Articles | Volume 16, issue 4
https://doi.org/10.5194/amt-16-941-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-941-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GNSS radio occultation soundings from commercial off-the-shelf receivers on board balloon platforms
Kevin J. Nelson
CORRESPONDING AUTHOR
Department of Physical and Environmental Sciences, Texas A&M University – Corpus Christi, Corpus Christi, TX, USA
now at: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Feiqin Xie
Department of Physical and Environmental Sciences, Texas A&M University – Corpus Christi, Corpus Christi, TX, USA
Bryan C. Chan
Night Crew Labs, LLC, Woodside, CA, USA
Ashish Goel
Night Crew Labs, LLC, Woodside, CA, USA
Jonathan Kosh
Night Crew Labs, LLC, Woodside, CA, USA
Tyler G. R. Reid
Night Crew Labs, LLC, Woodside, CA, USA
Corey R. Snyder
Night Crew Labs, LLC, Woodside, CA, USA
Paul M. Tarantino
Night Crew Labs, LLC, Woodside, CA, USA
Related authors
Sara Vannah, Stephen S. Leroy, Chi O. Ao, E. Robert Kursinski, Kevin J. Nelson, Kuo-Nung Wang, and Feiqin Xie
Atmos. Meas. Tech., 18, 4293–4310, https://doi.org/10.5194/amt-18-4293-2025, https://doi.org/10.5194/amt-18-4293-2025, 2025
Short summary
Short summary
Uncertainty estimation for Global Navigation Satellite System (GNSS) radio occultation (RO) soundings in the planetary boundary layer (PBL) depends on the algorithms used to process the RO data. We compare the refractivity retrievals from three RO processing centers – each with their own retrieval algorithm – in the PBL, finding a strong underestimation of refractivity in regions with the strongest refractivity gradients, especially in Jet Propulsion Laboratory (JPL) processing, as well as areas of weak overestimation of refractivity near the poles.
Manisha Ganeshan, Dong L. Wu, Joseph A. Santanello, Jie Gong, Chi Ao, Panagiotis Vergados, and Kevin J. Nelson
Atmos. Meas. Tech., 18, 1389–1403, https://doi.org/10.5194/amt-18-1389-2025, https://doi.org/10.5194/amt-18-1389-2025, 2025
Short summary
Short summary
This study explores the potential of two newly launched commercial Global Navigation Satellite System (GNSS) radio occultation (RO) satellite missions for advancing Arctic lower-atmospheric studies. The products have a good sampling of the lower Arctic atmosphere and are useful to derive the planetary boundary layer (PBL) height during winter months. This research is a step towards closing the observation gap in polar regions due to the decomissioning of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-1) GNSS RO mission and the lack of high-latitude coverage by its successor (COSMIC-2).
Thomas E. Winning Jr., Feiqin Xie, and Kevin J. Nelson
Atmos. Meas. Tech., 17, 6851–6863, https://doi.org/10.5194/amt-17-6851-2024, https://doi.org/10.5194/amt-17-6851-2024, 2024
Short summary
Short summary
The effect of ducting due to the presence of the planetary boundary layer (PBL) is prevalent over the northeastern Pacific Ocean from Los Angeles to Honolulu, USA. The ducting-induced refractivity bias in the radiosonde climatology and ERA5 data is highly correlated with the height of the PBL. The magnitude of bias is linearly dependent on the strength of ducting but not the location, and the overall reanalysis data systematically underestimate the height of the PBL by as much as 120 m.
Sara Vannah, Stephen S. Leroy, Chi O. Ao, E. Robert Kursinski, Kevin J. Nelson, Kuo-Nung Wang, and Feiqin Xie
Atmos. Meas. Tech., 18, 4293–4310, https://doi.org/10.5194/amt-18-4293-2025, https://doi.org/10.5194/amt-18-4293-2025, 2025
Short summary
Short summary
Uncertainty estimation for Global Navigation Satellite System (GNSS) radio occultation (RO) soundings in the planetary boundary layer (PBL) depends on the algorithms used to process the RO data. We compare the refractivity retrievals from three RO processing centers – each with their own retrieval algorithm – in the PBL, finding a strong underestimation of refractivity in regions with the strongest refractivity gradients, especially in Jet Propulsion Laboratory (JPL) processing, as well as areas of weak overestimation of refractivity near the poles.
