley, J. Geophys. Res.-Atmos., 103,
10935–10946, https://doi.org/10.1029/97JD00527, 1998. a
Konrad, T., Hill, M., Rowland, J., and Meyer, J. H.: A Small, Radio-Controlled
Aircraft as a Platform for Meteorological Sensors, Johns Hopkins APL Tech.
Dig., 10, 11–21, 1970. a
Kotthaus, S., Bravo-Aranda, J. A., Collaud Coen, M., Guerrero-Rascado, J. L., Costa, M. J., Cimini, D., O'Connor, E. J., Hervo, M., Alados-Arboledas, L., Jiménez-Portaz, M., Mona, L., Ruffieux, D., Illingworth, A., and Haeffelin, M.: Atmospheric boundary layer height from ground-based remote sensing: a review of capabilities and limitations, Atmos. Meas. Tech., 16, 433–479, https://doi.org/10.5194/amt-16-433-2023, 2023. a
Kräuchi, A. and Philipona, R.: Return glider radiosonde for in situ upper-air research measurements, Atmos. Meas. Tech., 9, 2535–2544, https://doi.org/10.5194/amt-9-2535-2016, 2016. a
Kren, A. C., Cucurull, L., and Wang, H.: Impact of UAS Global Hawk Dropsonde
Data on Tropical and Extratropical Cyclone Forecasts in 2016,
Weather Forecast., 33, 1121–1141, https://doi.org/10.1175/WAF-D-18-0029.1, 2018. a, b
Lafon, T., Fowler, J., Jiménez, J. F., and Cordoba, G. J. T.: A Viable
Alternative for Conducting Cost-Effective Daily Atmospheric Soundings
in Developing Countries, B. Am. Meteorol. Soc.,
95, 837–842, https://doi.org/10.1175/BAMS-D-13-00125.1, 2014. a
Lampert, A., Altstädter, B., Bärfuss, K., Bretschneider, L., Sandgaard,
J., Michaelis, J., Lobitz, L., Asmussen, M., Damm, E., Käthner, R.,
Krüger, T., Lüpkes, C., Nowak, S., Peuker, A., Rausch, T., Reiser,
F., Scholtz, A., Sotomayor Zakharov, D., Gaus, D., Bansmer, S., Wehner, B.,
and Pätzold, F.: Unmanned Aerial Systems for Investigating the
Polar Atmospheric Boundary Layer – Technical Challenges and
Examples of Applications, Atmosphere, 11, 416,
https://doi.org/10.3390/atmos11040416, 2020. a, b, c, d
Langland, R. H. and Baker, N. L.: Estimation of Observation Impact Using the
NRL Atmospheric Variational Data Assimilation Adjoint System, Tellus A. 56, 189–201,
https://doi.org/10.3402/tellusa.v56i3.14413, 2004. a
Laursen, K. K., Jorgensen, D. P., Brasseur, G. P., Ustin, S. L., and Huning,
J. R.: HIAPER: THE NEXT GENERATION NSF/NCAR RESEARCH AIRCRAFT,
B. Am. Meteorol. Soc., 87, 896–909, 2006. a
Leuenberger, D., Haefele, A., Omanovic, N., Fengler, M., Martucci, G., Calpini,
B., Fuhrer, O., and Rossa, A.: Improving High-Impact Numerical Weather
Prediction with Lidar and Drone Observations, B.
Am. Meteorol. Soc., 101, E1036–E1051,
https://doi.org/10.1175/BAMS-D-19-0119.1, 2020. a, b, c, d, e, f
Lindskog, M., Salonen, K., Järvinen, H., and Michelson, D. B.: Doppler
Radar Wind Data Assimilation with HIRLAM 3DVAR, Mon. Weather
Rev., 132, 1081–1092,
https://doi.org/10.1175/1520-0493(2004)132<1081:DRWDAW>2.0.CO;2, 2004. a
Lorenc, A. C. and Marriott, R. T.: Forecast Sensitivity to Observations in the
Met Office Global Numerical Weather Prediction System, Q. J. Roy. Meteorol. Soc., 140, 209–224, https://doi.org/10.1002/qj.2122,
2014. a
Majewski, J.: The Dynamic Behaviour of Capacitive Humidity Sensors,
Devices and Methods of Measurements, 11, 53–59,
https://doi.org/10.21122/2220-9506-2020-11-1-53-59, 2020. a, b
Mallaun, C., Giez, A., and Baumann, R.: Calibration of 3-D wind measurements on a single-engine research aircraft, Atmos. Meas. Tech., 8, 3177–3196, https://doi.org/10.5194/amt-8-3177-2015, 2015. a
Miloshevich, L. M., Paukkunen, A., Vömel, H., and Oltmans, S. J.:
Development and Validation of a Time-Lag Correction for Vaisala
Radiosonde Humidity Measurements, J. Atmos. Ocean.
