Articles | Volume 8, issue 3
https://doi.org/10.5194/amt-8-1605-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-8-1605-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Meso-scale modelling and radiative transfer simulations of a snowfall event over France at microwaves for passive and active modes and evaluation with satellite observations
V. S. Galligani
CORRESPONDING AUTHOR
Laboratoire d'Etudes du Rayonnement et de la Matière en Astrophysique, CNRS, Observatoire de Paris, Paris, France
C. Prigent
Laboratoire d'Etudes du Rayonnement et de la Matière en Astrophysique, CNRS, Observatoire de Paris, Paris, France
E. Defer
Laboratoire d'Etudes du Rayonnement et de la Matière en Astrophysique, CNRS, Observatoire de Paris, Paris, France
C. Jimenez
Estellus, Paris, France
P. Eriksson
Department of Earth and Space Sciences, Chalmers University of Technology, Gothenburg, Sweden
J.-P. Pinty
Laboratoire d'Aérologie, UPS/CNRS, Toulouse, France
J.-P. Chaboureau
Laboratoire d'Aérologie, UPS/CNRS, Toulouse, France
Related authors
Victoria Sol Galligani, Die Wang, Milagros Alvarez Imaz, Paola Salio, and Catherine Prigent
Atmos. Meas. Tech., 10, 3627–3649, https://doi.org/10.5194/amt-10-3627-2017, https://doi.org/10.5194/amt-10-3627-2017, 2017
Short summary
Short summary
Three meteorological events with deep convection and severe weather, characteristic of the SESA region, are considered. High-resolution models, a powerful tool to study convection, can be operated with different microphysics schemes (predict the development of hydrometeors, their interactions, growth, precipitation). We present a systematic evaluation of the microphysical schemes available in the WRF model by a direct comparison between satellite-based simulated and observed microwave radiances.
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024, https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
Short summary
We have developed a complete two-moment version of the LIMA (Liquid Ice Multiple Aerosols) microphysics scheme. We have focused on collection processes, where the hydrometeor number transfer is often estimated in proportion to the mass transfer. The impact of these parameterizations on a convective system and the prospects for more realistic estimates of secondary parameters (reflectivity, hydrometeor size) are shown in a first test on an idealized case.
Juliette Bernard, Catherine Prigent, Carlos Jimenez, Etienne Fluet-Chouinard, Bernhard Lehner, Elodie Salmon, Philippe Ciais, Zhen Zhang, Shushi Peng, and Marielle Saunois
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-466, https://doi.org/10.5194/essd-2024-466, 2024
Preprint under review for ESSD
Short summary
Short summary
Wetlands are responsible for about a third of global emissions of methane, a potent greenhouse gas. We have developed the GIEMS-MethaneCentric (GIEMS-MC) dataset to represent the dynamics of wetland extent on a global scale (0.25°x0.25° resolution, monthly time step). This updated resource combines satellite data and existing wetland databases, covering 1992 to 2020. Consistent maps of other methane-emitting surface waters (lakes, rivers, reservoirs, rice paddies) are also provided.
Eleanor May, Bengt Rydberg, Inderpreet Kaur, Vinia Mattioli, Hanna Hallborn, and Patrick Eriksson
Atmos. Meas. Tech., 17, 5957–5987, https://doi.org/10.5194/amt-17-5957-2024, https://doi.org/10.5194/amt-17-5957-2024, 2024
Short summary
Short summary
The upcoming Ice Cloud Imager (ICI) mission is set to improve measurements of atmospheric ice through passive microwave and sub-millimetre wave observations. In this study, we perform detailed simulations of ICI observations. Machine learning is used to characterise the atmospheric ice present for a given simulated observation. This study acts as a final pre-launch assessment of ICI's capability to measure atmospheric ice, providing valuable information to climate and weather applications.
Juan Escobar, Philippe Wautelet, Joris Pianezze, Florian Pantillon, Thibaut Dauhut, Christelle Barthe, and Jean-Pierre Chaboureau
EGUsphere, https://doi.org/10.5194/egusphere-2024-2879, https://doi.org/10.5194/egusphere-2024-2879, 2024
Short summary
Short summary
The Meso-NH weather research code is adapted for GPUs using OpenACC, leading to significant performance and energy efficiency improvements. Called MESONH-v55-OpenACC, it includes enhanced memory management, communication optimizations, and a new solver. On the AMD MI250X Adastra platform, it achieved up to 6× speedup and 2.3× energy efficiency gain compared to CPUs. Storm simulations at 100 m resolution show successful results , positioning the code for future use on exascale supercomputers.
Nils Risse, Mario Mech, Catherine Prigent, Gunnar Spreen, and Susanne Crewell
The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024, https://doi.org/10.5194/tc-18-4137-2024, 2024
Short summary
Short summary
Passive microwave observations from satellites are crucial for monitoring Arctic sea ice and atmosphere. To do this effectively, it is important to understand how sea ice emits microwaves. Through unique Arctic sea ice observations, we improved our understanding, identified four distinct emission types, and expanded current knowledge to include higher frequencies. These findings will enhance our ability to monitor the Arctic climate and provide valuable information for new satellite missions.
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Pilippe Bousquet, Josep G. Canadell, Nick Davidson, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, and Michele Thieme
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-204, https://doi.org/10.5194/essd-2024-204, 2024
Preprint under review for ESSD
Short summary
Short summary
The Global Lakes and Wetlands Database (GLWD) version 2 distinguishes a total of 33 non-overlapping wetland classes, providing a static map of the world’s inland surface waters. It contains cell fractions of wetland extents per class at a grid cell resolution of ~500 m. The total combined extent of all classes including all inland and coastal waterbodies and wetlands of all inundation frequencies—that is, the maximum extent—covers 18.2 million km2, equivalent to 13.4 % of total global land area.
Adrià Amell, Simon Pfreundschuh, and Patrick Eriksson
Atmos. Meas. Tech., 17, 4337–4368, https://doi.org/10.5194/amt-17-4337-2024, https://doi.org/10.5194/amt-17-4337-2024, 2024
Short summary
Short summary
The representation of clouds in numerical weather and climate models remains a major challenge that is difficult to address because of the limitations of currently available data records of cloud properties. In this work, we address this issue by using machine learning to extract novel information on ice clouds from a long record of satellite observations. Through extensive validation, we show that this novel approach provides surprisingly accurate estimates of clouds and their properties.
Karina McCusker, Anthony J. Baran, Chris Westbrook, Stuart Fox, Patrick Eriksson, Richard Cotton, Julien Delanoë, and Florian Ewald
Atmos. Meas. Tech., 17, 3533–3552, https://doi.org/10.5194/amt-17-3533-2024, https://doi.org/10.5194/amt-17-3533-2024, 2024
Short summary
Short summary
Polarised radiative transfer simulations are performed using an atmospheric model based on in situ measurements. These are compared to large polarisation measurements to explore whether such measurements can provide information on cloud ice, e.g. particle shape and orientation. We find that using oriented particle models with shapes based on imagery generally allows for accurate simulations. However, results are sensitive to shape assumptions such as the choice of single crystals or aggregates.
Cyrille Flamant, Jean-Pierre Chaboureau, Marco Gaetani, Kerstin Schepanski, and Paola Formenti
Atmos. Chem. Phys., 24, 4265–4288, https://doi.org/10.5194/acp-24-4265-2024, https://doi.org/10.5194/acp-24-4265-2024, 2024
Short summary
Short summary
In the austral dry season, the atmospheric composition over southern Africa is dominated by biomass burning aerosols and terrigenous aerosols (so-called mineral dust). This study suggests that the radiative effect of biomass burning aerosols needs to be taken into account to properly forecast dust emissions in Namibia.
Karine Desboeufs, Paola Formenti, Raquel Torres-Sánchez, Kerstin Schepanski, Jean-Pierre Chaboureau, Hendrik Andersen, Jan Cermak, Stefanie Feuerstein, Benoit Laurent, Danitza Klopper, Andreas Namwoonde, Mathieu Cazaunau, Servanne Chevaillier, Anaïs Feron, Cécile Mirande-Bret, Sylvain Triquet, and Stuart J. Piketh
Atmos. Chem. Phys., 24, 1525–1541, https://doi.org/10.5194/acp-24-1525-2024, https://doi.org/10.5194/acp-24-1525-2024, 2024
Short summary
Short summary
This study investigates the fractional solubility of iron (Fe) in dust particles along the coast of Namibia, a critical region for the atmospheric Fe supply of the South Atlantic Ocean. Our results suggest a possible two-way interplay whereby marine biogenic emissions from the coastal marine ecosystems into the atmosphere would increase the solubility of Fe-bearing dust by photo-reduction processes. The subsequent deposition of soluble Fe could act to further enhance marine biogenic emissions.
Simon Pfreundschuh, Clément Guilloteau, Paula J. Brown, Christian D. Kummerow, and Patrick Eriksson
Atmos. Meas. Tech., 17, 515–538, https://doi.org/10.5194/amt-17-515-2024, https://doi.org/10.5194/amt-17-515-2024, 2024
Short summary
Short summary
The latest version of the GPROF retrieval algorithm that produces global precipitation estimates using observations from the Global Precipitation Measurement mission is validated against ground-based radars. The validation shows that the algorithm accurately estimates precipitation on scales ranging from continental to regional. In addition, we validate candidates for the next version of the algorithm and identify principal challenges for further improving space-borne rain measurements.
Michael Kiefer, Dale F. Hurst, Gabriele P. Stiller, Stefan Lossow, Holger Vömel, John Anderson, Faiza Azam, Jean-Loup Bertaux, Laurent Blanot, Klaus Bramstedt, John P. Burrows, Robert Damadeo, Bianca Maria Dinelli, Patrick Eriksson, Maya García-Comas, John C. Gille, Mark Hervig, Yasuko Kasai, Farahnaz Khosrawi, Donal Murtagh, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Takafumi Sugita, Thomas von Clarmann, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 16, 4589–4642, https://doi.org/10.5194/amt-16-4589-2023, https://doi.org/10.5194/amt-16-4589-2023, 2023
Short summary
Short summary
We quantify biases and drifts (and their uncertainties) between the stratospheric water vapor measurement records of 15 satellite-based instruments (SATs, with 31 different retrievals) and balloon-borne frost point hygrometers (FPs) launched at 27 globally distributed stations. These comparisons of measurements during the period 2000–2016 are made using robust, consistent statistical methods. With some exceptions, the biases and drifts determined for most SAT–FP pairs are < 10 % and < 1 % yr−1.
