Articles | Volume 17, issue 9
https://doi.org/10.5194/amt-17-2977-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-2977-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Martian column CO2 and pressure measurement with spaceborne differential absorption lidar at 1.96 µm
NASA Ames Research Center, Moffett Field, CA 94035, USA
Bing Lin
NASA Langley Research Center, Hampton, VA 23681, USA
Joel F. Campbell
NASA Langley Research Center, Hampton, VA 23681, USA
Jirong Yu
Science Technology Corporation, Hampton, VA 23666, USA
Jihong Geng
AdValue Photonics, Inc, Tucson, AZ 85714, USA
Shibin Jiang
AdValue Photonics, Inc, Tucson, AZ 85714, USA
Related authors
Joel F. Campbell, Bing Lin, and Zhaoyan Liu
Atmos. Meas. Tech., 18, 4003–4004, https://doi.org/10.5194/amt-18-4003-2025, https://doi.org/10.5194/amt-18-4003-2025, 2025
Short summary
Short summary
This is a reply to a recent article by Christoph Kiemle et al., critical of CO2 measurements using continuous-wave (CW) lidar. We show CW lidar is not only capable of measuring range but also capable of measuring range to the required accuracy without the aid of an external altimeter.
Thibault Vaillant de Guélis, Gérard Ancellet, Anne Garnier, Laurent C.-Labonnote, Jacques Pelon, Mark A. Vaughan, Zhaoyan Liu, and David M. Winker
Atmos. Meas. Tech., 15, 1931–1956, https://doi.org/10.5194/amt-15-1931-2022, https://doi.org/10.5194/amt-15-1931-2022, 2022
Short summary
Short summary
A new IIR-based cloud and aerosol discrimination (CAD) algorithm is developed using the IIR brightness temperature differences for cloud and aerosol features confidently identified by the CALIOP version 4 CAD algorithm. IIR classifications agree with the majority of V4 cloud identifications, reduce the ambiguity in a notable fraction of
not confidentV4 cloud classifications, and correct a few V4 misclassifications of cloud layers identified as dense dust or elevated smoke layers by CALIOP.
Kristopher M. Bedka, Amin R. Nehrir, Michael Kavaya, Rory Barton-Grimley, Mark Beaubien, Brian Carroll, James Collins, John Cooney, G. David Emmitt, Steven Greco, Susan Kooi, Tsengdar Lee, Zhaoyan Liu, Sharon Rodier, and Gail Skofronick-Jackson
Atmos. Meas. Tech., 14, 4305–4334, https://doi.org/10.5194/amt-14-4305-2021, https://doi.org/10.5194/amt-14-4305-2021, 2021
Short summary
Short summary
This paper demonstrates the Doppler Aerosol WiNd (DAWN) lidar and High Altitude Lidar Observatory (HALO) measurement capabilities across a range of atmospheric conditions, compares DAWN and HALO measurements with Aeolus satellite Doppler wind lidar to gain an initial perspective of Aeolus performance, and discusses how atmospheric dynamic processes can be resolved and better understood through simultaneous observations of wind, water vapour, and aerosol profile observations.
Thibault Vaillant de Guélis, Mark A. Vaughan, David M. Winker, and Zhaoyan Liu
Atmos. Meas. Tech., 14, 1593–1613, https://doi.org/10.5194/amt-14-1593-2021, https://doi.org/10.5194/amt-14-1593-2021, 2021
Short summary
Short summary
We introduce a new lidar feature detection algorithm that dramatically improves the fine details of layers identified in the CALIOP data. By applying our two-dimensional scanning technique to the measurements in all three channels, we minimize false positives while accurately identifying previously undetected features such as subvisible cirrus and the full vertical extent of dense smoke plumes. Multiple comparisons to version 4.2 CALIOP retrievals illustrate the scope of the improvements made.
Joel F. Campbell, Bing Lin, and Zhaoyan Liu
Atmos. Meas. Tech., 18, 4003–4004, https://doi.org/10.5194/amt-18-4003-2025, https://doi.org/10.5194/amt-18-4003-2025, 2025
Short summary
Short summary
This is a reply to a recent article by Christoph Kiemle et al., critical of CO2 measurements using continuous-wave (CW) lidar. We show CW lidar is not only capable of measuring range but also capable of measuring range to the required accuracy without the aid of an external altimeter.
