Articles | Volume 18, issue 4
https://doi.org/10.5194/amt-18-909-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-18-909-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ScintPi measurements of low-latitude ionospheric irregularity drifts using the spaced-receiver technique and SBAS signals
Josemaria Gomez Socola
CORRESPONDING AUTHOR
William B. Hanson Center for Space Sciences, The University of Texas at Dallas, Dallas, TX 75080, USA
Fabiano S. Rodrigues
William B. Hanson Center for Space Sciences, The University of Texas at Dallas, Dallas, TX 75080, USA
Isaac G. Wright
William B. Hanson Center for Space Sciences, The University of Texas at Dallas, Dallas, TX 75080, USA
Igo Paulino
Department of Physics, Federal University of Campina Grande, Campina Grande, 58429-900, Brazil
Ricardo Buriti
Department of Physics, Federal University of Campina Grande, Campina Grande, 58429-900, Brazil
Related authors
No articles found.
Ana Roberta Paulino, Igo Paulino, and José Augusto Pereira
EGUsphere, https://doi.org/10.5194/egusphere-2025-3085, https://doi.org/10.5194/egusphere-2025-3085, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
In this paper, atmospheric responses to the 23 October 2023 annular solar eclipse is discussed considering almost simultaneous temperature measurements from the TIMED/SABER satellite. Reductions of the temperature in troposphere, mesosphere and mesopause were observed. On the other hand, the temperature increased by about 7 K around 33 km. The temporal and spatial configuration of the measurements is consistent with the observed structures.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Erdal Yiğit, Vera Y. Tsali-Brown, Ricardo A. Buriti, Cosme A. O. B. Figueiredo, Gabriel A. Giongo, Fábio Egito, Oluwasegun M. Adebayo, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 25, 4053–4082, https://doi.org/10.5194/acp-25-4053-2025, https://doi.org/10.5194/acp-25-4053-2025, 2025
Short summary
Short summary
This work explores the dynamics of the momentum and energy of propagating mesospheric gravity waves (GWs). A photometer was used to observe the vertical component of the GWs, whereas the horizontal component was observed by an all-sky imager. Using the parameters from these two instruments and background wind from meteor radar, the momentum flux and potential energy of the GWs were determined and studied. It is noted that the dynamics of the downward-propagating GWs were controlled by observed ducts.
Ana Roberta Paulino, Delis Otildes Rodrigues, Igo Paulino, Lourivaldo Mota Lima, Ricardo Arlen Buriti, Paulo Prado Batista, Aaron Ridley, and Chen Wu
Ann. Geophys., 43, 183–191, https://doi.org/10.5194/angeo-43-183-2025, https://doi.org/10.5194/angeo-43-183-2025, 2025
Short summary
Short summary
Comparisons of wind measurements using two different techniques (ground-based radar and satellite) in Brazil during 2006 were made in order to point out the advantages of each instrument for studies in the mesosphere and upper thermosphere. (i) For short-period variations, the measurements of the satellite were more advantageous. (ii) The monthly climatology using the radar was more appropriate. (iii) For long periods (longer than a few months), both instruments responded satisfactorily.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Hisao Takahashi, Cosme A. O. B. Figueiredo, Patrick Essien, Cristiano M. Wrasse, Diego Barros, Prosper K. Nyassor, Igo Paulino, Fabio Egito, Geangelo M. Rosa, and Antonio H. R. Sampaio
Ann. Geophys., 40, 665–672, https://doi.org/10.5194/angeo-40-665-2022, https://doi.org/10.5194/angeo-40-665-2022, 2022
Short summary
Short summary
We observed two different wave propagations in the earth’s upper atmosphere: a gravity wave in the mesosphere and the ionospheric disturbances. We investigated the wave propagations by using airglow imaging techniques. It is found that there was a gravity wave generation from the tropospheric convection spot, and it propagated upward in the ionosphere. This reports observational evidence of gravity wave propagation from the troposphere to ionosphere.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Eliah F. M. T. São Sabbas, José V. Bageston, Kleber P. Naccarato, Delano Gobbi, Cosme A. O. B. Figueiredo, Toyese T. Ayorinde, Hisao Takahashi, and Diego Barros
Atmos. Chem. Phys., 22, 15153–15177, https://doi.org/10.5194/acp-22-15153-2022, https://doi.org/10.5194/acp-22-15153-2022, 2022
Short summary
Short summary
This work investigates the sources of concentric gravity waves (CGWs) excited by a moving system of clouds with several overshooting regions on 1–2 October 2019 at São Martinho da Serra. The parameters of these waves were estimated using 2D spectral analysis and their source locations identified using backward ray tracing. Furthermore, the sources of these waves were properly identified by tracking the individual overshooting regions in space and time since the system of clouds was moving.