Danny M. Leung, Jasper F. Kok, Longlei Li, Gregory S. Okin, Catherine Prigent, Martina Klose, Carlos Pérez García-Pando, Laurent Menut, Natalie M. Mahowald, David M. Lawrence, and Marcelo Chamecki
Atmos. Chem. Phys., 23, 6487–6523, https://doi.org/10.5194/acp-23-6487-2023, https://doi.org/10.5194/acp-23-6487-2023, 2023
Short summary
Short summary
Desert dust modeling is important for understanding climate change, as dust regulates the atmosphere's greenhouse effect and radiation. This study formulates and proposes a more physical and realistic desert dust emission scheme for global and regional climate models. By considering more aeolian processes in our emission scheme, our simulations match better against dust observations than existing schemes. We believe this work is vital in improving dust representation in climate models.
Simon Pfreundschuh, Ingrid Ingemarsson, Patrick Eriksson, Daniel A. Vila, and Alan J. P. Calheiros
Atmos. Meas. Tech., 15, 6907–6933, https://doi.org/10.5194/amt-15-6907-2022, https://doi.org/10.5194/amt-15-6907-2022, 2022
Short summary
Short summary
We used methods from the field of artificial intelligence to train an algorithm to estimate rain from satellite observations. In contrast to other methods, our algorithm not only estimates rain, but also the uncertainty of the estimate. Using independent measurements from rain gauges, we show that our method performs better than currently available methods and that the provided uncertainty estimates are reliable. Our method makes satellite-based measurements of rain more accurate and reliable.
Adrià Amell, Patrick Eriksson, and Simon Pfreundschuh
Atmos. Meas. Tech., 15, 5701–5717, https://doi.org/10.5194/amt-15-5701-2022, https://doi.org/10.5194/amt-15-5701-2022, 2022
Short summary
Short summary
Geostationary satellites continuously image a given location on Earth, a feature that satellites designed to characterize atmospheric ice lack. However, the relationship between geostationary images and atmospheric ice is complex. Machine learning is used here to leverage such images to characterize atmospheric ice throughout the day in a probabilistic manner. Using structural information from the image improves the characterization, and this approach compares favourably to traditional methods.
Simon Pfreundschuh, Paula J. Brown, Christian D. Kummerow, Patrick Eriksson, and Teodor Norrestad
Atmos. Meas. Tech., 15, 5033–5060, https://doi.org/10.5194/amt-15-5033-2022, https://doi.org/10.5194/amt-15-5033-2022, 2022
Short summary
Short summary
The Global Precipitation Measurement mission is an international satellite mission providing regular global rain measurements. We present two newly developed machine-learning-based implementations of one of the algorithms responsible for turning the satellite observations into rain measurements. We show that replacing the current algorithm with a neural network improves the accuracy of the measurements. A neural network that also makes use of spatial information unlocks further improvements.
Jean-Pierre Chaboureau, Laurent Labbouz, Cyrille Flamant, and Alma Hodzic
Atmos. Chem. Phys., 22, 8639–8658, https://doi.org/10.5194/acp-22-8639-2022, https://doi.org/10.5194/acp-22-8639-2022, 2022
Short summary
Short summary
Ground-based, spaceborne and rare airborne observations of biomass burning aerosols (BBAs) during the AEROCLO-sA field campaign in 2017 are complemented with convection-permitting simulations with online trajectories. The results show that the radiative effect of the BBA accelerates the southern African easterly jet and generates upward motions that transport the BBAs to higher altitudes and farther southwest.
Toby R. Marthews, Simon J. Dadson, Douglas B. Clark, Eleanor M. Blyth, Garry D. Hayman, Dai Yamazaki, Olivia R. E. Becher, Alberto Martínez-de la Torre, Catherine Prigent, and Carlos Jiménez
Hydrol. Earth Syst. Sci., 26, 3151–3175, https://doi.org/10.5194/hess-26-3151-2022, https://doi.org/10.5194/hess-26-3151-2022, 2022
Short summary
Short summary
Reliable data on global inundated areas remain uncertain. By matching a leading global data product on inundation extents (GIEMS) against predictions from a global hydrodynamic model (CaMa-Flood), we found small but consistent and non-random biases in well-known tropical wetlands (Sudd, Pantanal, Amazon and Congo). These result from known limitations in the data and the models used, which shows us how to improve our ability to make critical predictions of inundation events in the future.
William G. Read, Gabriele Stiller, Stefan Lossow, Michael Kiefer, Farahnaz Khosrawi, Dale Hurst, Holger Vömel, Karen Rosenlof, Bianca M. Dinelli, Piera Raspollini, Gerald E. Nedoluha, John C. Gille, Yasuko Kasai, Patrick Eriksson, Christopher E. Sioris, Kaley A. Walker, Katja Weigel, John P. Burrows, and Alexei Rozanov
Atmos. Meas. Tech., 15, 3377–3400, https://doi.org/10.5194/amt-15-3377-2022, https://doi.org/10.5194/amt-15-3377-2022, 2022
Short summary
Short summary
This paper attempts to provide an assessment of the accuracy of 21 satellite-based instruments that remotely measure atmospheric humidity in the upper troposphere of the Earth's atmosphere. The instruments made their measurements from 1984 to the present time; however, most of these instruments began operations after 2000, and only a few are still operational. The objective of this study is to quantify the accuracy of each satellite humidity data set.
Cyrille Flamant, Marco Gaetani, Jean-Pierre Chaboureau, Patrick Chazette, Juan Cuesta, Stuart John Piketh, and Paola Formenti
Atmos. Chem. Phys., 22, 5701–5724, https://doi.org/10.5194/acp-22-5701-2022, https://doi.org/10.5194/acp-22-5701-2022, 2022
Short summary
Short summary
Rivers of smoke extend from tropical southern Africa towards the Indian Ocean during the winter fire season, controlled by the interaction of tropical easterly waves, and westerly waves at mid latitudes. During the AEROCLO-sA field campaign in 2017, a river of smoke was directly observed over Namibia. In this paper, the evolution and atmospheric drivers of the river of smoke are described, and the role of a mid-latitude cut-off low in lifting the smoke to the upper troposphere is highlighted.
Benjamin Kitambo, Fabrice Papa, Adrien Paris, Raphael M. Tshimanga, Stephane Calmant, Ayan Santos Fleischmann, Frederic Frappart, Melanie Becker, Mohammad J. Tourian, Catherine Prigent, and Johary Andriambeloson
Hydrol. Earth Syst. Sci., 26, 1857–1882, https://doi.org/10.5194/hess-26-1857-2022, https://doi.org/10.5194/hess-26-1857-2022, 2022
Short summary
Short summary
This study presents a better characterization of surface hydrology variability in the Congo River basin, the second largest river system in the world. We jointly use a large record of in situ and satellite-derived observations to monitor the spatial distribution and different timings of the Congo River basin's annual flood dynamic, including its peculiar bimodal pattern.
Ronny Meier, Edouard L. Davin, Gordon B. Bonan, David M. Lawrence, Xiaolong Hu, Gregory Duveiller, Catherine Prigent, and Sonia I. Seneviratne
Geosci. Model Dev., 15, 2365–2393, https://doi.org/10.5194/gmd-15-2365-2022, https://doi.org/10.5194/gmd-15-2365-2022, 2022
Short summary
Short summary
We revise the roughness of the land surface in the CESM climate model. Guided by observational data, we increase the surface roughness of forests and decrease that of bare soil, snow, ice, and crops. These modifications alter simulated temperatures and wind speeds at and above the land surface considerably, in particular over desert regions. The revised model represents the diurnal variability of the land surface temperature better compared to satellite observations over most regions.
Simon Pfreundschuh, Stuart Fox, Patrick Eriksson, David Duncan, Stefan A. Buehler, Manfred Brath, Richard Cotton, and Florian Ewald
Atmos. Meas. Tech., 15, 677–699, https://doi.org/10.5194/amt-15-677-2022, https://doi.org/10.5194/amt-15-677-2022, 2022
Short summary
Short summary
We test a novel method to remotely measure ice particles in clouds. This is important because such measurements are required to improve climate and weather models. The method combines a radar with newly developed sensors measuring microwave radiation at very short wavelengths. We use observations made from aircraft flying above the cloud and compare them to real measurements from inside the cloud. This works well given that one can model the ice particles in the cloud sufficiently well.
Alan J. Geer, Peter Bauer, Katrin Lonitz, Vasileios Barlakas, Patrick Eriksson, Jana Mendrok, Amy Doherty, James Hocking, and Philippe Chambon
Geosci. Model Dev., 14, 7497–7526, https://doi.org/10.5194/gmd-14-7497-2021, https://doi.org/10.5194/gmd-14-7497-2021, 2021
Short summary
Short summary
Satellite observations of radiation from the earth can have strong sensitivity to cloud and precipitation in the atmosphere, with applications in weather forecasting and the development of models. Computing the radiation received at the satellite sensor using radiative transfer theory requires a simulation of the optical properties of a volume containing a large number of cloud and precipitation particles. This article describes the physics used to generate these
bulkoptical properties.
Jie Gong, Dong L. Wu, and Patrick Eriksson
Earth Syst. Sci. Data, 13, 5369–5387, https://doi.org/10.5194/essd-13-5369-2021, https://doi.org/10.5194/essd-13-5369-2021, 2021
Short summary
Short summary
Launched from the International Space Station, the IceCube radiometer orbited the Earth for 15 months and collected the first spaceborne radiance measurements at 874–883 GHz. This channel is uniquely important to fill in the sensitivity gap between operational visible–infrared and microwave remote sensing for atmospheric cloud ice and snow. This paper delivers the IceCube Level 1 radiance data processing algorithm and provides a data quality evaluation and discussion on its scientific merit.
