Articles | Volume 17, issue 9
https://doi.org/10.5194/amt-17-2977-2024
https://doi.org/10.5194/amt-17-2977-2024
Research article
 | 
16 May 2024
Research article |  | 16 May 2024

Martian column CO2 and pressure measurement with spaceborne differential absorption lidar at 1.96 µm

Zhaoyan Liu, Bing Lin, Joel F. Campbell, Jirong Yu, Jihong Geng, and Shibin Jiang

Related authors

Comment on “Design study for an airborne N2O lidar” by Kiemle et al. (2024)
Joel F. Campbell, Bing Lin, and Zhaoyan Liu
Atmos. Meas. Tech., 18, 4003–4004, https://doi.org/10.5194/amt-18-4003-2025,https://doi.org/10.5194/amt-18-4003-2025, 2025
Short summary
Assessing the benefits of Imaging Infrared Radiometer observations for the CALIOP version 4 cloud and aerosol discrimination algorithm
Thibault Vaillant de Guélis, Gérard Ancellet, Anne Garnier, Laurent C.-Labonnote, Jacques Pelon, Mark A. Vaughan, Zhaoyan Liu, and David M. Winker
Atmos. Meas. Tech., 15, 1931–1956, https://doi.org/10.5194/amt-15-1931-2022,https://doi.org/10.5194/amt-15-1931-2022, 2022
Short summary
Airborne lidar observations of wind, water vapor, and aerosol profiles during the NASA Aeolus calibration and validation (Cal/Val) test flight campaign
Kristopher M. Bedka, Amin R. Nehrir, Michael Kavaya, Rory Barton-Grimley, Mark Beaubien, Brian Carroll, James Collins, John Cooney, G. David Emmitt, Steven Greco, Susan Kooi, Tsengdar Lee, Zhaoyan Liu, Sharon Rodier, and Gail Skofronick-Jackson
Atmos. Meas. Tech., 14, 4305–4334, https://doi.org/10.5194/amt-14-4305-2021,https://doi.org/10.5194/amt-14-4305-2021, 2021
Short summary
Two-dimensional and multi-channel feature detection algorithm for the CALIPSO lidar measurements
Thibault Vaillant de Guélis, Mark A. Vaughan, David M. Winker, and Zhaoyan Liu
Atmos. Meas. Tech., 14, 1593–1613, https://doi.org/10.5194/amt-14-1593-2021,https://doi.org/10.5194/amt-14-1593-2021, 2021
Short summary

Cited articles

Abshire, J. B., Riris, H., Allan, G. R., Weaver, C. J., Mao, J., Sun, X., Hasselbrack, W. E., Kawa, S. R., and Biraud, S.: Pulsed airborne lidar measurements of atmospheric CO2 column absorption, Tellus B, 62, 770–783, 2010. 
Campbell, J., Lin, B., Browell, E., Obland, M., Dobler, J., Erxleben, W., McGregor, D., O'Dell, C., Bell, E., Pal, S., Weir, B., Fan, T., Kooi, S., Corbett, A., Davis, K., Gordon, I., and Kochanov, R.: Field Evaluation of Column CO2 Retrievals from Intensity-Modulated Continuous-Wave Differential Absorption Lidar Measurements during ACT-America, Earth and Space Science, 7, e2019EA000847, https://doi.org/10.1029/2019EA000847, 2020. 
Chen-Chen, H., Pérez-Hoyos, S., and Sánchez-Lavega, A.: Dust particle size and optical depth on Mars retrieved by the MSL navigation cameras, Icarus, 319, 43–57, 2019. 
Download
Short summary
We introduce a concept utilizing a differential absorption barometric lidar operating within the 1.96 µm CO2 absorption band. Our focus is on a compact lidar configuration, featuring reduced telescope size and lower laser pulse energies towards minimizing costs for potential forthcoming Mars missions. The core measurement objectives encompass the determination of column CO2 absorption optical depth and abundance, surface air pressure, and vertical distributions of dust and cloud layers.
Share