Technol., 21, 1305–1327,
https://doi.org/10.1175/1520-0426(2004)021<1305:DAVOAT>2.0.CO;2, 2004. a, b, c
Moninger, W. R., Mamrosh, R. D., and Pauley, P. M.: Automated Meteorological
Reports from Commercial Aircraft, B. Am.
Meteorol. Soc., 84, 203–216, https://doi.org/10.1175/BAMS-84-2-203, 2003. a
Moninger, W. R., Benjamin, S. G., Jamison, B. D., Schlatter, T. W., Smith,
T. L., and Szoke, E. J.: Evaluation of Regional Aircraft Observations Using
TAMDAR, Weather Forecast., 25, 627–645,
https://doi.org/10.1175/2009WAF2222321.1, 2010. a
Ota, Y., Derber, J. C., Kalnay, E., and Miyoshi, T.: Ensemble-Based Observation
Impact Estimates Using the NCEP GFS, Tellus A, 65, 20038, https://doi.org/10.3402/tellusa.v65i0.20038, 2013. a, b, c
Palmer, R., Whelan, D., Bodine, D., Kirstetter, P., Kumjian, M., Metcalf, J.,
Yeary, M., Yu, T.-Y., Rao, R., Cho, J., Draper, D., Durden, S., English, S.,
Kollias, P., Kosiba, K., Wada, M., Wurman, J., Blackwell, W., Bluestein, H.,
Collis, S., Gerth, J., Tuttle, A., Wang, X., and Zrnić, D.: The Need
for Spectrum and the Impact on Weather Observations, B. Am. Meteorol. Soc., 102, E1402–E1407,
https://doi.org/10.1175/BAMS-D-21-0009.1, 2021. a, b
Pätzold, F.: Windmessung mittels Segelflugzeug, Forschungsbericht
2018-04, Niedersächsisches Forschungszentrum für Luftfahrt,
Braunschweig, Germany, https://doi.org/10.24355/dbbs.084-201805221102-1, 2018. a
Pena-Ortiz, C., Gallego, D., Ribera, P., Ordonez, P., and Alvarez-Castro,
M. D. C.: Observed Trends in the Global Jet Stream Characteristics during the
Second Half of the 20th Century, J. Geophys. Res.-Atmos., 118, 2702–2713, https://doi.org/10.1002/jgrd.50305, 2013. a
Petersen, R. A.: On the Impact and Benefits of AMDAR Observations
in Operational Forecasting – Part I: A Review of the
Impact of Automated Aircraft Wind and Temperature Reports,
B. Am. Meteorol. Soc., 97, 585–602,
https://doi.org/10.1175/BAMS-D-14-00055.1, 2016. a, b, c
Petersen, R. A., Cronce, L., Mamrosh, R., and Baker, R.: A Report to the
World Meteorological Organization on the Impact and Benefits of AMDAR
Temperature, Wind and Moisture Observations in Operational Weather
Forecasting, Tech. rep., University of Wisconsin-Madison, Cooperative
Institute for Meteorological Satellite Studies, Space Science and Engineering
center, https://search.library.wisc.edu/catalog/9911154629902121 (last access: 1 August 2023),
2015. a
Petersen, R. A., Cronce, L., Mamrosh, R., Baker, R., and Pauley, P.: On the
Impact and Future Benefits of AMDAR Observations in Operational
Forecasting: Part II: Water Vapor Observations, B.