Martina Klose, Oriol Jorba, María Gonçalves Ageitos, Jeronimo Escribano, Matthew L. Dawson, Vincenzo Obiso, Enza Di Tomaso, Sara Basart, Gilbert Montané Pinto, Francesca Macchia, Paul Ginoux, Juan Guerschman, Catherine Prigent, Yue Huang, Jasper F. Kok, Ron L. Miller, and Carlos Pérez García-Pando
Geosci. Model Dev., 14, 6403–6444, https://doi.org/10.5194/gmd-14-6403-2021, https://doi.org/10.5194/gmd-14-6403-2021, 2021
Short summary
Short summary
Mineral soil dust is a major atmospheric airborne particle type. We present and evaluate MONARCH, a model used for regional and global dust-weather prediction. An important feature of the model is that it allows different approximations to represent dust, ranging from more simplified to more complex treatments. Using these different treatments, MONARCH can help us better understand impacts of dust in the Earth system, such as its interactions with radiation.
Alice Henkes, Gilberto Fisch, Luiz A. T. Machado, and Jean-Pierre Chaboureau
Atmos. Chem. Phys., 21, 13207–13225, https://doi.org/10.5194/acp-21-13207-2021, https://doi.org/10.5194/acp-21-13207-2021, 2021
Short summary
Short summary
The Amazonian boundary layer is investigated during the dry season in order to better understand the processes that occur between night and day until the stage where shallow cumulus clouds become deep. Observations show that shallow to deep clouds are characterized by a shorter morning transition stage (e.g., the time needed to eliminate the stable boundary layer inversion), while higher humidity above the boundary layer favors the evolution from shallow to deep cumulus clouds.
Francesco Grieco, Kristell Pérot, Donal Murtagh, Patrick Eriksson, Bengt Rydberg, Michael Kiefer, Maya Garcia-Comas, Alyn Lambert, and Kaley A. Walker
Atmos. Meas. Tech., 14, 5823–5857, https://doi.org/10.5194/amt-14-5823-2021, https://doi.org/10.5194/amt-14-5823-2021, 2021
Short summary
Short summary
We present improved Odin/SMR mesospheric H2O concentration and temperature data sets, reprocessed assuming a bigger sideband leakage of the instrument. The validation study shows how the improved SMR data sets agree better with other instruments' observations than the old SMR version did. Given their unique time extension and geographical coverage, and H2O being a good tracer of mesospheric circulation, the new data sets are valuable for the study of dynamical processes and multi-year trends.
Vasileios Barlakas, Alan J. Geer, and Patrick Eriksson
Atmos. Meas. Tech., 14, 3427–3447, https://doi.org/10.5194/amt-14-3427-2021, https://doi.org/10.5194/amt-14-3427-2021, 2021
Short summary
Short summary
Oriented nonspherical ice particles induce polarization that is ignored when cloud-sensitive satellite observations are used in numerical weather prediction systems. We present a simple approach for approximating particle orientation, requiring minor adaption of software and no additional calculation burden. With this approach, the system realistically simulates the observed polarization patterns, increasing the physical consistency between instruments with different polarizations.
Zhen Zhang, Etienne Fluet-Chouinard, Katherine Jensen, Kyle McDonald, Gustaf Hugelius, Thomas Gumbricht, Mark Carroll, Catherine Prigent, Annett Bartsch, and Benjamin Poulter
Earth Syst. Sci. Data, 13, 2001–2023, https://doi.org/10.5194/essd-13-2001-2021, https://doi.org/10.5194/essd-13-2001-2021, 2021
Short summary
Short summary
The spatiotemporal distribution of wetlands is one of the important and yet uncertain factors determining the time and locations of methane fluxes. The Wetland Area and Dynamics for Methane Modeling (WAD2M) dataset describes the global data product used to quantify the areal dynamics of natural wetlands and how global wetlands are changing in response to climate.
Inderpreet Kaur, Patrick Eriksson, Simon Pfreundschuh, and David Ian Duncan
Atmos. Meas. Tech., 14, 2957–2979, https://doi.org/10.5194/amt-14-2957-2021, https://doi.org/10.5194/amt-14-2957-2021, 2021
Short summary
Short summary
Currently, cloud contamination in microwave humidity channels is addressed using filtering schemes. We present an approach to correct the cloud-affected microwave humidity radiances using a Bayesian machine learning technique. The technique combines orthogonal information from microwave channels to obtain a probabilistic prediction of the clear-sky radiances. With this approach, we are able to predict bias-free clear-sky radiances with well-represented case-specific uncertainty estimates.
Lise Kilic, Catherine Prigent, Carlos Jimenez, and Craig Donlon
Ocean Sci., 17, 455–461, https://doi.org/10.5194/os-17-455-2021, https://doi.org/10.5194/os-17-455-2021, 2021
Short summary
Short summary
The Copernicus Imaging Microwave Radiometer (CIMR) is one of the high-priority satellite missions of the Copernicus program within the European Space Agency. It is designed to respond to the European Union Arctic policy. Its channels, incidence angle, precisions, and spatial resolutions have been selected to observe the Arctic Ocean with the recommendations expressed by the user communities.
In this note, we present the sensitivity analysis that has led to the choice of the CIMR channels.
Nicolas Blanchard, Florian Pantillon, Jean-Pierre Chaboureau, and Julien Delanoë
Weather Clim. Dynam., 2, 37–53, https://doi.org/10.5194/wcd-2-37-2021, https://doi.org/10.5194/wcd-2-37-2021, 2021
Short summary
Short summary
Rare aircraft observations in the warm conveyor belt outflow associated with an extratropical cyclone are complemented with convection-permitting simulations. They reveal a complex tropopause structure with two jet stream cores, from which one is reinforced by bands of negative potential vorticity. They show that negative potential vorticity takes its origin in mid-level convection, which indirectly accelerates the jet stream and, thus, may influence the downstream large-scale circulation.
Robin Ekelund, Patrick Eriksson, and Michael Kahnert
Atmos. Meas. Tech., 13, 6933–6944, https://doi.org/10.5194/amt-13-6933-2020, https://doi.org/10.5194/amt-13-6933-2020, 2020
Short summary
Short summary
Raindrops become flattened due to aerodynamic drag as they increase in mass and fall speed. This study calculated the electromagnetic interaction between microwave radiation and non-spheroidal raindrops. The calculations are made publicly available to the scientific community, in order to promote accurate representations of raindrops in measurements. Tests show that the drop shape can have a noticeable effect on microwave observations of heavy rainfall.
Nicolas Blanchard, Florian Pantillon, Jean-Pierre Chaboureau, and Julien Delanoë
Weather Clim. Dynam., 1, 617–634, https://doi.org/10.5194/wcd-1-617-2020, https://doi.org/10.5194/wcd-1-617-2020, 2020
Short summary
Short summary
The study presents the first results from the airborne RASTA observations measured during the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX). Our combined Eulerian–Lagrangian analysis found three types of organized convection (frontal, banded and mid-level) in the warm conveyor belt (WCB) of the Stalactite cyclone. The results emphasize that convection embedded in WCBs occurs in a coherent and organized manner rather than as isolated cells.
Samuel Favrichon, Carlos Jimenez, and Catherine Prigent
Atmos. Meas. Tech., 13, 5481–5490, https://doi.org/10.5194/amt-13-5481-2020, https://doi.org/10.5194/amt-13-5481-2020, 2020
Short summary
Short summary
Long-term monitoring of satellite-derived variables is necessary for a better understanding of the evolution of Earth parameters at global scale. However different instruments' observations used over the years need to be inter-calibrated with each other to provide meaningful information. This paper describes how a linear correction can improve the observations from the Scanning Multichannel Microwave Radiometer over continental surfaces to be more consistent with more recent radiometers.
Francesco Grieco, Kristell Pérot, Donal Murtagh, Patrick Eriksson, Peter Forkman, Bengt Rydberg, Bernd Funke, Kaley A. Walker, and Hugh C. Pumphrey
Atmos. Meas. Tech., 13, 5013–5031, https://doi.org/10.5194/amt-13-5013-2020, https://doi.org/10.5194/amt-13-5013-2020, 2020
Short summary
Short summary
We present a unique – by time extension and geographical coverage – dataset of satellite observations of carbon monoxide (CO) in the mesosphere which will allow us to study dynamical processes, since CO is a very good tracer of circulation in the mesosphere. Previously, the dataset was unusable due to instrumental artefacts that affected the measurements. We identify the cause of the artefacts, eliminate them and prove the quality of the results by comparing with other instrument measurements.
Thomas von Clarmann, Douglas A. Degenstein, Nathaniel J. Livesey, Stefan Bender, Amy Braverman, André Butz, Steven Compernolle, Robert Damadeo, Seth Dueck, Patrick Eriksson, Bernd Funke, Margaret C. Johnson, Yasuko Kasai, Arno Keppens, Anne Kleinert, Natalya A. Kramarova, Alexandra Laeng, Bavo Langerock, Vivienne H. Payne, Alexei Rozanov, Tomohiro O. Sato, Matthias Schneider, Patrick Sheese, Viktoria Sofieva, Gabriele P. Stiller, Christian von Savigny, and Daniel Zawada
Atmos. Meas. Tech., 13, 4393–4436, https://doi.org/10.5194/amt-13-4393-2020, https://doi.org/10.5194/amt-13-4393-2020, 2020
Short summary
Short summary
Remote sensing of atmospheric state variables typically relies on the inverse solution of the radiative transfer equation. An adequately characterized retrieval provides information on the uncertainties of the estimated state variables as well as on how any constraint or a priori assumption affects the estimate. This paper summarizes related techniques and provides recommendations for unified error reporting.