Igo Paulino, Ana Roberta Paulino, Amauri F. Medeiros, Cristiano M. Wrasse, Ricardo Arlen Buriti, and Hisao Takahashi
Ann. Geophys., 39, 1005–1012, https://doi.org/10.5194/angeo-39-1005-2021, https://doi.org/10.5194/angeo-39-1005-2021, 2021
Short summary
Short summary
In the present work, the lunar semidiurnal tide (M2) was investigated in the equatorial plasma bubble (EPB) zonal drifts over Brazil from 2000 to 2007. On average, the M2 contributes 5.6 % to the variability of the EPB zonal drifts. A strong seasonal and solar cycle dependency was also observed, the amplitudes of the M2 being stronger during the summer and high solar activity periods.
Ana Roberta Paulino, Fabiano da Silva Araújo, Igo Paulino, Cristiano Max Wrasse, Lourivaldo Mota Lima, Paulo Prado Batista, and Inez Staciarini Batista
Ann. Geophys., 39, 151–164, https://doi.org/10.5194/angeo-39-151-2021, https://doi.org/10.5194/angeo-39-151-2021, 2021
Short summary
Short summary
Long- and short-period oscillations in the lunar semidiurnal tidal amplitudes in the ionosphere derived from the total electron content were investigated over Brazil from 2011 to 2014. The results showed annual, semiannual and triannual oscillations as the dominant components. Additionally, the most pronounced short-period oscillations were observed between 7 and 11 d, which suggest a possible coupling of the lunar tide and planetary waves.
Ricardo A. Buriti, Wayne Hocking, Paulo P. Batista, Igo Paulino, Ana R. Paulino, Marcial Garbanzo-Salas, Barclay Clemesha, and Amauri F. Medeiros
Ann. Geophys., 38, 1247–1256, https://doi.org/10.5194/angeo-38-1247-2020, https://doi.org/10.5194/angeo-38-1247-2020, 2020
Short summary
Short summary
Solar atmospheric tides are natural oscillations of 24, 12, 8... hours that contribute to the circulation of the atmosphere from low to high altitudes. The Sun heats the atmosphere periodically because, mainly, water vapor and ozone absorb solar radiation between the ground and 50 km height during the day. Tides propagate upward and they can be observed in, for example, the wind field. This work presents diurnal tides observed by meteor radars which measure wind between 80 and 100 km height.
Cited articles
Abdu, M. A., Souza, J. R. D., Batista, I. S., and Sobral, J. H. A.: Equatorial spread F statistics and empirical representation for IRI: A regional model for the Brazilian longitude sector, Adv. Space Res., 31, 703–716, https://doi.org/10.1016/S0273-1177(03)00031-0, 2003.
Abdu, M. A., Batista, I. S., Reinisch, B. W., Sobral, J. H. A., and Carrasco, A. J.: Equatorial F region evening vertical drift, and peak height, during southern winter months: A comparison of observational data with the IRI descriptions, Adv. Space Res., 37, 1007–1017, https://doi.org/10.1016/j.asr.2005.06.074, 2006.