Manisha Ganeshan, Dong L. Wu, Joseph A. Santanello, Jie Gong, Chi Ao, Panagiotis Vergados, and Kevin J. Nelson
Atmos. Meas. Tech., 18, 1389–1403, https://doi.org/10.5194/amt-18-1389-2025, https://doi.org/10.5194/amt-18-1389-2025, 2025
Short summary
Short summary
This study explores the potential of two newly launched commercial Global Navigation Satellite System (GNSS) radio occultation (RO) satellite missions for advancing Arctic lower-atmospheric studies. The products have a good sampling of the lower Arctic atmosphere and are useful to derive the planetary boundary layer (PBL) height during winter months. This research is a step towards closing the observation gap in polar regions due to the decomissioning of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-1) GNSS RO mission and the lack of high-latitude coverage by its successor (COSMIC-2).
Thomas E. Winning Jr., Feiqin Xie, and Kevin J. Nelson
Atmos. Meas. Tech., 17, 6851–6863, https://doi.org/10.5194/amt-17-6851-2024, https://doi.org/10.5194/amt-17-6851-2024, 2024
Short summary
Short summary
The effect of ducting due to the presence of the planetary boundary layer (PBL) is prevalent over the northeastern Pacific Ocean from Los Angeles to Honolulu, USA. The ducting-induced refractivity bias in the radiosonde climatology and ERA5 data is highly correlated with the height of the PBL. The magnitude of bias is linearly dependent on the strength of ducting but not the location, and the overall reanalysis data systematically underestimate the height of the PBL by as much as 120 m.
Cited articles
Anthes, R. A., Bernhardt, P. A., Chen, Y., Cucurull, L., Dymond, K. F., Ector, D., Healy, S. B., Ho, S. P., Hunt, D. C., Kuo, Y. H., Liu, H., Manning, K., McCormick, C., Meehan, T. K., Randel, W. J., Rocken, C., Schreiner, W. S., Sokolovskiy, S. V., Syndergaard, S., Thompson, D. C., Trenberth, K. E., Wee, T. K., Yen, N. L., and Zeng, Z.: The COSMIC/FORMOSAT-3 Mission: Early Results, B. Am. Meteorol. Soc., 89, 313–334, https://doi.org/10.1175/bams-89-3-313, 2008. a
Ao, C. O., Chan, T. K., Iijima, A., Li, J.-L., Mannucci, A. J., Teixeira, J., Tian, B., and Waliser, D. E.: Planetary Boundary Layer Information from GPS Radio Occultation Measurements, GRAS SAF Workshop on Applications
of GPSRO Measurements, 123–131, 2008. a
Ao, C. O., Hajj, G. A., Meehan, T. K., Dong, D., Iijima, B. A., Mannucci,
A. J., and Kursinski, E. R.: Rising and setting GPS occultations by use of
open-loop tracking, J. Geophys. Res., 114, D04101,
https://doi.org/10.1029/2008jd010483, 2009. a, b
Ao, C. O., Waliser, D. E., Chan, S. K., Li, J.-L., Tian, B., Xie, F., and
Mannucci, A. J.: Planetary boundary layer heights from GPS radio
occultation refractivity and humidity profiles, J. Geophys. Res.-Atmos., 117, D16117, https://doi.org/10.1029/2012jd017598, 2012. a
Boullot, N., Rabier, F., Langland, R., Gelaro, R., Cardinali, C., Guidard, V., Bauer, P., and Doerenbecher, A.: Observation impact over the southern polar area during the Concordiasi field campaign, Q. J. Roy. Meteor. Soc., 142, 597–610, https://doi.org/10.1002/qj.2470, 2014. a
Bowler, N. E.: An assessment of GNSS radio occultation data produced by Spire, Q. J. Roy. Meteor. Soc., 146, 3772–3788,
https://doi.org/10.1002/qj.3872, 2020. a