Simon Pfreundschuh, Patrick Eriksson, Stefan A. Buehler, Manfred Brath, David Duncan, Richard Larsson, and Robin Ekelund
Atmos. Meas. Tech., 13, 4219–4245, https://doi.org/10.5194/amt-13-4219-2020, https://doi.org/10.5194/amt-13-4219-2020, 2020
Short summary
Short summary
The next generation of European operational weather satellites will carry a novel microwave sensor, the Ice Cloud Imager (ICI), which will provide observations of clouds at microwave frequencies that were not available before. We investigate the potential benefits of combining observations from ICI with that of a radar. We find that such combined observations provide additional information on the properties of the cloud and help to reduce uncertainties in retrieved mass and number densities.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Manfred Brath, Robin Ekelund, Patrick Eriksson, Oliver Lemke, and Stefan A. Buehler
Atmos. Meas. Tech., 13, 2309–2333, https://doi.org/10.5194/amt-13-2309-2020, https://doi.org/10.5194/amt-13-2309-2020, 2020
Short summary
Short summary
Microwave dual-polarization observations consistently show that larger atmospheric ice particles tend to have a preferred orientation. We provide a publicly available database of microwave and submillimeter wave scattering properties of oriented ice particles based on discrete dipole approximation scattering calculations. Detailed radiative transfer simulations, recreating observed polarization patterns, are additionally presented in this study.
Robin Ekelund, Patrick Eriksson, and Simon Pfreundschuh
Atmos. Meas. Tech., 13, 501–520, https://doi.org/10.5194/amt-13-501-2020, https://doi.org/10.5194/amt-13-501-2020, 2020
Short summary
Short summary
Atmospheric ice particles (e.g. snow and ice crystals) are an important part of weather, climate, and the hydrological cycle. This study investigates whether combined satellite measurements by radar and radiometers at microwave wavelengths can be used to find the most likely shape of such ice particles. The method was limited when using only currently operating sensors (CloudSat radar and the GPM Microwave Imager) but shows promise if the upcoming Ice Cloud Imager is also considered.
Patrick Eriksson, Bengt Rydberg, Vinia Mattioli, Anke Thoss, Christophe Accadia, Ulf Klein, and Stefan A. Buehler
Atmos. Meas. Tech., 13, 53–71, https://doi.org/10.5194/amt-13-53-2020, https://doi.org/10.5194/amt-13-53-2020, 2020
Short summary
Short summary
The Ice Cloud Imager (ICI) will be the first operational satellite sensor operating at sub-millimetre wavelengths and this novel mission will thus provide important new data to weather forecasting and climate studies. The series of ICI instruments will together cover about 20 years. This article presents the basic technical characteristics of the sensor and outlines the day-one operational retrievals. An updated estimation of the expected retrieval performance is also presented.
Altug Ekici, Hanna Lee, David M. Lawrence, Sean C. Swenson, and Catherine Prigent
Geosci. Model Dev., 12, 5291–5300, https://doi.org/10.5194/gmd-12-5291-2019, https://doi.org/10.5194/gmd-12-5291-2019, 2019
Short summary
Short summary
Ice-rich permafrost thaw can create expanding thermokarst lakes as well as shrinking large wetlands. Such processes can have major biogeochemical implications and feedbacks to climate systems by altering the pathways and rates of permafrost carbon release. We developed a new model parameterization that allows a direct representation of surface water dynamics with subsidence. Our results show increased surface water fractions around western Siberian plains and northeastern territories of Canada.
David Ian Duncan, Patrick Eriksson, and Simon Pfreundschuh
Atmos. Meas. Tech., 12, 6341–6359, https://doi.org/10.5194/amt-12-6341-2019, https://doi.org/10.5194/amt-12-6341-2019, 2019
Short summary
Short summary
The overlapping beams of some satellite observations contain spatial information that is discarded by most data processing techniques. This study applies an established technique in a new way to improve the spatial resolution of retrieval targets, effectively using the overlapping information to achieve a higher ultimate resolution. It is argued that this is a more optimal use of the total information available from current microwave sensors, using AMSR2 as an example.
Sylvain Coquillat, Eric Defer, Pierre de Guibert, Dominique Lambert, Jean-Pierre Pinty, Véronique Pont, Serge Prieur, Ronald J. Thomas, Paul R. Krehbiel, and William Rison
Atmos. Meas. Tech., 12, 5765–5790, https://doi.org/10.5194/amt-12-5765-2019, https://doi.org/10.5194/amt-12-5765-2019, 2019
Short summary
Short summary
Characteristics of SAETTA lightning imager installed in Corsica are presented, with original observations of lightning activity at regional and lightning scales. SAETTA monitors thunderstorms in a maritime and mountainous region, complex for weather forecasting and sensitive to global warming. A 3-year lightning climatology highlights frequent activity over a specific region due to relief. Uncommonly high discharge in stratiform thundercloud may support a recent model of charging processes.
Keun-Ok Lee, Thibaut Dauhut, Jean-Pierre Chaboureau, Sergey Khaykin, Martina Krämer, and Christian Rolf
Atmos. Chem. Phys., 19, 11803–11820, https://doi.org/10.5194/acp-19-11803-2019, https://doi.org/10.5194/acp-19-11803-2019, 2019
Short summary
Short summary
This study focuses on the hydration patch that was measured during the StratoClim field campaign and the corresponding convective overshoots over the Sichuan Basin. Through analysis using airborne and spaceborne measurements and the numerical simulation using a non-hydrostatic model, we show the key hydration process and pathway of the hydration patch in tropical tropopause layer.
Keun-Ok Lee, Franziska Aemisegger, Stephan Pfahl, Cyrille Flamant, Jean-Lionel Lacour, and Jean-Pierre Chaboureau
Atmos. Chem. Phys., 19, 7487–7506, https://doi.org/10.5194/acp-19-7487-2019, https://doi.org/10.5194/acp-19-7487-2019, 2019
Short summary
Short summary
Our study is the first study to investigate the potential benefit of stable water isotopes (SWIs) in the context of a heavy precipitation event in the Mediterranean. As such, our study provides a proof of concept of the usefulness of SWI data to understand the variety of origins and moisture processes associated with air masses feeding the convection over southern Italy.
David Ian Duncan, Patrick Eriksson, Simon Pfreundschuh, Christian Klepp, and Daniel C. Jones
Atmos. Chem. Phys., 19, 6969–6984, https://doi.org/10.5194/acp-19-6969-2019, https://doi.org/10.5194/acp-19-6969-2019, 2019
Short summary
Short summary
Raindrop size distributions have not been systematically studied over the oceans but are significant for remotely sensing, assimilating, and modeling rain. Here we investigate raindrop populations with new global in situ data, compare them against satellite estimates, and explore a new technique to classify the shapes of these distributions. The results indicate the inadequacy of a commonly assumed shape in some regions and the sizable impact of shape variability on satellite measurements.
Stefan Lossow, Farahnaz Khosrawi, Michael Kiefer, Kaley A. Walker, Jean-Loup Bertaux, Laurent Blanot, James M. Russell, Ellis E. Remsberg, John C. Gille, Takafumi Sugita, Christopher E. Sioris, Bianca M. Dinelli, Enzo Papandrea, Piera Raspollini, Maya García-Comas, Gabriele P. Stiller, Thomas von Clarmann, Anu Dudhia, William G. Read, Gerald E. Nedoluha, Robert P. Damadeo, Joseph M. Zawodny, Katja Weigel, Alexei Rozanov, Faiza Azam, Klaus Bramstedt, Stefan Noël, John P. Burrows, Hideo Sagawa, Yasuko Kasai, Joachim Urban, Patrick Eriksson, Donal P. Murtagh, Mark E. Hervig, Charlotta Högberg, Dale F. Hurst, and Karen H. Rosenlof
Atmos. Meas. Tech., 12, 2693–2732, https://doi.org/10.5194/amt-12-2693-2019, https://doi.org/10.5194/amt-12-2693-2019, 2019
Lise Kilic, Rasmus Tage Tonboe, Catherine Prigent, and Georg Heygster
The Cryosphere, 13, 1283–1296, https://doi.org/10.5194/tc-13-1283-2019, https://doi.org/10.5194/tc-13-1283-2019, 2019
Short summary
Short summary
In this study, we develop and present simple algorithms to derive the snow depth, the snow–ice interface temperature, and the effective temperature of Arctic sea ice. This is achieved using satellite observations collocated with buoy measurements. The errors of the retrieved parameters are estimated and compared with independent data. These parameters are useful for sea ice concentration mapping, understanding sea ice properties and variability, and for atmospheric sounding applications.
Diana Francis, Clare Eayrs, Jean-Pierre Chaboureau, Thomas Mote, and David M. Holland
Adv. Sci. Res., 16, 49–56, https://doi.org/10.5194/asr-16-49-2019, https://doi.org/10.5194/asr-16-49-2019, 2019
Short summary
Short summary
Changes in Polar jet circulation bring more dust from Sahara to Greenland. The poleward transport of warm, moist, and dust-laden air masses from the Sahara results in ice melting in Greenland. A meandering polar jet was discovered as responsible for both the emission and the poleward transport of dust. The emission has been linked to an intense Saharan cyclone that formed in April 2011, as a result of the intrusion of an upper-level trough emanating from the polar jet and orographic blocking.
Stuart Fox, Jana Mendrok, Patrick Eriksson, Robin Ekelund, Sebastian J. O'Shea, Keith N. Bower, Anthony J. Baran, R. Chawn Harlow, and Juliet C. Pickering
Atmos. Meas. Tech., 12, 1599–1617, https://doi.org/10.5194/amt-12-1599-2019, https://doi.org/10.5194/amt-12-1599-2019, 2019
Short summary
Short summary
Airborne observations of ice clouds are used to validate radiative transfer simulations using a state-of-the-art database of cloud ice optical properties. Simulations at these wavelengths are required to make use of future satellite instruments such as the Ice Cloud Imager. We show that they can generally reproduce observed cloud signals, but for a given total ice mass there is considerable sensitivity to the cloud microphysics, including the particle shape and distribution of ice mass.