Alken, P., Thébault, E., Beggan, C. D., Amit, H., Aubert, J., Baerenzung, J., Bondar, T. N., Brown, W. J., Califf, S., Chambodut, A., Chulliat, A., Cox, G. A., C., Finlay, C., Fournier, A., Gillet, N., Grayver, A., Hammer, M. D., Holschneider, M., Huder, L., Hulot, G., Jager, T., Kloss, C., Korte, M., Kuang, W., Kuvshinov, A., Langlais, B., Léger, J. M., Lesur, V. P., Livermore, W., Lowes, F. J., Macmillan, S., Magnes, W., Mandea, M., Marsal, S., Matzka, J., Metman, M. C., Minami, T., Morschhauser, A., Mound, J. E., Nair, M., Nakano, S., Olsen, N., Pavón-Carrasco, F. J., Petrov, V. G., Ropp, G., Rother, M., Sabaka, T. J., Sanchez, S., Saturnino, D., Schnepf, N. R., Shen, X., Stolle, C., Tangborn, A., Tøffner-Clausen, L., Toh, H., Torta, J. M., Varner, J., Vervelidou, F., Vigneron, P., Wardinski, I., Wicht, J., Woods, A., Yang, Y., Zeren Z., and Zhou, B.: International geomagnetic reference field: the thirteenth generation, Earth Planets Space 73, 1–25, https://doi.org/10.1186/s40623-020-01313-z, 2021.
Appleton, E. V.: Two anomalies in the ionosphere, Nature, 157, 691, https://doi.org/10.1038/157691a0, 1946.
Bailey, D. K.: The geomagnetic nature of the F2-layer longitude-effect, Terr. Magn. Atmos. Electr., 53, 35–39, https://doi.org/10.1029/TE053I001P00035, 1948.
Bhattacharyya, A., Basu, S., Groves, K. M., Valladares, C. E., and Sheehan, R.: Dynamics of equatorial F region irregularities from spaced receiver scintillation observations, Geophys. Res. Lett., 28, 119–122, https://doi.org/10.1029/2000GL012288, 2001.
Briggs, B. H., Phillips, G. J., and Shinn, D. H.: The analysis of observations on spaced receivers of the fading of radio signals, Proc. Phys. Soc. Sect. B, 63, 106–121, https://doi.org/10.1088/0370-1301/63/2/305, 1950.
Carrano, C. S. and Groves, K. M.: Temporal decorrelation of GPS satellite signals due to multiple scattering from ionospheric irregularities, in: Proceedings of the 23rd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2010), Portland, OR, September 2010, 72010, 361–374, 2010.
Cerruti, A. P., Ledvina, B. M., and Kintner, P. M.: Scattering height estimation using scintillating wide area augmentation system/satellite-based augmentation system and GPS satellite signals, Radio Sci., 41, RS6S26, https://doi.org/10.1029/2005RS003405, 2006.
Cesaroni, C., Spogli, L., Franceschi, G. D., Damaceno, J. G., Grzesiak, M., Vani, B., Monico, J. F., Romano, V., Alfonsi, L., and Cafaro, M.: A measure of ionospheric irregularities: Zonal velocity and its implications for L-band scintillation at low-latitudes, Earth Planet. Phys., 5, 450–461, 2021.
Chapagain, N. P., Makela, J. J., Meriwether, J. W., Fisher, D. J., Buriti, R. A., and Medeiros, A. F.: Comparison of nighttime zonal neutral winds and equatorial plasma bubble drift velocities over Brazil, J. Geophys. Res., 117, A06309, https://doi.org/10.1029/2012JA017620, 2012.
Coley, W. R., Heelis, R. A., and Spencer, N. W.: Comparison of low-latitude ion and neutral zonal drifts using DE 2 data, J. Geophys. Res., 99, 341–348, https://doi.org/10.1029/93JA02205, 1994.
de Paula, E. R., Muella, M. T. A. H., Sobral, J. H. A., Abdu, M. A., Batista, I. S., Beach, T. L., and Groves, K. M.: Magnetic conjugate point observations of kilometer and hundred-meter scale irregularities and zonal drifts, J. Geophys. Res., 115, A08307, https://doi.org/10.1029/2010JA015383, 2010.