Bryan Edward Fabbri, Gregory L. Schuster, Frederick M. Denn, Bing Lin, David A. Rutan, Wenying Su, Zachary A. Eitzen, James J. Madigan Jr., Robert Arduini, and Norman G. Loeb
EGUsphere, https://doi.org/10.5194/egusphere-2025-872, https://doi.org/10.5194/egusphere-2025-872, 2025
Short summary
Short summary
A new upwelling longwave (LW) measuring technique is presented without the influence of an obstruction on a pyrgeometer using an infrared radiation thermometer, a downwelling LW pyrgeometer and an air temperature probe. This new technique could be used at other locations with obstruction issues and also to verify existing upwelling longwave pyrgeometer measurements. Satellite projects such as the Clouds and the Earth's Radiant Energy System rely on accurate measurements to verify their models.
Thibault Vaillant de Guélis, Gérard Ancellet, Anne Garnier, Laurent C.-Labonnote, Jacques Pelon, Mark A. Vaughan, Zhaoyan Liu, and David M. Winker
Atmos. Meas. Tech., 15, 1931–1956, https://doi.org/10.5194/amt-15-1931-2022, https://doi.org/10.5194/amt-15-1931-2022, 2022
Short summary
Short summary
A new IIR-based cloud and aerosol discrimination (CAD) algorithm is developed using the IIR brightness temperature differences for cloud and aerosol features confidently identified by the CALIOP version 4 CAD algorithm. IIR classifications agree with the majority of V4 cloud identifications, reduce the ambiguity in a notable fraction of
not confidentV4 cloud classifications, and correct a few V4 misclassifications of cloud layers identified as dense dust or elevated smoke layers by CALIOP.
David F. Baker, Emily Bell, Kenneth J. Davis, Joel F. Campbell, Bing Lin, and Jeremy Dobler
Geosci. Model Dev., 15, 649–668, https://doi.org/10.5194/gmd-15-649-2022, https://doi.org/10.5194/gmd-15-649-2022, 2022
Short summary
Short summary
The OCO-2 satellite measures many closely spaced column-averaged CO2 values around its orbit. To give these data proper weight in flux inversions, their error correlations must be accounted for. Here we lay out a 1-D error model with correlations that die out exponentially along-track to do so. A correlation length scale of ∼20 km is derived from column CO2 measurements from an airborne lidar flown underneath OCO-2 for use in this model. The model's performance is compared to previous ones.
Kristopher M. Bedka, Amin R. Nehrir, Michael Kavaya, Rory Barton-Grimley, Mark Beaubien, Brian Carroll, James Collins, John Cooney, G. David Emmitt, Steven Greco, Susan Kooi, Tsengdar Lee, Zhaoyan Liu, Sharon Rodier, and Gail Skofronick-Jackson
Atmos. Meas. Tech., 14, 4305–4334, https://doi.org/10.5194/amt-14-4305-2021, https://doi.org/10.5194/amt-14-4305-2021, 2021
Short summary
Short summary
This paper demonstrates the Doppler Aerosol WiNd (DAWN) lidar and High Altitude Lidar Observatory (HALO) measurement capabilities across a range of atmospheric conditions, compares DAWN and HALO measurements with Aeolus satellite Doppler wind lidar to gain an initial perspective of Aeolus performance, and discusses how atmospheric dynamic processes can be resolved and better understood through simultaneous observations of wind, water vapour, and aerosol profile observations.
Thibault Vaillant de Guélis, Mark A. Vaughan, David M. Winker, and Zhaoyan Liu
Atmos. Meas. Tech., 14, 1593–1613, https://doi.org/10.5194/amt-14-1593-2021, https://doi.org/10.5194/amt-14-1593-2021, 2021
Short summary
Short summary
We introduce a new lidar feature detection algorithm that dramatically improves the fine details of layers identified in the CALIOP data. By applying our two-dimensional scanning technique to the measurements in all three channels, we minimize false positives while accurately identifying previously undetected features such as subvisible cirrus and the full vertical extent of dense smoke plumes. Multiple comparisons to version 4.2 CALIOP retrievals illustrate the scope of the improvements made.