Samuel Favrichon, Catherine Prigent, Carlos Jimenez, and Filipe Aires
Atmos. Meas. Tech., 12, 1531–1543, https://doi.org/10.5194/amt-12-1531-2019, https://doi.org/10.5194/amt-12-1531-2019, 2019
Short summary
Short summary
Land surface parameters (such as temperature) can be extracted from passive microwave satellite observations, with less cloud contamination than in the infrared. A cloud contamination index is proposed to detect cloud contamination for multiple frequency ranges (from 10 to 190 GHz), to be applicable to the successive generations of MW instruments. Even with a reduced number of low-frequency channels over land, the index reaches an accuracy of ≥ 70 % in detecting contaminated observations.
Charlotta Högberg, Stefan Lossow, Farahnaz Khosrawi, Ralf Bauer, Kaley A. Walker, Patrick Eriksson, Donal P. Murtagh, Gabriele P. Stiller, Jörg Steinwagner, and Qiong Zhang
Atmos. Chem. Phys., 19, 2497–2526, https://doi.org/10.5194/acp-19-2497-2019, https://doi.org/10.5194/acp-19-2497-2019, 2019
Short summary
Short summary
Five δD (H2O) data sets obtained from satellite observations have been evaluated using profile-to-profile and climatological comparisons. The focus is on stratospheric altitudes, but results from the upper troposphere to the lower mesosphere are also provided. There are clear quantitative differences in the δD ratio in key areas of scientific interest, resulting in difficulties drawing robust conclusions on atmospheric processes affecting the water vapour budget and distribution.
Keun-Ok Lee, Cyrille Flamant, Fanny Duffourg, Véronique Ducrocq, and Jean-Pierre Chaboureau
Atmos. Chem. Phys., 18, 16845–16862, https://doi.org/10.5194/acp-18-16845-2018, https://doi.org/10.5194/acp-18-16845-2018, 2018
Thomas Hoarau, Jean-Pierre Pinty, and Christelle Barthe
Geosci. Model Dev., 11, 4269–4289, https://doi.org/10.5194/gmd-11-4269-2018, https://doi.org/10.5194/gmd-11-4269-2018, 2018
Short summary
Short summary
The break-up of ice crystals in clouds is a possible secondary ice multiplication process to explain observations of very high concentrations of small ice crystals at cold temperature. Here, the process is modeled by considering shocks between fragile aggregates (assemblage of pristine crystals) and large densely rimed crystals of selected sizes. The simulations of two storms illustrate the perturbations caused by the break-up effect (precipitation, ice concentration enhancement).
Seyed Hamed Alemohammad, Jana Kolassa, Catherine Prigent, Filipe Aires, and Pierre Gentine
Hydrol. Earth Syst. Sci., 22, 5341–5356, https://doi.org/10.5194/hess-22-5341-2018, https://doi.org/10.5194/hess-22-5341-2018, 2018
Short summary
Short summary
A new machine learning algorithm is developed to downscale satellite-based soil moisture estimates from their native spatial scale of 9 km to 2.25 km.
Joonas Kiviranta, Kristell Pérot, Patrick Eriksson, and Donal Murtagh
Atmos. Chem. Phys., 18, 13393–13410, https://doi.org/10.5194/acp-18-13393-2018, https://doi.org/10.5194/acp-18-13393-2018, 2018
Short summary
Short summary
This paper investigates how the activity of the Sun affects the amount of nitric oxide (NO) in the upper atmosphere. If NO descends lower down in the atmosphere, it can destroy ozone. We analyze satellite measurements of NO to create a model that can simulate the amount of NO at any given time. This model can indeed simulate NO with reasonable accuracy and it can potentially be used as an input for a larger model of the atmosphere that attempts to explain how the Sun affects our atmosphere.
Carlos Jiménez, Brecht Martens, Diego M. Miralles, Joshua B. Fisher, Hylke E. Beck, and Diego Fernández-Prieto
Hydrol. Earth Syst. Sci., 22, 4513–4533, https://doi.org/10.5194/hess-22-4513-2018, https://doi.org/10.5194/hess-22-4513-2018, 2018
Short summary
Short summary
Observing the amount of water evaporated in nature is not easy, and we need to combine accurate local measurements with estimates from satellites, more uncertain but covering larger areas. This is the main topic of our paper, in which local observations are compared with global land evaporation estimates, followed by a weighting of the global observations based on this comparison to attempt derive a more accurate evaporation product.
David Ian Duncan and Patrick Eriksson
Atmos. Chem. Phys., 18, 11205–11219, https://doi.org/10.5194/acp-18-11205-2018, https://doi.org/10.5194/acp-18-11205-2018, 2018
Short summary
Short summary
Ice cloud mass is assessed on a global scale using the latest satellite and reanalysis datasets. While ice cloud variability driven by large-scale circulations is an area of relative consensus, models and observations disagree strongly on the overall magnitude and finer-scale variability of atmospheric ice mass. The results reflect limitations of the current Earth observing system and indicate ice microphysical assumptions as the likely culprit of disagreement.
Simon Pfreundschuh, Patrick Eriksson, David Duncan, Bengt Rydberg, Nina Håkansson, and Anke Thoss
Atmos. Meas. Tech., 11, 4627–4643, https://doi.org/10.5194/amt-11-4627-2018, https://doi.org/10.5194/amt-11-4627-2018, 2018
Short summary
Short summary
A novel neural-network-based retrieval method is proposed that combines the flexibility and computational efficiency of machine learning retrievals with the consistent treatment of uncertainties of Bayesian methods. Numerical experiments are presented that show the consistency of the proposed method with the Bayesian formulation as well as its ability to represent non-Gaussian retrieval errors. With this, the proposed method overcomes important limitations of traditional methods.
Philippe Baron, Donal Murtagh, Patrick Eriksson, Jana Mendrok, Satoshi Ochiai, Kristell Pérot, Hideo Sagawa, and Makoto Suzuki
Atmos. Meas. Tech., 11, 4545–4566, https://doi.org/10.5194/amt-11-4545-2018, https://doi.org/10.5194/amt-11-4545-2018, 2018
Short summary
Short summary
This paper investigates with computer simulations the measurement performances of the satellite Stratospheric Inferred Winds (SIW) in the altitude range 10–90 km. SIW is a Swedish mission that will be launched close to 2022. It is intended to fill the current altitude gap between 30 and 70 km in wind measurements and to pursue the monitoring of temperature and key stratospheric constituents for better understanding climate change effects.
Farahnaz Khosrawi, Stefan Lossow, Gabriele P. Stiller, Karen H. Rosenlof, Joachim Urban, John P. Burrows, Robert P. Damadeo, Patrick Eriksson, Maya García-Comas, John C. Gille, Yasuko Kasai, Michael Kiefer, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Alexei Rozanov, Christopher E. Sioris, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 11, 4435–4463, https://doi.org/10.5194/amt-11-4435-2018, https://doi.org/10.5194/amt-11-4435-2018, 2018
Short summary
Short summary
Time series of stratospheric and lower mesospheric water vapour using 33 data sets from 15 satellite instruments were compared in the framework of the second SPARC water vapour assessment. We find that most data sets can be considered in observational and modelling studies addressing, e.g. stratospheric and lower mesospheric water vapour variability and trends if data-set-specific characteristics (e.g. a drift) and restrictions (e.g. temporal and spatial coverage) are taken into account.
Patrick Eriksson, Robin Ekelund, Jana Mendrok, Manfred Brath, Oliver Lemke, and Stefan A. Buehler
Earth Syst. Sci. Data, 10, 1301–1326, https://doi.org/10.5194/essd-10-1301-2018, https://doi.org/10.5194/essd-10-1301-2018, 2018
Short summary
Short summary
A main application of microwave remote sensing is to observe atmospheric particles consisting of ice. This application requires data on how particles with different shapes and sizes affect the observations. A database of such properties has been developed. The database is the most comprehensive of its type. Main strengths are a good representation of particles of aggregate type and broad frequency coverage.
Verena Grützun, Stefan A. Buehler, Lukas Kluft, Jana Mendrok, Manfred Brath, and Patrick Eriksson
Atmos. Meas. Tech., 11, 4217–4237, https://doi.org/10.5194/amt-11-4217-2018, https://doi.org/10.5194/amt-11-4217-2018, 2018
Short summary
Short summary
The global observation of ice clouds is crucial because they are important factors in the climate system but still are amongst the greatest uncertainties for estimating the Earth's energy budget in a changing climate. However, reliable global long-term measurements are scarce. Using atmospheric model data from the ICON model in combination with the radiative transfer simulator ARTS we explore the potential of passive millimeter and sub-millimeter wavelength measurements to fill that gap.
Christine Lac, Jean-Pierre Chaboureau, Valéry Masson, Jean-Pierre Pinty, Pierre Tulet, Juan Escobar, Maud Leriche, Christelle Barthe, Benjamin Aouizerats, Clotilde Augros, Pierre Aumond, Franck Auguste, Peter Bechtold, Sarah Berthet, Soline Bielli, Frédéric Bosseur, Olivier Caumont, Jean-Martial Cohard, Jeanne Colin, Fleur Couvreux, Joan Cuxart, Gaëlle Delautier, Thibaut Dauhut, Véronique Ducrocq, Jean-Baptiste Filippi, Didier Gazen, Olivier Geoffroy, François Gheusi, Rachel Honnert, Jean-Philippe Lafore, Cindy Lebeaupin Brossier, Quentin Libois, Thibaut Lunet, Céline Mari, Tomislav Maric, Patrick Mascart, Maxime Mogé, Gilles Molinié, Olivier Nuissier, Florian Pantillon, Philippe Peyrillé, Julien Pergaud, Emilie Perraud, Joris Pianezze, Jean-Luc Redelsperger, Didier Ricard, Evelyne Richard, Sébastien Riette, Quentin Rodier, Robert Schoetter, Léo Seyfried, Joël Stein, Karsten Suhre, Marie Taufour, Odile Thouron, Sandra Turner, Antoine Verrelle, Benoît Vié, Florian Visentin, Vincent Vionnet, and Philippe Wautelet
Geosci. Model Dev., 11, 1929–1969, https://doi.org/10.5194/gmd-11-1929-2018, https://doi.org/10.5194/gmd-11-1929-2018, 2018
Short summary
Short summary
This paper presents the Meso-NH model version 5.4, which is an atmospheric non-hydrostatic research model that is applied on synoptic to turbulent scales. The model includes advanced numerical techniques and state-of-the-art physics parameterization schemes. It has been expanded to provide capabilities for a range of Earth system prediction applications such as chemistry and aerosols, electricity and lightning, hydrology, wildland fires, volcanic eruptions, and cyclones with ocean coupling.