Drob, D. P., Emmert, J. T., Meriwether, J. W., Makela, J. J., Doornbos, E., Conde, M., Hernandez, G., Noto, J., Zawdie, K. A., McDonald, S. E., Huba, J. D., and Klenzing, J. H.: An update to the Horizontal Wind Model (HWM): The quiet time thermosphere, Earth and Space Science, 2, 301–319, https://doi.org/10.1002/2014EA000089, 2015.
Dyson, P. L. and Benson, R. F.: Topside sounder observations of equatorial bubbles, Geophys. Res. Lett., 5, 795–798 https://doi.org/10.1029/GL005i009p00795, 1978.
Farley, D. T., Bonelli, E., Fejer, B. G., and Larsen, M. F.: The prereversal enhancement of the zonal electric field in the equatorial ionosphere, J. Geophys. Res.-Space, 91, 13723–13728, https://doi.org/10.1029/JA091iA12p13723, 1986.
Fejer, B. G., de Paula, E. R., Gonzales, S. A., and Woodman, R. F.: Average vertical and zonal F-region plasma drifts over Jicamarca, J. Geophys. Res., 96, 13901–13906, https://doi.org/10.1029/91JA01171, 1991.
Fejer, B. G., Scherliess, L., and de Paula, E. R.: Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F, J. Geophys. Res.-Space, 104, 19859–19869, https://doi.org/10.1029/1999JA900271, 1999.
Fejer, B. G., de Souza, J., Santos, A. S., and Costa Pereira, A. E.: Climatology of F region zonal plasma drifts over Jicamarca, J. Geophys. Res., 110, A12310, https://doi.org/10.1029/2005JA011324, 2005.
Fesen, C. G., Crowley, G., Roble, R. G., Richmond, A. D., and Fejer, B. G.: Simulation of the pre-reversal enhancement in the low latitude vertical ion drifts, Geophys. Res. Lett., 27, 1851–1854, https://doi.org/10.1029/2000GL000061, 2000.
Gomez Socola, J., da Silveira Rodrigues, F., Wright, I. G., Paulino, I., and Buriti da Costa, R. A.: Data sets for “ScintPi measurements of low-latitude ionospheric irregularity drifts using the spaced-receiver technique and SBAS signals”, Zenodo [data set], https://doi.org/10.5281/zenodo.14289996, 2024.
Gomez Socola, J. and Rodrigues, F. S.: ScintPi 2.0 and 3.0: low-cost GNSS-based monitors of ionospheric scintillation and total electron content, Earth Planets Space, 74, 185, https://doi.org/10.1186/s40623-022-01743-x, 2022.
Gomez Socola, J., Sousasantos, J., Rodrigues, F. S., Brum, C. G. M., Terra, P., Moraes, A. O., and Eastes, R.: On the quiet-time occurrence rates, severity and origin of L-band ionospheric scintillations observed from low-to-mid latitude sites located in Puerto Rico, J. Atmos. Sol.-Terr. Phy., 250, 106123, https://doi.org/10.1016/j.jastp.2023.106123, 2023.
Groves, K. M., Basu, S., Weber, E. J., Smitham, M., Kuenzler, H., Valladares, C. E., Sheehan, R., MacKenzie, E., Secan, J. A., Ning, P., McNeill, W. J., Moonan, D. W., and Kendra, M. J.: Equatorial scintillation and systems support, Radio Sci., 32, 2047–2064, https://doi.org/10.1029/97RS00836, 1997.
Haerendel, G. E., Eccles, J. V., and Çakir, S.: Theory of modeling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow, J. Geophys. Res., 97, 1209–1223, https://doi.org/10.1029/91JA02226, 1992.