Cao, B., Haase, J. S., Murphy, M. J., Alexander, M. J., Bramberger, M., and Hertzog, A.: Equatorial waves resolved by balloon-borne Global Navigation Satellite System radio occultation in the Strateole-2 campaign, Atmos. Chem. Phys., 22, 15379–15402, https://doi.org/10.5194/acp-22-15379-2022, 2022. a, b
Cardinali, C. and Healy, S.: Impact of GPS radio occultation measurements in
the ECMWF system using adjoint-based diagnostics: Impact of GPS radio
occultation measurements, Q. J. Roy. Meteor. Soc., 140, 2315–2320, https://doi.org/10.1002/qj.2300, 2014. a
Carreno-Luengo, H., Camps, A., Querol, J., and Forte, G.: First Results of a
GNSS-R Experiment From a Stratospheric Balloon Over Boreal Forests, IEEE
T. Geosci. Remote, 54, 2652–2663, https://doi.org/10.1109/tgrs.2015.2504242, 2016. a
Chan, B. C., Goel, A., Kosh, J., Reid, T. G. R., Snyder, C. R., Tarantino,
P. M., Soedarmadji, S., Soedarmadji, W., Nelson, K. J., Xie, F., and
Vergalla, M.: GNSS Radio Occultation on Aerial Platforms with Commercial
Off-the-Shelf Receivers, ION GNSS Proceedings, https://doi.org/10.48550/arXiv.2109.13328, 2021. a, b, c
Chan, B. C., Goel, A., Kosh, J., Reid, T. G. R., Snyder, C. R., Tarantino,
P. M., Soedarmadji, S., Soedarmadji, W., Nelson, K., Xie, F., and Vergalla,
M.: Commercial GNSS Radio Occultation on Aerial Platforms With
Off-The-Shelf Receivers, Navigation-US, 69, navi.544, https://doi.org/10.33012/navi.544, 2022. a, b, c, d, e, f
Fjeldbo, G. and Eshleman, V. R.: Atmosphere of Venus as Studied with the
Mariner 5 Dual Radio-Frequency Occultation Experiment, Radio Sci., 4,
879–897, https://doi.org/10.1029/RS004i010p00879, 1969. a, b, c
Fjeldbo, G., Kliore, A. J., and Eshleman, V. R.: The neutral atmosphere of
Venus as studied with the Mariner V radio occultation experiments,
Astron. J., 76, 123–140, https://doi.org/10.1086/111096, 1971. a, b
Garrison, J. L., Walker, M., Haase, J. S., Lulich, T., Xie, F., Ventre, B., Boehme, M. H., Wilmhoff, B., and Katzberg, S. J.: Development and Testing of
the GISMOS Instrument, in: IGARSS Barcelona 2007: Sensing and Understanding Our Planet, IEEE International, 5105–5108, https://doi.org/10.1109/IGARSS.2007.4424010, 2007. a
Haase, J. S., Maldonado-Vargas, J., Rabier, F., Cocquerez, P., Minois, M.,
Guidard, V., Wyss, P., and Johnson, A. V.: A proof-of-concept balloon-borne
Global Positioning System radio occultation profiling instrument for polar
studies, Geophys. Res. Lett., 39, 1–5, https://doi.org/10.1029/2011gl049982, 2012. a, b, c
Haase, J. S., Alexander, M. J., Hertzog, A., Kalnajs, L., Deshler,
T., Davis, S. M., Plougonven, R., Cocquerez, P., and Venel, S.:
Around the World in 84 Days, EOS, 99, 32–38,
https://doi.org/10.1029/2018EO091907, 2018. a
Harnisch, F., Healy, S. B., Bauer, P., and English, S. J.: Scaling of GNSS
Radio Occultation Impact with Observation Number Using an Ensemble of Data
Assimilations, Mon. Weather Rev., 141, 4395–4413,
https://doi.org/10.1175/mwr-d-13-00098.1, 2013. a
Healy, S. B., Haase, J., and Lesne, O.: Letter to the Editor,
Abel transform inversion of radio occultation measurements made with a receiver inside the Earth’s atmosphere, Ann. Geophys., 20, 1253–1256, https://doi.org/10.5194/angeo-20-1253-2002, 2002. a, b, c
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 Global
Reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Ho, S.-p., Anthes, R. A., Ao, C. O., Healy, S., Horanyi, A., Hunt, D., Mannucci, A. J., Pedatella, N., Randel, W. J., Simmons, A., Steiner, A., Xie, F., Yue, X., and Zeng, Z.: The COSMIC/FORMOSAT-3 Radio Occultation Mission after 12 Years: Accomplishments, Remaining Challenges, and Potential Impacts
of COSMIC-2, B. Am. Meteorol. Soc., 101,
E1107–E1136, https://doi.org/10.1175/bams-d-18-0290.1, 2020. a
Høeg, P., Hauchecorne, A., Kirchengast, G., Syndergaard, S., Belloul, B.,
Leitinger, R., and Rothleitner, W.: Derivation of Atmospheric Properties
using a Radio Occultation Technique, Tech. rep., Danish Meteorological
Institute, Copenhagen, Denmark, ISBN 87-7478-331-9, 1996. a
Imamura, T., Ando, H., Tellmann, S., Pätzold, M., Häusler, B., Yamazaki, A., Sato, T. M., Noguchi, K., Futaana, Y., Oschlisniok, J., Limaye, S., Choudhary, R. K., Murata, Y., Takeuchi, H., Hirose, C., Ichikawa, T., Toda, T., Tomiki, A., Abe, T., Yamamoto, Z.-i., Noda, H., Iwata, T., Murakami, S.-Y., Satoh, T., Fukuhara, T., Ogohara, K., Sugiyama, K.-I., Kashimura, H., Ohtsuki, S., Takagi, S., Yamamoto, Y., Hirata, N., Hashimoto, G. L., Yamada, M., Suzuki, M., Ishii, N., Hayashiyama, T., Lee, Y. J., and Nakamura, M.: Initial performance of the radio occultation experiment in the Venus orbiter
mission Akatsuki, Earth Planets Space, 69, 137,
https://doi.org/10.1186/s40623-017-0722-3, 2017. a
Jensen, A. S., Lohmann, M. S., Benzon, H.-H., and Nielsen, A. S.: Full Spectrum Inversion of radio occultation signals, Radio Sci., 38, 1–15,
https://doi.org/10.1029/2002rs002763, 2003. a
Kliore, A. J., Cain, D. L., Fjeldbo, G., Seidel, B. L., Sykes, M. J., and
Rasool, S. I.: The Atmosphere of Mars from Mariner 9 Radio Occultation
Measurements, Icarus, 17, 484–516, 1972. a
Kursinski, E. R., Hajj, G. A., Bertiger, W. I., Leroy, S. S., Meehan, T. K., Romans, L. J., Schofield, J. T., McCleese, D. J., Melbourne, W. G., Thornton,
C. L., Yunck, T. P., Eyre, J. R., and Nagafini, R. N.: Initial Results of
Radio Occultation Observations of Earth’s Atmosphere Using the Global
Positioning System, Science, 271, 1107–1110, 1996. a
Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P., and Hardy, K. R.: Observing Earth's atmosphere with radio occultation measurements using
the Global Positioning System, J. Geophys. Res.-Atmos.,
102, 23429–23465, https://doi.org/10.1029/97jd01569, 1997. a, b, c
Lesne, O., Haase, J. S., Kirchengast, G., Ramsauer, J., and Poetzi, W.:
Sensitivity analysis for airborne sounding of the troposphere by GNSS radio
occultation, Phys. Chem. Earth, 27, 291–299, https://doi.org/10.1016/S1474-7065(02)00003-7, 2002. a
Lindal, G. F.: The atmosphere of Neptune-an analysis of radio occultation data acquired with Voyager 2, Astron. J., 103, 967–982, 1992. a
Lindal, G. F., Hotz, H. B., Sweetnam, D. N., Shippony, Z., Brenkle, J. P., Hartsell, G. V., Spear, R. T., and Michael, W. H.: Viking radio occultation measurements of the atmosphere and topography of Mars: Data acquired during 1
Martian year of tracking, J. Geophys. Res., 84, 8443–8456,
https://doi.org/10.1029/JB084iB14p08443, 1979. a
Luntama, J.-P., Kirchengast, G., Borsche, M., Foelsche, U., Steiner, A., Healy, S., von Engeln, A., O’Clerigh, E., and Marquardt, C.: Prospects of the EPS GRAS Mission for Operational Atmospheric Applications, B. Am. Meteorol. Soc., 89, 1863–1875, https://doi.org/10.1175/2008BAMS2399.1, 2008. a
Murphy, B. J., Haase, J. S., Muradyan, P., Garrison, J. L., and Wang, K. N.:
Airborne GPS radio occultation refractivity profiles observed in tropical
storm environments, J. Geophys. Res.-Atmos., 120,
1690–1709, https://doi.org/10.1002/2014jd022931, 2015. a
National Academies of Sciences: Thriving on Our Changing Planet: A Decadal
Strategy for Earth Observation from Space, The National Academies Press,
Washington, DC, https://doi.org/10.17226/24938, 2018. a
National Aeronautics and Space Administration: NASA ESDS Commercial
Smallsat Data Acquisition (CSDA) Program, NASA, https://www.earthdata.nasa.gov/esds/csda (last access: 25 January 2023), 2022. a
National Oceanic and Atmospheric Administration and National Environmental
Satellite, Data, and Information Service: Commercial Weather Data Pilot
(CWDP) Round 2 Summary, Tech. rep., National Oceanic and Atmospheric
Administration, https://www.space.commerce.gov/wp-content/uploads/2020-06-cwdp-round-2-summary.pdf (last access: 12 October 2022), 2020. a
Nelson, K. J., Xie, F., Ao, C. O., and Oyola-Merced, M. I.: Diurnal Variation of the Planetary Boundary Layer Height Observed from GNSS Radio Occultation and Radiosonde Soundings over the Southern Great Plains, J. Atmos. Ocean. Tech., 38, 2081–2093,
https://doi.org/10.1175/jtech-d-20-0196.1, 2021. a
Nelson, K. J., Xie, F., Chan, B. C., Goel, A., Kosh, J., Reid, T. G. R., Snyder, C. R., and Tarantino, P. M.: GNSS Radio Occultation Soundings
from Commercial Off-the-Shelf Receivers Onboard Balloon
Platforms (NCEI Accession 0254366), NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/ex5z-7r81, 2022. a
Rabier, F., Bouchard, A., Brun, E., Doerenbecher, A., Guedj, S., Guidard, V., Karbou, F., Peuch, V.-H., El Amraoui, L., Puech, D., Genthon, C., Picard, G.,
Town, M., Hertzog, A., Vial, F., Cocquerez, P., Cohn, S. A., Hock, T., Fox,
J., Cole, H., Parsons, D., Powers, J., Romberg, K., VanAndel, J., Deshler,
T., Mercer, J., Haase, J. S., Avallone, L., Kalnajs, L., Mechoso, C. R.,
Tangborn, A., Pellegrini, A., Frenot, Y., Thépaut, J.-N., McNally, A.,
Balsamo, G., and Steinle, P.: The Concordiasi Project in Antarctica, B. Am. Meteorol. Soc., 91, 69–86, https://doi.org/10.1175/2009bams2764.1, 2010. a, b
Rabier, F., Cohn, S., Cocquerez, P., Hertzog, A., Avallone, L., Deshler, T.,
Haase, J., Hock, T., Doerenbecher, A., Wang, J., Guidard, V., Thépaut,
J.-N., Langland, R., Tangborn, A., Balsamo, G., Brun, E., Parsons, D.,
Bordereau, J., Cardinali, C., Danis, F., Escarnot, J.-P., Fourrié, N.,
Gelaro, R., Genthon, C., Ide, K., Kalnajs, L., Martin, C., Meunier, L.-F.,
Nicot, J.-M., Perttula, T., Potts, N., Ragazzo, P., Richardson, D.,
Sosa-Sesma, S., and Vargas, A.: The Concordiasi Field Experiment over
Antarctica: First Results from Innovative Atmospheric Measurements, B. Am. Meteorol. Soc., 94, ES17–ES20, https://doi.org/10.1175/bams-d-12-00005.1, 2013. a, b
Ruston, B. and Healy, S.: Forecast Impact of FORMOSAT‐7/COSMIC‐2 GNSS Radio
Occultation Measurements, Atmos. Sci. Lett., 22, e1019,
https://doi.org/10.1002/asl.1019, 2020. a
Schreiner, W. S., Weiss, J. P., Anthes, R. A., Braun, J., Chu, V., Fong, J., Hunt, D., Kuo, Y.-H., Meehan, T., Serafino, W., Sjoberg, J., Sokolovskiy, S.,
Talaat, E., Wee, T. K., and Zeng, Z.: COSMIC‐2 Radio Occultation
Constellation: First Results, Geophys. Res. Lett., 47, e2019GL086841,
https://doi.org/10.1029/2019gl086841, 2020.