Stefan A. Buehler, Jana Mendrok, Patrick Eriksson, Agnès Perrin, Richard Larsson, and Oliver Lemke
Geosci. Model Dev., 11, 1537–1556, https://doi.org/10.5194/gmd-11-1537-2018, https://doi.org/10.5194/gmd-11-1537-2018, 2018
Short summary
Short summary
The Atmospheric Radiative Transfer Simulator (ARTS) is a public domain
software for simulating how radiation in the microwave to infrared
spectral range travels through an atmosphere. The program can simulate
satellite observations, in cloudy and clear atmospheres, and can also
be used to calculate radiative energy fluxes. The main feature of this
release is a planetary toolbox that allows simulations for the
planets Venus, Mars, and Jupiter, in addition to Earth.
Manfred Brath, Stuart Fox, Patrick Eriksson, R. Chawn Harlow, Martin Burgdorf, and Stefan A. Buehler
Atmos. Meas. Tech., 11, 611–632, https://doi.org/10.5194/amt-11-611-2018, https://doi.org/10.5194/amt-11-611-2018, 2018
Short summary
Short summary
A method to estimate the amounts of ice, liquid water, and water vapor from aircraft radiation measurements at wavelengths just over and under 1 mm is presented and its performance is estimated. The method uses an ensemble of artificial neural networks. It strongly benefits from the submillimeter frequencies reducing the error for the estimated amount of ice by a factor of 2 compared to a traditional microwave method. The method was applied to measurement of a precipitating frontal system.
Victoria Sol Galligani, Die Wang, Milagros Alvarez Imaz, Paola Salio, and Catherine Prigent
Atmos. Meas. Tech., 10, 3627–3649, https://doi.org/10.5194/amt-10-3627-2017, https://doi.org/10.5194/amt-10-3627-2017, 2017
Short summary
Short summary
Three meteorological events with deep convection and severe weather, characteristic of the SESA region, are considered. High-resolution models, a powerful tool to study convection, can be operated with different microphysics schemes (predict the development of hydrometeors, their interactions, growth, precipitation). We present a systematic evaluation of the microphysical schemes available in the WRF model by a direct comparison between satellite-based simulated and observed microwave radiances.
Seyed Hamed Alemohammad, Bin Fang, Alexandra G. Konings, Filipe Aires, Julia K. Green, Jana Kolassa, Diego Miralles, Catherine Prigent, and Pierre Gentine
Biogeosciences, 14, 4101–4124, https://doi.org/10.5194/bg-14-4101-2017, https://doi.org/10.5194/bg-14-4101-2017, 2017
Short summary
Short summary
Water, Energy, and Carbon with Artificial Neural Networks (WECANN) is a statistically based estimate of global surface latent and sensible heat fluxes and gross primary productivity. The retrieval uses six remotely sensed observations as input, including the solar-induced fluorescence. WECANN provides estimates on a 1° × 1° geographic grid and on a monthly time scale and outperforms other global products in capturing the seasonality of the fluxes when compared to eddy covariance tower data.
Stefan Lossow, Farahnaz Khosrawi, Gerald E. Nedoluha, Faiza Azam, Klaus Bramstedt, John. P. Burrows, Bianca M. Dinelli, Patrick Eriksson, Patrick J. Espy, Maya García-Comas, John C. Gille, Michael Kiefer, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Gabriele P. Stiller, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 10, 1111–1137, https://doi.org/10.5194/amt-10-1111-2017, https://doi.org/10.5194/amt-10-1111-2017, 2017
Richard Larsson, Mathias Milz, Patrick Eriksson, Jana Mendrok, Yasuko Kasai, Stefan Alexander Buehler, Catherine Diéval, David Brain, and Paul Hartogh
Geosci. Instrum. Method. Data Syst., 6, 27–37, https://doi.org/10.5194/gi-6-27-2017, https://doi.org/10.5194/gi-6-27-2017, 2017
Short summary
Short summary
By computer simulations, we explore and quantify how to use radiation emitted by molecular oxygen in the Martian atmosphere to measure the magnetic field from the crust of the planet. This crustal magnetic field is important to understand the past evolution of Mars. Our method can measure the magnetic field at lower altitudes than has so far been done, which could give important information on the characteristics of the crustal sources if a mission with the required instrument is launched.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Victor Brovkin, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Charles Curry, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Julia Marshall, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Catherine Prigent, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Paul Steele, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Michiel van Weele, Guido R. van der Werf, Ray Weiss, Christine Wiedinmyer, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Earth Syst. Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, https://doi.org/10.5194/essd-8-697-2016, 2016
Short summary
Short summary
An accurate assessment of the methane budget is important to understand the atmospheric methane concentrations and trends and to provide realistic pathways for climate change mitigation. The various and diffuse sources of methane as well and its oxidation by a very short lifetime radical challenge this assessment. We quantify the methane sources and sinks as well as their uncertainties based on both bottom-up and top-down approaches provided by a broad international scientific community.
Ole Martin Christensen, Susanne Benze, Patrick Eriksson, Jörg Gumbel, Linda Megner, and Donal P. Murtagh
Atmos. Chem. Phys., 16, 12587–12600, https://doi.org/10.5194/acp-16-12587-2016, https://doi.org/10.5194/acp-16-12587-2016, 2016
Short summary
Short summary
This study investigates the properties of ice clouds forming in the upper summer mesosphere known as polar mesospheric clouds, and their relationship with the background atmosphere combining two different satellite instruments. We find that temperature variations in the atmosphere of the order of some hours reduce the amount of ice in these clouds and see indications of strong vertical transport in these clouds.
Isaac Moradi, Philip Arkin, Ralph Ferraro, Patrick Eriksson, and Eric Fetzer
Atmos. Chem. Phys., 16, 6913–6929, https://doi.org/10.5194/acp-16-6913-2016, https://doi.org/10.5194/acp-16-6913-2016, 2016
Short summary
Short summary
Measurements from the SAPHIR onboard Megha-Tropiques are used to evaluate the diurnal cycle of tropospheric humidity in the tropical region. The results show a large inhomogeneity in the amplitude and peak time of tropospheric humidity. The diurnal amplitude tends to be larger over convective regions than over subsidence regions. An early morning peak time is observed over most regions but there are substantial regions where the diurnal peak occurs at the other times of day.
Jean-Pierre Chaboureau, Cyrille Flamant, Thibaut Dauhut, Cécile Kocha, Jean-Philippe Lafore, Chistophe Lavaysse, Fabien Marnas, Mohamed Mokhtari, Jacques Pelon, Irene Reinares Martínez, Kerstin Schepanski, and Pierre Tulet
Atmos. Chem. Phys., 16, 6977–6995, https://doi.org/10.5194/acp-16-6977-2016, https://doi.org/10.5194/acp-16-6977-2016, 2016
Short summary
Short summary
The Fennec field campaign conducted in June 2011 led to the first observational data set ever obtained that documents the Saharan atmospheric boundary layer under the influence of the heat low. In addition to the aircraft operation, four dust forecasts were run at low and high resolutions with convection-parameterizing and convection-permitting models, respectively. The unique airborne and ground-based data sets allowed the first ever intercomparison of dust forecasts over the western Sahara.
Richard Larsson, Mathias Milz, Peter Rayer, Roger Saunders, William Bell, Anna Booton, Stefan A. Buehler, Patrick Eriksson, and Viju O. John
Atmos. Meas. Tech., 9, 841–857, https://doi.org/10.5194/amt-9-841-2016, https://doi.org/10.5194/amt-9-841-2016, 2016
Short summary
Short summary
By modeling the Special Sensor Microwave Imager/Sounder's mesospheric measurements, inversions methods can be applied to retreive mesospheric temperatures. We compare the fast forward model used by Met Office with reference simulations and find that there is a reasonable agreement between both models and measurements. Thus we recommend that the fast model is used in data assimilation to improve mesospheric temperature retrievals.
D. G. Miralles, C. Jiménez, M. Jung, D. Michel, A. Ershadi, M. F. McCabe, M. Hirschi, B. Martens, A. J. Dolman, J. B. Fisher, Q. Mu, S. I. Seneviratne, E. F. Wood, and D. Fernández-Prieto
Hydrol. Earth Syst. Sci., 20, 823–842, https://doi.org/10.5194/hess-20-823-2016, https://doi.org/10.5194/hess-20-823-2016, 2016
Short summary
Short summary
The WACMOS-ET project aims to advance the development of land evaporation estimates on global and regional scales. Evaluation of current evaporation data sets on the global scale showed that they manifest large dissimilarities during conditions of water stress and drought and deficiencies in the way evaporation is partitioned into several components. Different models perform better under different conditions, highlighting the potential for considering biome- or climate-specific model ensembles.
D. Michel, C. Jiménez, D. G. Miralles, M. Jung, M. Hirschi, A. Ershadi, B. Martens, M. F. McCabe, J. B. Fisher, Q. Mu, S. I. Seneviratne, E. F. Wood, and D. Fernández-Prieto
Hydrol. Earth Syst. Sci., 20, 803–822, https://doi.org/10.5194/hess-20-803-2016, https://doi.org/10.5194/hess-20-803-2016, 2016
Short summary
Short summary
In this study a common reference input data set from satellite and in situ data is used to run four established evapotranspiration (ET) algorithms using sub-daily and daily input on a tower scale as a testbed for a global ET product. The PT-JPL model and GLEAM provide the best performance for satellite and in situ forcing as well as for the different temporal resolutions. PM-MOD and SEBS perform less well: the PM-MOD model generally underestimates, while SEBS generally overestimates ET.