Hanson, W. B. and Moffett, R. J.: Ionization transport effects in the equatorial F-region, J. Geophys. Res., 71, 5559–5572, https://doi.org/10.1029/JZ071i023p05559, 1966.
Heelis, R. A., Kendall P. C., Moffett R. J., Windle D. W., and Rishbeth, H.: Electrical coupling of the E- and F-regions and its effect of F-region drifts and winds, Planet. Space Sci., 22, 743–756, https://doi.org/10.1016/0032-0633(74)90144-5, 1974.
Immel, T. J., Sagawa, E., England, S. L., Henderson, S. B., Hagan, M. E., Mende, S. B., Frey, H. U., Swenson, C. M., and Paxton, L. J.: Control of equatorial ionospheric morphology by atmospheric tides, Geophys. Res. Lett., 33, L15108, https://doi.org/10.1029/2006GL026161, 2006.
Kil, H., Kintner, P. M., de Paula, E. R., and Kantor, I. J.: Global Positioning System measurements of the ionospheric zonal apparent velocity at Cachoeira Paulista in Brazil, J. Geophys. Res., 105, 5317–5327, https://doi.org/10.1029/1999JA000244, 2000.
Kil, H., Kintner, P. M., de Paula, E. R., and Kantor, I. J.: Latitudinal variations of scintillation activity and zonal plasma drifts in South America, Radio Sci., 37, 1–7, https://doi.org/10.1029/2001RS002468, 2002.
Kintner, P. M. and Ledvina, B. M.: The ionosphere, radio navigation, and global navigation satellite systems, Adv. Space Res., 35, 788–811, https://doi.org/10.1016/j.asr.2004.12.076, 2005.
Kintner, P. M., Ledvina, B. M., de Paula, E. R., and Kantor, I. J.: Size, shape, orientation, speed, and duration of GPS equatorial anomaly scintillations, Radio Sci., 39, RS2012, https://doi.org/10.1029/2003RS002878, 2004.
Ledvina, B. M., Kintner, P. M., and de Paula, E. R.: Understanding spaced-receiver zonal velocity estimation, J. Geophys. Res., 109, A10306, https://doi.org/10.1029/2004JA010489, 2004.
Martinis, C., Hickey, D., Wroten, J., Baumgardner, J., Macinnis, R., Sullivan, C., and Padilla, S.: All-Sky Imager Observations of the Latitudinal Extent and Zonal Motion of Magnetically Conjugate 630.0 nm Airglow Depletions, Atmosphere, 11, 642, https://doi.org/10.3390/atmos11060642, 2020.
Martinis, C., Eccles, J. V., Baumgardner, J., Manzano, J., and Mendillo, M.: Latitude dependence of zonal plasma drifts obtained from dual-site airglow observations, J. Geophys. Res., 108, 1129, https://doi.org/10.1029/2002JA009462, 2003.
Mendillo, M. and Baumgardner, J.: Airglow characteristics of equatorial plasma depletions, J. Geophys. Res.-Space, 87, 7641–7652, https://doi.org/10.1029/JA087iA09p07641, 1982.
Moffett, R. J.: Equatorial anomaly in the electron distribution of the terrestrial F-region, Cosmology and Fundamental Physics, 4, 313–391, 1979.
Muella, M. T. A. H., de Paula, E. R., Kantor, I. J., Batista, I. S., Sobral, J. H. A., Abdu, M. A., and Smorigo, P. F.: GPS L-band scintillations and ionospheric irregularity zonal drifts inferred at equatorial and low-latitude regions, J. Atmos. Sol.-Terr. Phy., 70, 1261–1272, https://doi.org/10.1016/j.jastp.2008.03.013, 2008.