Cited articles
Abshire, J. B., Riris, H., Allan, G. R., Weaver, C. J., Mao, J., Sun, X., Hasselbrack, W. E., Kawa, S. R., and Biraud, S.: Pulsed airborne lidar measurements of atmospheric CO2 column absorption, Tellus B, 62, 770–783, 2010.
Banfield, D., Rodriguez-Manfredi, J. A., Russell, C. T., Rowe, K. M., Leneman, D., Lai, H. R., Cruce, P. R., Means, J. D., Johnson, C. L., Mittelholz, A., Joy, S. P., Chi, P. J., Mikellides, I. G., Carpenter, S., Navarro, S., Sebastian, E., Gomez-Elvira, J., Torres, J., Mora, L., Peinado, V., Lepinette, A., Hurst, K., Lognonné, P., Smrekar, S. E., Banerdt, W. B., and The TWINS Team: The atmosphere of Mars as observed by InSight, Nat. Geosci., 13, 190–198, https://doi.org/10.1038/s41561-020-0534-0, 2020.
Bibring, J.-P., Erard, S., Gondet, B., Langevin, Y., Soufflot, A., Combes, M., Cara, C., Drossart, P., Encrenaz, T., Lellouch, E., Rosenqvist, J., Moroz, V. I., Dyachkov, A. V., Grygoriev, A. V., Havinson, N. G., Khatuntsev, I. V., Kiselev, A. V., Ksanfomality, L. V., Nikolsky, Yu. V., Masson, P., Forni, O., and Sotin, C.: Topography of the martian tropical regions with ISM, Planet. Space Sci., 39, 225–236, 1991.
Campbell, J., Lin, B., Browell, E., Obland, M., Dobler, J., Erxleben, W., McGregor, D., O'Dell, C., Bell, E., Pal, S., Weir, B., Fan, T., Kooi, S., Corbett, A., Davis, K., Gordon, I., and Kochanov, R.: Field Evaluation of Column CO2 Retrievals from Intensity-Modulated Continuous-Wave Differential Absorption Lidar Measurements during ACT-America, Earth and Space Science, 7, e2019EA000847, https://doi.org/10.1029/2019EA000847, 2020.
Chen-Chen, H., Pérez-Hoyos, S., and Sánchez-Lavega, A.: Dust particle size and optical depth on Mars retrieved by the MSL navigation cameras, Icarus, 319, 43–57, 2019.
Dobler, J. T., Harrison, F. W., Browell, E. V., Lin, B., McGregor, D., Kooi, S., Choi, Y., and Ismail, S.: Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 µm fiber laser lidar, Appl. Optics, 52, 2874–2892, 2013.
Fedorova, A., Korableva, O., Bertauxb, J.-L., Rodina, A. V., Montmessin, F., Belyaeva, D. A., and Reberac, A.: Solar infrared occultation observations by SPICAM experiment on Mars-Express: Simultaneous measurements of the vertical distributions of H2O, CO2 and aerosol, Icarus, 200, 96–117, 2009.
Forget, F., Spiga, A., Dolla, B., Vinatier, S., Melchiorri, R., Drossart, P., Gendrin, A., Bibring, J.-P., Langevin, Y., and Gondet, B.: Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 1. Retrieval method, J. Geophys. Res., 112, E08S15, https://doi.org/10.1029/2006JE002871, 2007.
Frey, H., Sakimoto, S., and Roark, J.: The MOLA topographic signature at the crustal dichotomy boundary zone on Mars, Geophys. Res. Lett., 25, 4409–4412, 1998.
Guzewich, S. D., Lemmon, M., Smith, C. L., Martínez, G., de Vicente-Retortillo, Á., Newman, C. E., Baker, M., Campbell, C., Cooper, B., Gómez-Elvira, J., Harri, A.-M., Hassler, D., Martin-Torres, F. J., McConnochie, T., Moores, J. E., Kahanpää, H., Khayat, A., Richardson, M. I., Smith, M. D., Sullivan, R., de la Torre Juarez, M., Vasavada, A. R., Viúdez-Moreiras, D., Zeitlin, C., and Zorzano Mier, M.-P.: Mars Science Laboratory observations of the 2018/Mars year 34 global dust storm, Geophys. Res. Lett., 46, 71–79, https://doi.org/10.1029/2018GL080839, 2019.
