Articles | Volume 16, issue 18
https://doi.org/10.5194/amt-16-4263-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-4263-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comparison of photoacoustic spectroscopy and cavity ring-down spectroscopy for ambient methane monitoring at Hohenpeißenberg
Sensorik-ApplikationsZentrum, University of Applied Sciences Regensburg, 93053 Regensburg, Germany
Institute of Analytical Chemistry, Chemo- and Biosensors, University Regensburg, 93053 Regensburg, Germany
Stefan Weigl
Sensorik-ApplikationsZentrum, University of Applied Sciences Regensburg, 93053 Regensburg, Germany
Jennifer Müller-Williams
Meteorological Observatory Hohenpeißenberg, Deutscher Wetterdienst, 82383 Hohenpeißenberg, Germany
Matthias Lindauer
Meteorological Observatory Hohenpeißenberg, Deutscher Wetterdienst, 82383 Hohenpeißenberg, Germany
Thomas Rück
Sensorik-ApplikationsZentrum, University of Applied Sciences Regensburg, 93053 Regensburg, Germany
Simon Jobst
Sensorik-ApplikationsZentrum, University of Applied Sciences Regensburg, 93053 Regensburg, Germany
Institute of Analytical Chemistry, Chemo- and Biosensors, University Regensburg, 93053 Regensburg, Germany
Rudolf Bierl
Sensorik-ApplikationsZentrum, University of Applied Sciences Regensburg, 93053 Regensburg, Germany
Frank-Michael Matysik
Institute of Analytical Chemistry, Chemo- and Biosensors, University Regensburg, 93053 Regensburg, Germany
Related authors
No articles found.
Maksym Gachkivskyi, Ute Karstens, Bernd Fischer, Dagmar Kubistin, Jennifer Müller-Williams, Matthias Lindauer, and Ingeborg Levin
Earth Syst. Sci. Data, 17, 6173–6197, https://doi.org/10.5194/essd-17-6173-2025, https://doi.org/10.5194/essd-17-6173-2025, 2025
Short summary
Short summary
222Radon (Rn) can be used to distinguish marine and continental air masses or to validate transport models. The Heidelberg Radon Monitor (HRM) measures 214polonium (Po), a progeny of Rn. This study presents Po-based Rn activity concentrations measured with the HRM at eight stations in Germany with guidelines for estimating Rn from Po measurements. Comparison between modeled and measured activity concentrations shows that at high relative humidity Po measurements cannot be interpreted as Rn.
Paolo Cristofanelli, Cosimo Fratticioli, Lynn Hazan, Mali Chariot, Cedric Couret, Orestis Gazetas, Dagmar Kubistin, Antti Laitinen, Ari Leskinen, Tuomas Laurila, Matthias Lindauer, Giovanni Manca, Michel Ramonet, Pamela Trisolino, and Martin Steinbacher
Atmos. Meas. Tech., 16, 5977–5994, https://doi.org/10.5194/amt-16-5977-2023, https://doi.org/10.5194/amt-16-5977-2023, 2023
Short summary
Short summary
We investigated the application of two automatic methods for detecting spikes due to local emissions in greenhouse gas (GHG) observations at a subset of sites from the ICOS Atmosphere network. We analysed the sensitivity to the spike frequency of using different methods and settings. We documented the impact of the de-spiking on different temporal aggregations (i.e. hourly, monthly and seasonal averages) of CO2, CH4 and CO 1 min time series.
Peter Bergamaschi, Arjo Segers, Dominik Brunner, Jean-Matthieu Haussaire, Stephan Henne, Michel Ramonet, Tim Arnold, Tobias Biermann, Huilin Chen, Sebastien Conil, Marc Delmotte, Grant Forster, Arnoud Frumau, Dagmar Kubistin, Xin Lan, Markus Leuenberger, Matthias Lindauer, Morgan Lopez, Giovanni Manca, Jennifer Müller-Williams, Simon O'Doherty, Bert Scheeren, Martin Steinbacher, Pamela Trisolino, Gabriela Vítková, and Camille Yver Kwok
Atmos. Chem. Phys., 22, 13243–13268, https://doi.org/10.5194/acp-22-13243-2022, https://doi.org/10.5194/acp-22-13243-2022, 2022
Short summary
Short summary
We present a novel high-resolution inverse modelling system, "FLEXVAR", and its application for the inverse modelling of European CH4 emissions in 2018. The new system combines a high spatial resolution of 7 km x 7 km with a variational data assimilation technique, which allows CH4 emissions to be optimized from individual model grid cells. The high resolution allows the observations to be better reproduced, while the derived emissions show overall good consistency with two existing models.