Muella, M. T. A. H., de Paula, E. R., Kantor, I. J., Rezende, L. F. C. D., and Smorigo, P. F.: Occurrence and zonal drifts of small-scale ionospheric irregularities over an equatorial station during solar maximum–magnetic quiet and disturbed conditions, Adv. Space Res., 43, 1957–1973, https://doi.org/10.1016/j.asr.2009.03.017, 2009.
Muella, M. T. A. H., de Paula, E. R., and Monteiro, A. A.: Ionospheric Scintillation and Dynamics of Fresnel-Scale Irregularities in the Inner Region of the Equatorial Ionization Anomaly, Surv. Geophys., 34, 233–251, https://doi.org/10.1007/s10712-012-9212-0, 2013.
Muella, M. T. A. H., de Paula, E. R., and Jonah, O. F.: GPS L1-Frequency Observations of Equatorial Scintillations and Irregularity Zonal Velocities, Surv. Geophys., 35, 335–357. https://doi.org/10.1007/s10712-013-9252-0, 2014.
Muella, M. T. A. H., Duarte-Silva, M. H., Moraes, A. O., de Paula, E. R., de Rezende, L. F. C., Alfonsi, L., and Affonso, B. J.: Climatology and modeling of ionospheric scintillations and irregularity zonal drifts at the equatorial anomaly crest region, Ann. Geophys., 35, 1201–1218, https://doi.org/10.5194/angeo-35-1201-2017, 2017.
Nava, B., Radicella, S. M., Leitinger, R., and Coïsson, P.: Use of total electron content data to analyze ionosphere electron density gradients, Adv. Space Res., 39, 1292–1297, https://doi.org/10.1016/j.asr.2007.01.041, 2007.
Navarro, L. A. and Fejer, B. G.: Storm-time coupling of equatorial nighttime F region neutral winds and plasma drifts, J. Geophys. Res.-Space, 125, e2020JA028253, https://doi.org/10.1029/2020JA028253, 2020.
Nishioka, M., Basu, S., Basu, S., Valladares, C. E., Sheehan, R. E., Roddy, P. A., and Groves, K. M.: C/NOFS satellite observations of equatorial ionospheric plasma structures supported by multiple ground-based diagnostics in October 2008, J. Geophys. Res.-Space, 116, A10323, https://doi.org/10.1029/2011JA016446, 2011.
Otsuka, Y., Shiokawa, K., and Ogawa, T.: Equatorial ionospheric scintillations and zonal irregularity drifts observed with closely-spaced GPS receivers in Indonesia, J. Atmos. Sol.-Terr. Phy., 84, 343–351, https://doi.org/10.2151/jmsj.84A.343, 2006.
Prol, F. S., Camargo, P. O., and Muella, M. T. A. H.: Comparative Study Of Methods For Calculating Ionospheric Points And Describing The GNSS Signal Path, Bol. Ciênc. Geod., 23, 669–683, https://doi.org/10.1590/s1982-21702017000400044, 2017.
Rishbeth, H.: Thermospheric winds and the F-region: A review, J. Atmos. Terr. Phys., 34, 1–47, https://doi.org/10.1016/0021-9169(72)90003-7, 1972.
Rodrigues, F. S. and Moraes, A. O.: ScintPi: A low-cost, easy-to-build GPS ionospheric scintillation monitor for DASI studies of space weather, education, and citizen science initiatives, Earth and Space Science, 6, 1547–1560, https://doi.org/10.1029/2019EA000588, 2019.
Shidler, S. A. and Rodrigues, F. S.: On a simple, data-aided analytic description of the morphology of equatorial F-region zonal plasma drifts, Progress in Earth and Planetary Science, 8, 26, https://doi.org/10.1186/s40645-021-00417-8, 2021.