Holton, J.: An Introduction to Dynamic Meteorology, 3rd edn., Academic Press, ISBN-13: 978-0123543554, 1992.
Hunt, W., Winker, D., Vaughan, M., Powell, K., Lucker, P., and Weimer, C.: CALIPSO lidar description and performance assessment, J. Atmos. Ocean. Tech., 26, 1214–1228, 2009.
Kalmus, P., Nguyen, H., Roman, J., Wang, T., Yue, Q., Wen, Y., Hobbs, J., and Braverman, A.: Data fusion of AIRS and CrIMSS near surface air temperature, Earth and Space Science, 9, e2022EA002282, https://doi.org/10.1029/2022EA002282, 2022.
Koch, G., Beyon, J., Gibert, F., Barnes, B., Ismail, S., Petros, M., Petzar, P., Yu, J., Modlin, E., Davis, K., and Singh, U.: Side-line tunable laser transmitter for differential absorption lidar measurement of CO2: design and application to atmospheric measurements, Appl. Optics, 47, 944–956, 2008.
Kochanov, R. V., Gordon, I. E., Rothman, L. S., Wcislo, P., Hill, C., and Wilzewski, J. S.: HITRAN Application Programming Interface (HAPI), A comprehensive approach to working with spectroscopic data, J. Quant. Spectrosc. Ra., 177, 15–30, 2016.
Korb, C. L. and Weng, C. Y.: Differential absorption lidar technique for measurement of the atmospheric pressure profile, Appl. Optics, 22, 3759–3770, 1983.
Lin, B. and Liu, Z.: Martian atmospheric CO2 and pressure profiling with differential absorption lidar: System consideration and simulation results, Earth and Space Science, 8, e2020EA001600, https://doi.org/10.1029/2020EA001600, 2021.
Lin, B., Ismail, S., Harrison, F. W., Browell, E. V., Nehrir, A. R., Dobler, J., Moore, B., Refaat, T., and Kooi, S. A.: Modeling of intensity-modulated continuous-wave laser absorption spectrometer systems for atmospheric CO2 column measurements, Appl. Optics, 52, 7062–7077, 2013.
Lin, B., Nehrir, A., Harrison, F., Browell, E., Ismail, S., Obland, M., Campbell, J., Dobler, J., Meadows, B., Fan, T., and Kooi, S.: Atmospheric CO2 column measurements in cloudy conditions using intensity-modulated continuous-wave lidar at 1.57 micron, Opt. Express, 23, A582–A593, https://doi.org/10.1364/OE.23.00A582, 2015.
Liu, Z., Voelger, P., and Sugimoto, N.: Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment system, Appl. Optics, 39, 18, https://doi.org/10.1364/AO.39.003120, 2000.
Natraj, V., Luo, M., Blavier, J.-F., Payne, V. H., Posselt, D. J., Sander, S. P., Zeng, Z.-C., Neu, J. L., Tremblay, D., Wu, L., Roman, J. A., Wu, Y.-H., and Dorsky, L. I.: Simulated multispectral temperature and atmospheric composition retrievals for the JPL GEO-IR Sounder, Atmos. Meas. Tech., 15, 1251–1267, https://doi.org/10.5194/amt-15-1251-2022, 2022.
Nier, A. O., Hanson, W. B., Seiff, A., McElroy, M. B., Spencer, N. W., Duckett, R. J., Knight, T. C. D., and Cook, W. S.: Composition and Structure of the Martian Atmosphere: Preliminary Results from Viking 1, Science, 193, 786–788, https://doi.org/10.1126/science.193.4255.786, 1976 (data available at: https://atmos.nmsu.edu/data_and_services/atmospheres_data/MARS/viking/logs/VL1_entry_profile.txt, last access: 30 April 2024).
Refaat, T., Singh, U., Yu, J., Petros, M., Ismail, S., Kavaya, M., and Davis, K.: Evaluation of an airborne triple-pulsed 2 µm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements, Appl. Optics, 54, 1387–1398, 2015.