Alex Resovsky, Michel Ramonet, Leonard Rivier, Jerome Tarniewicz, Philippe Ciais, Martin Steinbacher, Ivan Mammarella, Meelis Mölder, Michal Heliasz, Dagmar Kubistin, Matthias Lindauer, Jennifer Müller-Williams, Sebastien Conil, and Richard Engelen
Atmos. Meas. Tech., 14, 6119–6135, https://doi.org/10.5194/amt-14-6119-2021, https://doi.org/10.5194/amt-14-6119-2021, 2021
Short summary
Short summary
We present a technical description of a statistical methodology for extracting synoptic- and seasonal-length anomalies from greenhouse gas time series. The definition of what represents an anomalous signal is somewhat subjective, which we touch on throughout the paper. We show, however, that the method performs reasonably well in extracting portions of time series influenced by significant North Atlantic Oscillation weather episodes and continent-wide terrestrial biospheric aberrations.
Maximilian Reuter, Heinrich Bovensmann, Michael Buchwitz, Jakob Borchardt, Sven Krautwurst, Konstantin Gerilowski, Matthias Lindauer, Dagmar Kubistin, and John P. Burrows
Atmos. Meas. Tech., 14, 153–172, https://doi.org/10.5194/amt-14-153-2021, https://doi.org/10.5194/amt-14-153-2021, 2021
Short summary
Short summary
CO2 measurements from a small unmanned aircraft system (sUAS) can provide a cost-effective way to complement and validate satellite-based measurements of anthropogenic CO2 emissions. We introduce an sUAS which is capable of determining atmospheric CO2 mass fluxes from its own sensor data. We show results of validation flights at the ICOS atmospheric station in Steinkimmen and from demonstration flights downwind a CO2-emitting natural gas processing facility.
Camille Yver-Kwok, Carole Philippon, Peter Bergamaschi, Tobias Biermann, Francescopiero Calzolari, Huilin Chen, Sebastien Conil, Paolo Cristofanelli, Marc Delmotte, Juha Hatakka, Michal Heliasz, Ove Hermansen, Kateřina Komínková, Dagmar Kubistin, Nicolas Kumps, Olivier Laurent, Tuomas Laurila, Irene Lehner, Janne Levula, Matthias Lindauer, Morgan Lopez, Ivan Mammarella, Giovanni Manca, Per Marklund, Jean-Marc Metzger, Meelis Mölder, Stephen M. Platt, Michel Ramonet, Leonard Rivier, Bert Scheeren, Mahesh Kumar Sha, Paul Smith, Martin Steinbacher, Gabriela Vítková, and Simon Wyss
Atmos. Meas. Tech., 14, 89–116, https://doi.org/10.5194/amt-14-89-2021, https://doi.org/10.5194/amt-14-89-2021, 2021
Short summary
Short summary
The Integrated Carbon Observation System (ICOS) is a pan-European research infrastructure which provides harmonized and high-precision scientific data on the carbon cycle and the greenhouse gas (GHG) budget. All stations have to undergo a rigorous assessment before being labeled, i.e., receiving approval to join the network. In this paper, we present the labeling process for the ICOS atmospheric network through the 23 stations that were labeled between November 2017 and November 2019.