Am. Meteorol. Soc., 97, 2117–2133,
https://doi.org/10.1175/BAMS-D-14-00211.1, 2016. a, b, c
Pinto, J. O., O'Sullivan, D., Taylor, S., Elston, J., Baker, C. B., Hotz, D.,
Marshall, C., Jacob, J., Barfuss, K., Piguet, B., Roberts, G., Omanovic, N.,
Fengler, M., Jensen, A. A., Steiner, M., and Houston, A. L.: The Status
and Future of Small Uncrewed Aircraft Systems (UAS) in
Operational Meteorology, B. Am. Meteorol. Soc.,
102, E2121–E2136, https://doi.org/10.1175/BAMS-D-20-0138.1, 2021. a, b, c, d, e
Rabier, F., Bouchard, A., Brun, E., Doerenbecher, A., Guedj, S., Guidard, V.,
Karbou, F., Peuch, V.-H., Amraoui, L. E., Puech, D., Genthon, C., Picard, G.,
Town, M., Hertzog, A., Vial, F., Cocquerez, P., Cohn, S. A., Hock, T., Fox,
J., Cole, H., Parsons, D., Powers, J., Romberg, K., VanAndel, J., Deshler,
T., Mercer, J., Haase, J. S., Avallone, L., Kalnajs, L., Mechoso, C. R.,
Tangborn, A., Pellegrini, A., Frenot, Y., Thépaut, J.-N., McNally, A.,
Balsamo, G., and Steinle, P.: The Concordiasi Project in Antarctica,
B. Am. Meteorol. Soc., 91, 69–86,
https://doi.org/10.1175/2009BAMS2764.1, 2010. a
Ralph, F. M., Cannon, F., Tallapragada, V., Davis, C. A., Doyle, J. D.,
Pappenberger, F., Subramanian, A., Wilson, A. M., Lavers, D. A., Reynolds,
C. A., Haase, J. S., Centurioni, L., Ingleby, B., Rutz, J. J., Cordeira,
J. M., Zheng, M., Hecht, C., Kawzenuk, B., and Monache, L. D.: West Coast
Forecast Challenges and Development of Atmospheric River
Reconnaissance, B. Am. Meteorol. Soc., 101,
E1357–E1377, https://doi.org/10.1175/BAMS-D-19-0183.1, 2020. a
Redelsperger, J.-L., Thorncroft, C. D., Diedhiou, A., Lebel, T., Parker, D. J.,
and Polcher, J.: African Monsoon Multidisciplinary Analysis: An
International Research Project and Field Campaign, B.
Am. Meteorol. Soc., 87, 1739–1746,
https://doi.org/10.1175/BAMS-87-12-1739, 2006. a
Reineman, B. D., Lenain, L., and Melville, W. K.: The Use of
Ship-Launched Fixed-Wing UAVs for Measuring the Marine Atmospheric
Boundary Layer and Ocean Surface Processes, J. Atmos.