Seiff, A. and Kirk, D.: Structure of the atmosphere of Mars in summer at mid-latitudes, J. Geophys. Res., 28, 4364–4378, 1977.
Smith, D., Zuber, M., Solomon, S. C., Phillips, R. J., Head, J. W., Garvin, J. B., Banerdt, W. B., Muhleman, D. O., Pettengill, G. H., Neumann, G. A., Lemoine, F. G., Abshire, J. B., Aharonson, O., David, C., Hauck, S. A., Ivanov, A. B., McGovern, P. J., Zwally, H. J., and Duxbury, T. C.: The Global Topography of Mars and Implications for Surface Evolution, Science, 284, 1495, https://doi.org/10.1126/science.284.5419.1495, 1999.
Smith, M. D., Pearl, J. C., Conrath, B. J., and Christensen, P. R.: Thermal emission spectrometer results: Mars atmospheric thermal structure and aerosol distribution, J. Geophys. Res.-Planet., 106, 23929–23945, https://doi.org/10.1029/2000JE001321, 2001.
Spiga, A., Forget, F., Dolla, B., Vinatier, S., Melchiorri, R., Drossart, P., Gendrin, A., Bibring, J.-P., Langevin, Y., and Gondet, B.: Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer: 2. Meteorological maps, J. Geophys. Res., 112, E08S16, https://doi.org/10.1029/2006JE002870, 2007.
Spiga, A., Banfield, D., Teanby, N. A., Forget, F., Lucas, A., Kenda, B., Rodriguez Manfredi, J. A., Widmer-Schnidrig, R., Murdoch, N., Lemmon, M. T., Garcia, R. F., Martire, L., Karatekin, Ö., Le Maistre, S., Van Hove, B., Dehant, V., Lognonné, P., Mueller, N., Lorenz, R., Mimoun, D., Rodriguez, S., Beucler, É., Daubar, I., Golombek, M. P., Bertrand, T., Nishikawa, Y., Millour, E., Rolland, L., Brissaud, Q., Kawamura, T., Mocquet, A., Martin, R., Clinton, J., Stutzmann, É., Spohn, T., Smrekar, S., and Banerdt, W. B.: Atmospheric Science with InSight, Space Sci. Rev., 214, 109, https://doi.org/10.1007/s11214-018-0543-0, 2018.
Sun, X., Abshire, J. B., Beck, J. D., Mitra, P., Reiff, K., and Yang, G.: HgCdTe avalanche photodiode detectors for airborne and spaceborne lidar at infrared wavelengths, Opt. Express, 26, 16589–16602, 2017.
Trainer, M. G., Wong, M. H., McConnochie, T. H., Franz, H. B., Atreya, S. K., Conrad, P. G., Lefèvre, F., Mahaffy, P. R., Malespin, C. A., Manning, H. L. K., Martín-Torres, J., Martínez, G. M., McKay, C. P., Navarro-González, R., Vicente-Retortillo, Á., Webster, C. R., and Zorzano, M.-P.: Seasonal Variations in Atmospheric Composition as Measured in Gale Crater, Mars, J. Geophys. Res.-Planet., 124, 3000–3024, https://doi.org/10.1029/2019JE006175, 2019.
Williams, D.: Mars Fact Sheet, https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html (last access: 30 April 2024), 2020.
Yu, J., Petros, M., Singh, U. N., Refaat, T. F., Reithmaier, K., Remus, R. G., and Johnson, W.: An Airborne 2 mm Double-Pulsed Direct-Detection Lidar Instrument for Atmospheric CO2 Column Measurements, J. Atmos. Ocean. Tech., 34, 385–400, 2017.
Short summary
We introduce a concept utilizing a differential absorption barometric lidar operating within the 1.96 µm CO2 absorption band. Our focus is on a compact lidar configuration, featuring reduced telescope size and lower laser pulse energies towards minimizing costs for potential forthcoming Mars missions. The core measurement objectives encompass the determination of column CO2 absorption optical depth and abundance, surface air pressure, and vertical distributions of dust and cloud layers.
We introduce a concept utilizing a differential absorption barometric lidar operating within the...