Cited articles
Barreiro, N., Vellespi, A., Santiago, G., Slezak, V., and Peuriot, A.: Influence of oxygen on the resonant photoacoustic signal from methane excited at the ν3 mode, Appl. Phys. B, 104, 983–987,
https://doi.org/10.1007/s00340-011-4546-8, 2011. a, b, c
Barreiro, N., Peuriot, A., Santiago, G., and Slezak, V.: Water-based
enhancement of the resonant photoacoustic signal from methane–air samples
excited at 3.3 µm, Appl. Phys. B, 108, 369–375,
https://doi.org/10.1007/s00340-012-5018-5, 2012. a, b
Defratyka, S. M., Paris, J.-D., Yver-Kwok, C., Fernandez, J. M., Korben, P., and Bousquet, P.: Mapping Urban Methane Sources in Paris, France, Environ. Sci. Technol., 55, 8583–8591, https://doi.org/10.1021/acs.est.1c00859, 2021. a, b
Dello Russo, S., Sampaolo, A., Patimisco, P., Menduni, G., Giglio, M., Hoelzl, C., Passaro, V. M., Wu, H., Dong, L., and Spagnolo, V.: Quartz-enhanced photoacoustic spectroscopy exploiting low-frequency tuning forks as a tool to measure the vibrational relaxation rate in gas species, Photoacoustics, 21, 100227, https://doi.org/10.1016/j.pacs.2020.100227, 2021. a
Elefante, A., Giglio, M., Sampaolo, A., Menduni, G., Patimisco, P., Passaro, V. M., Wu, H., Rossmadl, H., Mackowiak, V., Cable, A., Tittel, F. K., Dong, L., and Spagnolo, V.: Dual-Gas Quartz-Enhanced Photoacoustic Sensor for Simultaneous Detection of Methane/Nitrous Oxide and Water Vapor, Anal. Chem., 91, 12866–12873, https://doi.org/10.1021/acs.analchem.9b02709, 2019. a
Elefante, A., Menduni, G., Rossmadl, H., Mackowiak, V., Giglio, M., Sampaolo, A., Patimisco, P., Passaro, V. M. N., and Spagnolo, V.: Environmental Monitoring of Methane with Quartz-Enhanced Photoacoustic Spectroscopy Exploiting an Electronic Hygrometer to Compensate the H2O Influence on the Sensor Signal, Sensors, 20, 2935, https://doi.org/10.3390/s20102935, 2020. a, b
Giglio, M., Zifarelli, A., Sampaolo, A., Menduni, G., Elefante, A., Blanchard, R., Pfluegl, C., Witinski, M. F., Vakhshoori, D., Wu, H., Passaro, V. M., Patimisco, P., Tittel, F. K., Dong, L., and Spagnolo, V.: Broadband detection of methane and nitrous oxide using a distributed-feedback quantum cascade laser array and quartz-enhanced photoacoustic sensing, Photoacoustics, 17, 100159, https://doi.org/10.1016/j.pacs.2019.100159, 2020. a
Gong, Z., Gao, T., Mei, L., Chen, K., Chen, Y., Zhang, B., Peng, W., and Yu, Q.: Ppb-level detection of methane based on an optimized T-type photoacoustic cell and a NIR diode laser, Photoacoustics, 21, 100216, https://doi.org/10.1016/j.pacs.2020.100216, 2021. a
Hayden, J., Baumgartner, B., and Lendl, B.: Anomalous Humidity Dependence in Photoacoustic Spectroscopy of CO Explained by Kinetic Cooling, Appl. Sci., 10, 843, https://doi.org/10.3390/app10030843, 2020. a
Hunter, T. F., Rumbles, D., and Stock, M. G.: Photophysical processes in the vapour-phase measured by the optic-acoustic effect. Part 1. – The model and apparatus for the study of radiationless processes, J. Chem. Soc., Faraday Trans. 2, 70, 1010–1021, https://doi.org/10.1039/F29747001010, 1974. a
ICOS RI: ICOS Atmosphere Station Specifications V2.0, edited by: Laurent, O., ICOS CAL, https://doi.org/10.18160/GK28-2188, 2020. a
Jackson, R. B., Down, A., Phillips, N. G., Ackley, R. C., Cook, C. W., Plata, D. L., and Zhao, K.: Natural Gas Pipeline Leaks Across Washington, DC, Environ. Sci. Technol., 48, 2051–2058, https://doi.org/10.1021/es404474x, 2014. a
Jordan, A. and Schumacher, M.: ICOS CAL – Quality Control Report 2021, ICOS CAL, https://doi.org/10.18160/RS2Q-RA1Q, 2022. a
Kalkman, J. and van Kesteren, H.: Relaxation effects and high sensitivity
photoacoustic detection of NO2 with a blue laser diode, Appl. Phys. B,
90, 197–200, https://doi.org/10.1007/s00340-007-2895-0, 2008. a
Lang, B., Breitegger, P., Brunnhofer, G., Valero, J., Schweighart, S., Klug,
A., Hassler, W., and Bergmann, A.: Molecular relaxation effects on
vibrational water vapor photoacoustic spectroscopy in air, Appl. Phys. B,
126, 64, https://doi.org/10.1007/s00340-020-7409-3, 2020. a
Li, Y., Wang, R., Tittel, F. K., and Ma, Y.: Sensitive methane detection based on quartz-enhanced photoacoustic spectroscopy with a high-power diode laser and wavelet filtering, Opt. Laser. Eng., 132, 106155,
https://doi.org/10.1016/j.optlaseng.2020.106155, 2020. a
Li, Z., Liu, J., Si, G., Ning, Z., and Fang, Y.: Design of a high-sensitivity
differential Helmholtz photoacoustic cell and its application in methane
detection, Opt. Express, 30, 28984–28996, https://doi.org/10.1364/OE.465161, 2022. a
Menduni, G., Sgobba, F., Russo, S. D., Ranieri, A. C., Sampaolo, A., Patimisco, P., Giglio, M., Passaro, V. M., Csutak, S., Assante, D., Ranieri, E., Geoffrion, E., and Spagnolo, V.: Fiber-Coupled Quartz-Enhanced Photoacoustic Spectroscopy System for Methane and Ethane Monitoring in the Near-Infrared Spectral Range, Molecules, 25, 5607, https://doi.org/10.3390/molecules25235607, 2020.