Sobral, J. H. A., Abdu, M. A., Pedersen, T. R., Castilho, V. M., Arruda, D. C., Muella, M. T. A. H., Batista, I. S., Mascarenhas, M., de Paula, E. R., Kintner, P. M., Kherani, E. A., Medeiros, A. F., Buriti, R. A., Takahashi, H., Schuch, N. J., Denardini, C. M., Zamlutti, C. J., Pimenta, A. A., de Souza, J. R., and Bertoni, F. C. P.: Ionospheric zonal velocities at conjugate points over Brazil during the COPEX campaign: Experimental observations and theoretical validations, J. Geophys. Res.-Space, 114, A04309, https://doi.org/10.1029/2009JA014084, 2009.
Sousasantos, J., Gomez Socola, J., Rodrigues, F. S., Eastes, R. W., Brum, C. G., and Terra, P.: Severe L-band scintillation over low-to-mid latitudes caused by an extreme equatorial plasma bubble: joint observations from ground-based monitors and GOLD, Earth Planets Space, 75, 41, https://doi.org/10.1186/s40623-023-01797-5, 2023.
Sousasantos, J., Rodrigues, F. S., Gomez Socola, J., Pérez, C., Colvero, F., Martinis, C. R., and Wrasse, C. M.: First observations of severe scintillation over low-to-mid latitudes driven by quiet-time extreme equatorial plasma bubbles: Conjugate measurements enabled by citizen science initiatives, J. Geophys. Res.-Space, 129, e2024JA032545, https://doi.org/10.1029/2024JA032545, 2024.
Spatz, D. E., Franke, S. J., and Yeh, K. C.: Analysis and interpretation of spaced receiver scintillation data recorded at an equatorial station, Radio Sci., 23, 347–361, https://doi.org/10.1029/RS023i003p00347, 1988.
Valladares, C. E., Meriwether J. W., Sheehan, R., and Biondi, M. A.: Correlative study of neutral winds and scintillation drifts measured near the magnetic equator, J. Geophys. Res.-Space, 107, SIA 7-1–SIA 7-15, https://doi.org/10.1029/2001JA000042, 2002.
Wang, W., Burns, A. G., and Liu, J.: Upper Thermospheric Winds: Forcing, Variability, and Effects, in: Upper Atmosphere Dynamics and Energetics, edited by: Wang, W., Zhang, Y., and Paxton, L. J., American Geophysical Union (AGU), Chap. 3, 41–63, https://doi.org/10.1002/9781119815631.ch3, 2021.
Wharton, L. E., Spencer, N. W., and Mayr, H. G.: The Earth's thermospheric superrotation from Dynamics Explorer 2, Geophys. Res. Lett., 11, 531–533, https://doi.org/10.1029/GL011i005p00531, 1984.
Wright, I. G., Rodrigues, F. S., Gomez Socola, J., Moraes, A. O., Monico J. F. G., Sojka, J., Scherliess, L., Layne, D., Paulino, I., Buriti, R. A., Brum, C. G. M., Terra, P., Deshpande, K., Vaggu, P. R., Erickson, P. J., Frissell, N. A., Makela, J. J., and Scipión, D.: On the detection of a solar radio burst event that occurred on 28 August 2022 and its effect on GNSS signals as observed by ionospheric scintillation monitors distributed over the American sector, J. Space Weather Spac., 13, 28, https://doi.org/10.1051/swsc/2023027, 2023a.
Wright, I. G., Solanki, I., Desai, A., Gomez Socola, J., and Rodrigues F. S.: Student-led design, development and tests of an autonomous, low-cost platform for distributed space weather observations, J. Space Weather Spac., 13, 12, https://doi.org/10.1051/swsc/2023001, 2023b.
Short summary
New low-cost, off-the-shelf Global Navigation Satellite System (GNSS) receivers enable the estimation of zonal ionospheric irregularity drifts using the scintillation spaced-receiver technique, previously tested only with commercial GNSS receivers. Despite their low C/No resolution (1 dB-Hz), we demonstrate that the recorded raw data can be used to estimate irregularity drifts. Further, our observations are consistent with the behavior of an empirical model of the thermospheric winds (HMW14).
New low-cost, off-the-shelf Global Navigation Satellite System (GNSS) receivers enable the...