P. Forkman, O. M. Christensen, P. Eriksson, B. Billade, V. Vassilev, and V. M. Shulga
Geosci. Instrum. Method. Data Syst., 5, 27–44, https://doi.org/10.5194/gi-5-27-2016, https://doi.org/10.5194/gi-5-27-2016, 2016
Short summary
Short summary
Microwave radiometry is the only ground-based technique that can provide vertical profiles of gases in the middle atmosphere both day and night, and even during cloudy conditions. Today these measurements are performed at relatively few sites, more simple and reliable instruments are required to make the measurement technique more widely spread. In this study a compact double-sideband frequency-switched radiometer system for simultaneous observations of mesospheric CO and O3 is presented.
M. F. McCabe, A. Ershadi, C. Jimenez, D. G. Miralles, D. Michel, and E. F. Wood
Geosci. Model Dev., 9, 283–305, https://doi.org/10.5194/gmd-9-283-2016, https://doi.org/10.5194/gmd-9-283-2016, 2016
Short summary
Short summary
In an effort to develop a global terrestrial evaporation product, four models were forced using both a tower and grid-based data set. Comparisons against flux-tower observations from different biome and land cover types show considerable inter-model variability and sensitivity to forcing type. Results suggest that no single model is able to capture expected flux patterns and response. It is suggested that a multi-model ensemble is likely to provide a more stable long-term flux estimate.
C. Flamant, J.-P. Chaboureau, P. Chazette, P. Di Girolamo, T. Bourrianne, J. Totems, and M. Cacciani
Atmos. Chem. Phys., 15, 12231–12249, https://doi.org/10.5194/acp-15-12231-2015, https://doi.org/10.5194/acp-15-12231-2015, 2015
Short summary
Short summary
We analyze the direct radiative impact of an intense African dust plume on orographic precipitation in the western Mediterranean in the fall of 2012 using high-resolution simulations from a convection permitting mesoscale model validated against measurements acquired during the first special observation period of HyMeX. We show that the dust's direct radiative effect in such a dynamical environment is not sufficient to impact 24h of accumulated rainfall over the Cevennes in the dust simulation.
O. M. Christensen, P. Eriksson, J. Urban, D. Murtagh, K. Hultgren, and J. Gumbel
Atmos. Meas. Tech., 8, 1981–1999, https://doi.org/10.5194/amt-8-1981-2015, https://doi.org/10.5194/amt-8-1981-2015, 2015
Short summary
Short summary
Polar mesospheric clouds are clouds that form in the summer polar mesopause, 80km above the surface. In this study we present new measurements by the Odin satellite, which are able to determine water vapour, temperature and cloud coverage with a high resolution and a large geographical coverage. Using these data we can see structures in the clouds and background atmosphere that have not been detectable by previous measurements.
P. Eriksson, M. Jamali, J. Mendrok, and S. A. Buehler
Atmos. Meas. Tech., 8, 1913–1933, https://doi.org/10.5194/amt-8-1913-2015, https://doi.org/10.5194/amt-8-1913-2015, 2015
Short summary
Short summary
The optical properties of randomly oriented ice hydrometeors are reviewed from a perspective of microwave mass retrievals. The soft particle approximation is found to be highly problematic, and the alternative approach presented by Geer and Baordo (2014) should instead be used. We present a simplified version of this approach, and point out several critical limitations of existing DDA data.
F. Navas-Guzmán, N. Kämpfer, A. Murk, R. Larsson, S. A. Buehler, and P. Eriksson
Atmos. Meas. Tech., 8, 1863–1874, https://doi.org/10.5194/amt-8-1863-2015, https://doi.org/10.5194/amt-8-1863-2015, 2015
Short summary
Short summary
In this work we study the Zeeman effect on stratospheric O2 using ground-based microwave radiometer measurements. The interaction of the Earth magnetic field with the oxygen dipole leads to a splitting of O2 energy states which polarizes the emission spectra. A special campaign was carried out in order to measure for the first time the polarization state of the radiation due to the Zeeman effect in the main isotopologue of oxygen from ground-based microwave measurements.
H. Norouzi, M. Temimi, C. Prigent, J. Turk, R. Khanbilvardi, Y. Tian, F. A. Furuzawa, and H. Masunaga
Atmos. Meas. Tech., 8, 1197–1205, https://doi.org/10.5194/amt-8-1197-2015, https://doi.org/10.5194/amt-8-1197-2015, 2015
R. Rüfenacht, A. Murk, N. Kämpfer, P. Eriksson, and S. A. Buehler
Atmos. Meas. Tech., 7, 4491–4505, https://doi.org/10.5194/amt-7-4491-2014, https://doi.org/10.5194/amt-7-4491-2014, 2014
Short summary
Short summary
Only very few techniques for wind measurements in the upper stratosphere and lower mesosphere exist. Moreover, none of these instruments is running on a continuous basis. This paper describes the development of ground-based microwave Doppler radiometry. Time series of daily wind profile measurements from four different locations at polar, mid- and tropical latitudes are presented. The agreement with ECMWF model data is good in the stratosphere, but discrepancies were found in the mesosphere.
G. D. Hayman, F. M. O'Connor, M. Dalvi, D. B. Clark, N. Gedney, C. Huntingford, C. Prigent, M. Buchwitz, O. Schneising, J. P. Burrows, C. Wilson, N. Richards, and M. Chipperfield
Atmos. Chem. Phys., 14, 13257–13280, https://doi.org/10.5194/acp-14-13257-2014, https://doi.org/10.5194/acp-14-13257-2014, 2014
Short summary
Short summary
Globally, wetlands are a major source of methane, which is the second most important greenhouse gas. We find the JULES wetland methane scheme to perform well in general, although there is a tendency for it to overpredict emissions in the tropics and underpredict them in northern latitudes. Our study highlights novel uses of satellite data as a major tool to constrain land-atmosphere methane flux models in a warming world.
C. Crevoisier, C. Clerbaux, V. Guidard, T. Phulpin, R. Armante, B. Barret, C. Camy-Peyret, J.-P. Chaboureau, P.-F. Coheur, L. Crépeau, G. Dufour, L. Labonnote, L. Lavanant, J. Hadji-Lazaro, H. Herbin, N. Jacquinet-Husson, S. Payan, E. Péquignot, C. Pierangelo, P. Sellitto, and C. Stubenrauch
Atmos. Meas. Tech., 7, 4367–4385, https://doi.org/10.5194/amt-7-4367-2014, https://doi.org/10.5194/amt-7-4367-2014, 2014
P. Eriksson, B. Rydberg, H. Sagawa, M. S. Johnston, and Y. Kasai
Atmos. Chem. Phys., 14, 12613–12629, https://doi.org/10.5194/acp-14-12613-2014, https://doi.org/10.5194/acp-14-12613-2014, 2014
Short summary
Short summary
The sub-millimetre wavelength region has been identified as very useful for measurements of cloud ice mass. The only satellite sensors operating in this wavelength region are so far limb sounders, and results from two such instruments are presented and sample applications are demonstrated. The results have high intrinsic value, but serve also as a practical preparation for planned dedicated sub-millimetre cloud missions.