a
Miklós, A., Hess, P., and Bozóki, Z.: Application of acoustic resonators in photoacoustic trace gas analysis and metrology, Rev. Sci. Instrum., 72, 1937–1955, https://doi.org/10.1063/1.1353198, 2001. a
Müller, M., Rück, T., Jobst, S., Pangerl, J., Weigl, S., Bierl, R., and Matysik, F.-M.: An Algorithmic Approach to Compute the Effect of Non-Radiative Relaxation Processes in Photoacoustic Spectroscopy, Photoacoustics, 26, 100371, https://doi.org/10.1016/j.pacs.2022.100371, 2022. a, b, c, d, e, f, g, h, i, j
Pangerl, J., Müller, M., Rück, T., Weigl, S., and Bierl, R.: Characterizing a sensitive compact mid-infrared photoacoustic sensor for methane, ethane and acetylene detection considering changing ambient parameters and bulk composition (N2, O2 and H2O), Sensor. Actuat. B-Chem., 352, 130962, https://doi.org/10.1016/j.snb.2021.130962, 2022. a, b, c, d
Qiao, Y., Tang, L., Gao, Y., Han, F., Liu, C., Li, L., and Shan, C.:
Sensitivity enhanced NIR photoacoustic CO detection with SF6 promoting
vibrational to translational relaxation process, Photoacoustics, 25,
100334, https://doi.org/10.1016/j.pacs.2022.100334, 2022. a
Rück, T., Müller, M., Jobst, S., Weigl, S., Pangerl, J., Bierl, R., and
Matysik, F.-M.: Digital Twin of a photoacoustic trace gas sensor for
monitoring methane in complex gas compositions, Sensor. Actuat. B-Chem., 378, 133119, https://doi.org/10.1016/j.snb.2022.133119, 2023. a, b, c, d
Schilt, S., Besson, J.-P., and Thevenaz, L.: Near-infrared laser photoacoustic detection of methane: the impact of molecular relaxation, Appl. Phys. B, 82, 319–328, https://doi.org/10.1007/s00340-005-2076-y, 2006. a, b, c
von Fischer, J. C., Cooley, D., Chamberlain, S., Gaylord, A., Griebenow, C. J., Hamburg, S. P., Salo, J., Schumacher, R., Theobald, D., and Ham, J.: Rapid, Vehicle-Based Identification of Location and Magnitude of Urban Natural Gas Pipeline Leaks, Environ. Sci. Technol., 51, 4091–4099,
https://doi.org/10.1021/acs.est.6b06095, 2017. a
Wysocki, G., Kosterev, A., and Tittel, F.: Influence of molecular relaxation
dynamics on quartz-enhanced photoacoustic detection of CO2 at λ = 2 µm, Appl. Phys. B, 85, 301–306,
https://doi.org/10.1007/s00340-006-2369-9, 2006. a
Xiao, H., Zhao, J., Sima, C., Lu, P., Long, Y., Ai, Y., Zhang, W., Pan, Y., Zhang, J., and Liu, D.: Ultra-sensitive ppb-level methane detection based on NIR all-optical photoacoustic spectroscopy by using differential fiber-optic microphones with gold-chromium composite nanomembrane, Photoacoustics, 26, 100353, https://doi.org/10.1016/j.pacs.2022.100353, 2022. a
Short summary
Over a period of 5 d, a photoacoustic methane sensor was compared with a Picarro cavity ring-down (G2301) spectrometer. Both devices measured the ambient methane concentration at the meteorological observatory Hohenpeißenberg. Cross-sensitivities on the photoacoustic signal, due to fluctuating ambient humidity, were compensated by applying the CoNRad algorithm. The results show that photoacoustic sensors have the potential for accurate and precise greenhouse gas monitoring.
Over a period of 5 d, a photoacoustic methane sensor was compared with a Picarro cavity...