a
Shi, J. Q. and Choi, T.: Gaussian Process Regression Analysis for Functional
Data, CRC Press, Boca Raton, FL, USA, ISBN 978-1-4398-3773-3, 2011. a
Vorob'ev, V. V. and Krasil'nikova, T. G.: Estimation of the Accuracy of the Atmospheric Refractive Index Recovery from Doppler Shift Measurements at Frequencies Used in the NAVSTAR System, Phys. Atmos. Ocean, 29, 602–609, 1994. a
Wang, K.-N., Muradyan, P., Garrison, J. L., Haase, J. S., Murphy, B., Acikoz,
U., and Lulich, T.: Open-loop tracking of rising and setting GNSS
radio-occultation signals from an Airborne Platform: Signal model and
statistical analysis, in: 2013 IEEE international Geoscience & Remote Sensing Symposium Proceedings, IGARSS Proceedings, 3367–3370,
https://doi.org/10.1109/IGARSS.2013.6723550, 2013. a
Wang, K.-N., Garrison, J. L., Acikoz, U., Haase, J. S., Murphy, B. J.,
Muradyan, P., and Lulich, T.: Open-Loop Tracking of Rising and Setting GPS
Radio-Occultation Signals From an Airborne Platform: Signal Model and Error
Analysis, IEEE T. Geosci. Remote, 54, 3967–3984,
https://doi.org/10.1109/tgrs.2016.2532346, 2016. a, b, c, d, e, f
Ware, R. H., Exner, M., Feng, D., Gorbunov, M., Hardy, K. R., Herman, B., Kuo, Y. H., Meehan, T. K., Melbourne, W., Rocken, C., Schreiner, W. S.,
Sokolovskiy, S., Solheim, F., Zou, X., Anthes, R., Businger, S., and
Trenberth, K. E.: GPS Sounding of the Atmosphere from Low Earth Orbit:
Preliminary Results, B. Am. Meteorol. Soc., 77,
19–40, 1996. a
Winning, T. E., Chen, Y.-L., and Xie, F.: Estimation of the marine boundary
layer height over the central North Pacific using GPS radio
occultation, Atmos. Res., 183, 362–370,
https://doi.org/10.1016/j.atmosres.2016.08.005, 2017. a
Xie, F., Adhikari, L., Haase, J. S., Murphy, B., Wang, K.-N., and Garrison, J. L.: Sensitivity of airborne radio occultation to tropospheric properties over ocean and land, Atmos. Meas. Tech., 11, 763–780, https://doi.org/10.5194/amt-11-763-2018, 2018. a, b, c
Zuffada, C., Hajj, G. A., and Kursinski, E. R.: A novel approach to atmospheric profiling with a mountain-based or airborne GPS receiver, J. Geophys. Res.-Atmos., 104, 24435–24447, https://doi.org/10.1029/1999jd900766, 1999. a
Short summary
Global Navigation Satellite System (GNSS) radio occultation (RO) remote sensing is effective for atmospheric profiling. The capability of a low-cost and scalable commercial off-the-shelf (COTS) GNSS receiver on board high-altitude balloons is tested in two campaigns. Preliminary results demonstrate high-quality refractivity observations from the COTS RO receiver, which is worth further improvement for dense atmospheric observations over a targeted region.
Global Navigation Satellite System (GNSS) radio occultation (RO) remote sensing is effective for...