Ocean. Technol., 33, 2029–2052, https://doi.org/10.1175/JTECH-D-15-0019.1, 2016. a
Rennie, M. P., Isaksen, L., Weiler, F., de Kloe, J., Kanitz, T., and
Reitebuch, O.: The Impact of Aeolus Wind Retrievals on ECMWF Global
Weather Forecasts, Q. J. Roy. Meteorol. Soc.,
147, 3555–3586, https://doi.org/10.1002/qj.4142, 2021. a, b, c, d
Riishojgaard, D. L. P.: Wind Measurements in the WMO Global Observing System, ESA Workshop, p. 31, https://earth.esa.int/eogateway/documents/20142/37627/Day1_AM_L_P_Riishoigaard.pdf (last access: 1 August 2023), 2015. a
Runge, H., Rack, W., Alba, R.-L., and Hepperle, M.: A Solar-Powered HALE-UAV for Arctic Research, in: CEAS Conference 2007, pp. 1–6, Berlin, https://elib.dlr.de/51266/ (last access: 1 August 2023), 2007. a
Schindler, M., Weissmann, M., Schäfler, A., and Radnoti, G.: The Impact
of Dropsonde and Extra Radiosonde Observations during NAWDEX in
Autumn 2016, Mon. Weather Rev., 148, 809–824,
https://doi.org/10.1175/MWR-D-19-0126.1, 2020. a, b
Schuyler, T. J., Gohari, S. M. I., Pundsack, G., Berchoff, D., and Guzman,
M. I.: Using a Balloon-Launched Unmanned Glider to Validate Real-Time
WRF Modeling, Sensors, 19, 1914, https://doi.org/10.3390/s19081914, 2019. a
Secretariat of the Antarctic Treaty: Compilation of Key Documents of the Antarctic Treaty, Secretariat of the Antarctic Treaty, Buenos Aires, 4th edn., https://documents.ats.aq/atcm42/ww/ATCM42_ww011_e.pdf (last access: 1 August 2023), 2019. a
Sørensen, K. L., Borup, K. T., Hann, R., and Hansbø, M.: UAV
Atmospheric Icing Limitations, Climate Report Sor Norway and
Surrounding Regions, Tech. rep., UBIQ Aerospace, 28 pp., https://www.ubiqaerospace.com/climate-report (last access: 1 August 2023), 2021. a
Steiner, A. K., Kirchengast, G., Foelsche, U., Kornblueh, L., Manzini, E., and
Bengtsson, L.: GNSS Occultation Sounding for Climate Monitoring, Phys. Chem. Earth Pt A, 26, 113–124,
https://doi.org/10.1016/S1464-1895(01)00034-5, 2001. a
Stickney, T. M., Shedlov, M. W., and Thompson, D. I.: GOODRICH TOTAL TEMPERATURE SENSORS, Tech. rep., Goodrich, 32 pp., https://data.eol.ucar.edu/file/download/53F7B041406B0/TAT-Report.pdf (last access: 1 August 2023), 1994. a
Sun, Q., Vihma, T., Jonassen, M. O., and Zhang, Z.: Impact of Assimilation
of Radiosonde and UAV Observations from the Southern Ocean in the
Polar WRF Model, Adv. Atmos. Sci., 37, 441–454,
https://doi.org/10.1007/s00376-020-9213-8, 2020. a, b
Tafferner, A., Hauf, T., Leifeld, C., Hafner, T., Leykauf, H., and Voigt, U.:
ADWICE: Advanced Diagnosis and Warning System for Aircraft
Icing Environments, Weather Forecast., 18, 184–203,
https://doi.org/10.1175/1520-0434(2003)018<0184:AADAWS>2.0.CO;2, 2003. a
Thépaut, J.-N. and Andersson, E.: The Global Observing System, in: Data
Assimilation: Making Sense of Observations, edited by Lahoz, W.,
Khattatov, B., and Menard, R., 263–281, Springer, Berlin,
Heidelberg, https://doi.org/10.1007/978-3-540-74703-1_10, 2010. a
VAISALA: Response Time in Humidity Measurement, TECHNICAL NOTE B211803EN-B, VAISALA, https://www.vaisala.com/sites/default/files/documents/Response-time-in-humidity (last access: 1 August 2023),
2021. a
van den Kroonenberg, A., Martin, T., Buschmann, M., Bange, J., and
Vörsmann, P.: Measuring the Wind Vector Using the Autonomous Mini
Aerial Vehicle M2AV, J. Atmos. Ocean. Technol., 25,
1969–1982, https://doi.org/10.1175/2008JTECHA1114.1, 2008. a
Vinnichenko, N. K.: The Kinetic Energy Spectrum in the Free
Atmosphere – 1 Second to 5 Years, Tellus, 22, 158–166,
https://doi.org/10.3402/tellusa.v22i2.10210, 1970. a, b
Vömel, H., Argrow, B. M., Axisa, D., Chilson, P., Ellis, S., Fladeland, M.,
Frew, E. W., Jacob, J., Lord, M., Moore, J., Oncley, S., Roberts, G.,
Schoenung, S., and Wolff, C.: The NCAR/EOL Community Workshop on
Unmanned Aircraft Systems for Atmospheric Research – Final
Report, none, https://doi.org/10.5065/D6X9292S, 2018. a
Vörsmann, P.: Ein Beitrag zur bordautonomen Windmessung, Dissertation,
TU Braunschweig, 1984. a
Wagner, T. J. and Petersen, R. A.: On the Performance of Airborne
Meteorological Observations against Other In Situ Measurements, J. Atmos. Ocean. Technol., 38, 1217–1230,
https://doi.org/10.1175/JTECH-D-20-0182.1, 2021. a, b, c
Wang, B., Zou, X., and Zhu, J.: Data Assimilation and Its Applications,
P. Natl. Acad. Sci. USA, 97, 11143–11144,
https://doi.org/10.1073/pnas.97.21.11143, 2000. a
Wang, J., Hock, T., Cohn, S. A., Martin, C., Potts, N., Reale, T., Sun, B., and
Tilley, F.: Unprecedented Upper-Air Dropsonde Observations over
Antarctica from the 2010 Concordiasi Experiment: Validation of
Satellite-Retrieved Temperature Profiles, Geophys. Res. Lett., 40,
1231–1236, https://doi.org/10.1002/grl.50246, 2013. a
Watts, A. C., Ambrosia, V. G., and Hinkley, E. A.: Unmanned Aircraft
Systems in Remote Sensing and Scientific Research:
Classification and Considerations of Use, Remote Sens., 4,
1671–1692, https://doi.org/10.3390/rs4061671, 2012. a
WMO: Guide to the Global Observing System, WMO, World Meteorological Organization, Geneva, 2010th edn. updated in 2017, 228 pp., https://library.wmo.int/index.php?lvl=notice_display&id=12516 (last access: 1 August 2023), 2010. a
WMO: Manual on Codes - International Codes, Volume I.1, Annex II to the WMO Technical Regulations: Part A – Alphanumeric Codes, WMO, WMO, Geneva, 2011th edn. updated in 2019, 480 pp., https://library.wmo.int/index.php?lvl=notice_display&id=13617 (last access: 1 August 2023), 2011. a
WMO: Global Observing System, https://public.wmo.int/en/programmes/global-observing-system (last access: 1 August 2023), 2015. a
WMO: Guide to Instruments and Methods of Observation, no. 8 in WMO, Geneva, 2018 edn., 197 pp., https://library.wmo.int/index.php?lvl=notice_display&id=12407#.XiGSwf5KiUk (last access: 1 August 2023), 2018. a
WMO: The Gaps in the Global Basic Observing Network (GBON), Tech. rep., WMO Systematic Observations Financing Facility, https://public.wmo.int/en/resources/library/gaps-global-basic-observing-network-gbon (last access: 1 August 2023), 2020.
a
Wyngaard, J., Barbieri, L., Thomer, A., Adams, J., Sullivan, D., Crosby, C.,
Parr, C., Klump, J., Raj Shrestha, S., and Bell, T.: Emergent Challenges
for Science sUAS Data Management: Fairness through Community
Engagement and Best Practices Development, Remote Sens., 11, 1797,
https://doi.org/10.3390/rs11151797, 2019. a
Zheng, M., Delle Monache, L., Cornuelle, B. D., Ralph, F. M., Tallapragada,
V. S., Subramanian, A., Haase, J. S., Zhang, Z., Wu, X., Murphy, M. J.,
Higgins, T. B., and DeHaan, L.: Improved Forecast Skill Through the
Assimilation of Dropsonde Observations From the Atmospheric River
Reconnaissance Program, J. Geophys. Res.-Atmos., 126,
e2021JD034967, https://doi.org/10.1029/2021JD034967, 2021. a
Executive editor
The study makes a substantial promise with direct benefits for the society at large.
Short summary
The first atmospheric soundings with an electrically powered small uncrewed aircraft system (UAS) up to an altitude of 10 km are presented and assessed for quality, revealing the potential to augment atmospheric observations and fill observation gaps for numerical weather prediction. This is significant because of the need for high-resolution meteorological data, in particular in remote areas with limited in situ measurements, and for reference data for satellite measurement calibration.
The first atmospheric soundings with an electrically powered small uncrewed aircraft system...