M. S. Johnston, S. Eliasson, P. Eriksson, R. M. Forbes, A. Gettelman, P. Räisänen, and M. D. Zelinka
Atmos. Chem. Phys., 14, 8701–8721, https://doi.org/10.5194/acp-14-8701-2014, https://doi.org/10.5194/acp-14-8701-2014, 2014
R. Briant, L. Menut, G. Siour, and C. Prigent
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-7-3441-2014, https://doi.org/10.5194/gmdd-7-3441-2014, 2014
Revised manuscript not accepted
M. S. Johnston, S. Eliasson, P. Eriksson, R. M. Forbes, K. Wyser, and M. D. Zelinka
Atmos. Chem. Phys., 13, 12043–12058, https://doi.org/10.5194/acp-13-12043-2013, https://doi.org/10.5194/acp-13-12043-2013, 2013
I. Pison, B. Ringeval, P. Bousquet, C. Prigent, and F. Papa
Atmos. Chem. Phys., 13, 11609–11623, https://doi.org/10.5194/acp-13-11609-2013, https://doi.org/10.5194/acp-13-11609-2013, 2013
B. Mueller, M. Hirschi, C. Jimenez, P. Ciais, P. A. Dirmeyer, A. J. Dolman, J. B. Fisher, M. Jung, F. Ludwig, F. Maignan, D. G. Miralles, M. F. McCabe, M. Reichstein, J. Sheffield, K. Wang, E. F. Wood, Y. Zhang, and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 17, 3707–3720, https://doi.org/10.5194/hess-17-3707-2013, https://doi.org/10.5194/hess-17-3707-2013, 2013
O. Stähli, A. Murk, N. Kämpfer, C. Mätzler, and P. Eriksson
Atmos. Meas. Tech., 6, 2477–2494, https://doi.org/10.5194/amt-6-2477-2013, https://doi.org/10.5194/amt-6-2477-2013, 2013
M. Leriche, J.-P. Pinty, C. Mari, and D. Gazen
Geosci. Model Dev., 6, 1275–1298, https://doi.org/10.5194/gmd-6-1275-2013, https://doi.org/10.5194/gmd-6-1275-2013, 2013
V. Beck, C. Gerbig, T. Koch, M. M. Bela, K. M. Longo, S. R. Freitas, J. O. Kaplan, C. Prigent, P. Bergamaschi, and M. Heimann
Atmos. Chem. Phys., 13, 7961–7982, https://doi.org/10.5194/acp-13-7961-2013, https://doi.org/10.5194/acp-13-7961-2013, 2013
O. M. Christensen and P. Eriksson
Atmos. Meas. Tech., 6, 1597–1609, https://doi.org/10.5194/amt-6-1597-2013, https://doi.org/10.5194/amt-6-1597-2013, 2013
R. Wania, J. R. Melton, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, C. A. Avis, G. Chen, A. V. Eliseev, P. O. Hopcroft, W. J. Riley, Z. M. Subin, H. Tian, P. M. van Bodegom, T. Kleinen, Z. C. Yu, J. S. Singarayer, S. Zürcher, D. P. Lettenmaier, D. J. Beerling, S. N. Denisov, C. Prigent, F. Papa, and J. O. Kaplan
Geosci. Model Dev., 6, 617–641, https://doi.org/10.5194/gmd-6-617-2013, https://doi.org/10.5194/gmd-6-617-2013, 2013
Related subject area
Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Consideration of the cloud motion for aircraft-based stereographically derived cloud geometry and cloud top heights
Exploring the characteristics of Fengyun-4A Advanced Geostationary Radiation Imager (AGRI) visible reflectance using the China Meteorological Administration Mesoscale (CMA-MESO) forecasts and its implications for data assimilation
Validating global horizontal irradiance retrievals from Meteosat SEVIRI at increased spatial resolution against a dense network of ground-based observations
Evaluating spectral cloud effective radius retrievals from the Enhanced MODIS Airborne Simulator (eMAS) during ORACLES
Synergistic approach of frozen hydrometeor retrievals: considerations on radiative transfer and model uncertainties in a simulated framework
An evaluation of microphysics in a numerical model using Doppler velocity measured by ground-based radar for application to the EarthCARE satellite
Investigation of cirrus cloud properties in the tropical tropopause layer using high-altitude limb-scanning near-IR spectroscopy during NASA-ATTREX
Comparing FY-2F/CTA products to ground-based manual total cloud cover observations in Xinjiang under complex underlying surfaces and different weather conditions
Model-based evaluation of cloud geometry and droplet size retrievals from two-dimensional polarized measurements of specMACS
Improved RepVGG ground-based cloud image classification with attention convolution
An intercomparison of EarthCARE cloud, aerosol, and precipitation retrieval products
First results of cloud retrieval from the Geostationary Environmental Monitoring Spectrometer
Thundercloud structures detected and analyzed based on coherent Doppler wind lidar
Assessing Arctic low-level clouds and precipitation from above – a radar perspective
What CloudSat cannot see: liquid water content profiles inferred from MODIS and CALIOP observations
Validation of the Cloud_CCI (Cloud Climate Change Initiative) cloud products in the Arctic
The Education and Research 3D Radiative Transfer Toolbox (EaR3T) – towards the mitigation of 3D bias in airborne and spaceborne passive imagery cloud retrievals
Retrieval of microphysical parameters of monsoonal rain using X-band dual-polarization radar: their seasonal dependence and evaluation
Consistency test of precipitating ice cloud retrieval properties obtained from the observations of different instruments operating at Dome C (Antarctica)
Sizing ice hydrometeor populations using the dual-wavelength radar ratio
Impact of the revisit frequency on cloud climatology for CALIPSO, EarthCARE, Aeolus, and ICESat-2 satellite lidar missions
The impact of sampling strategy on the cloud droplet number concentration estimated from satellite data
Horizontal geometry of trade wind cumuli – aircraft observations from a shortwave infrared imager versus a radar profiler
Evaluating the consistency and continuity of pixel-scale cloud property data records from Aqua and SNPP (Suomi National Polar-orbiting Partnership)
Quality assessment of Second-generation Global Imager (SGLI)-observed cloud properties using SKYNET surface observation data
Comparison of scattering ratio profiles retrieved from ALADIN/Aeolus and CALIOP/CALIPSO observations and preliminary estimates of cloud fraction profiles
Evaluation of convective cloud microphysics in numerical weather prediction models with dual-wavelength polarimetric radar observations: methods and examples
Synergistic radar and sub-millimeter radiometer retrievals of ice hydrometeors in mid-latitude frontal cloud systems
Evaluation of satellite retrievals of liquid clouds from the GOES-13 imager and MODIS over the midlatitude North Atlantic during the NAAMES campaign
Evaluation of Visible Infrared Imaging Radiometer Suite (VIIRS) neural network cloud detection against current operational cloud masks
The effect of low-level thin arctic clouds on shortwave irradiance: evaluation of estimates from spaceborne passive imagery with aircraft observations
Validation of the Sentinel-5 Precursor TROPOMI cloud data with Cloudnet, Aura OMI O2–O2, MODIS, and Suomi-NPP VIIRS
Dissecting effects of orbital drift of polar-orbiting satellites on accuracy and trends of climate data records of cloud fractional cover
Calibration of global MODIS cloud amount using CALIOP cloud profiles
Evaluation of the MODIS Collection 6 multilayer cloud detection algorithm through comparisons with CloudSat Cloud Profiling Radar and CALIPSO CALIOP products
An extended radar relative calibration adjustment (eRCA) technique for higher-frequency radars and range–height indicator (RHI) scans
Comparing lightning observations of the ground-based European lightning location system EUCLID and the space-based Lightning Imaging Sensor (LIS) on the International Space Station (ISS)
Microwave and submillimeter wave scattering of oriented ice particles
Shallow cumuli cover and its uncertainties from ground-based lidar–radar data and sky images
Using passive and active observations at microwave and sub-millimetre wavelengths to constrain ice particle models
Comparison of the cloud top heights retrieved from MODIS and AHI satellite data with ground-based Ka-band radar
Cross-comparison of cloud liquid water path derived from observations by two space-borne and one ground-based instrument in northern Europe
The impact of neglecting ice phase on cloud optical depth retrievals from AERONET cloud mode observations
Diurnal and nocturnal cloud segmentation of all-sky imager (ASI) images using enhancement fully convolutional networks
Can liquid cloud microphysical processes be used for vertically pointing cloud radar calibration?
Calibration of a 35 GHz airborne cloud radar: lessons learned and intercomparisons with 94 GHz cloud radars
Airborne validation of radiative transfer modelling of ice clouds at millimetre and sub-millimetre wavelengths
Assessing the impact of different liquid water permittivity models on the fit between model and observations
Cloud liquid water path in the sub-Arctic region of Europe as derived from ground-based and space-borne remote observations
Correction of CCI cloud data over the Swiss Alps using ground-based radiation measurements
Lea Volkmer, Tobias Kölling, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6807–6817, https://doi.org/10.5194/amt-17-6807-2024, https://doi.org/10.5194/amt-17-6807-2024, 2024
Short summary
Short summary
The importance of the consideration of cloud motion for the stereographic determination of cloud top height from aircraft observations is demonstrated using measurements of the airborne spectrometer of the Munich Aerosol Cloud Scanner (specMACS). A method for cloud motion correction using model winds from the European Centre for Medium-Range Weather Forecasts is presented and validated using both real measurements and realistic radiative transfer simulations.
Yongbo Zhou, Yubao Liu, Wei Han, Yuefei Zeng, Haofei Sun, Peilong Yu, and Lijian Zhu
Atmos. Meas. Tech., 17, 6659–6675, https://doi.org/10.5194/amt-17-6659-2024, https://doi.org/10.5194/amt-17-6659-2024, 2024
Short summary
Short summary
The study explored differences between the visible reflectance provided by the Fengyun-4A satellite and its equivalent derived from the China Meteorological Administration Mesoscale model using a forward operator. The observation-minus-simulation biases were able to monitor the performance of the satellite visible instrument. The biases were corrected based on a first-order approximation method, which promotes the data assimilation of satellite visible reflectance in real-world cases.
Job I. Wiltink, Hartwig Deneke, Yves-Marie Saint-Drenan, Chiel C. van Heerwaarden, and Jan Fokke Meirink
Atmos. Meas. Tech., 17, 6003–6024, https://doi.org/10.5194/amt-17-6003-2024, https://doi.org/10.5194/amt-17-6003-2024, 2024
Short summary
Short summary
Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) global horizontal irradiance (GHI) retrievals are validated at standard and increased spatial resolution against a network of 99 pyranometers. GHI accuracy is strongly dependent on the cloud regime. Days with variable cloud conditions show significant accuracy improvements when retrieved at higher resolution. We highlight the benefits of dense network observations and a cloud-regime-resolved approach in validating GHI retrievals.
Kerry Meyer, Steven Platnick, G. Thomas Arnold, Nandana Amarasinghe, Daniel Miller, Jennifer Small-Griswold, Mikael Witte, Brian Cairns, Siddhant Gupta, Greg McFarquhar, and Joseph O'Brien
EGUsphere, https://doi.org/10.5194/egusphere-2024-2021, https://doi.org/10.5194/egusphere-2024-2021, 2024
Short summary
Short summary
Satellite remote sensing retrievals of cloud droplet size are used to understand clouds and their interactions with aerosols and radiation but require many simplifying assumptions. Evaluation of these retrievals typically is done by comparing against direct measurements of droplets from airborne cloud probes. This paper details an evaluation of proxy airborne remote sensing droplet size retrievals against several cloud probes and explores the impact of key assumptions on retrieval agreement.
Ethel Villeneuve, Philippe Chambon, and Nadia Fourrié
Atmos. Meas. Tech., 17, 3567–3582, https://doi.org/10.5194/amt-17-3567-2024, https://doi.org/10.5194/amt-17-3567-2024, 2024
Short summary
Short summary
In cloudy situations, infrared and microwave observations are complementary, with infrared being sensitive to cloud tops and microwave sensitive to precipitation. However, infrared satellite observations are underused. This study aims to quantify if the inconsistencies in the modelling of clouds prevent the use of cloudy infrared observations in the process of weather forecasting. It shows that the synergistic use of infrared and microwave observations is beneficial, despite inconsistencies.
Woosub Roh, Masaki Satoh, Yuichiro Hagihara, Hiroaki Horie, Yuichi Ohno, and Takuji Kubota
Atmos. Meas. Tech., 17, 3455–3466, https://doi.org/10.5194/amt-17-3455-2024, https://doi.org/10.5194/amt-17-3455-2024, 2024
Short summary
Short summary
The advantage of the use of Doppler velocity in the categorization of the hydrometeors is that Doppler velocities suffer less impact from the attenuation of rain and wet attenuation on an antenna. The ground Cloud Profiling Radar observation of the radar reflectivity for the precipitation case is limited because of wet attenuation on an antenna. We found the main contribution to Doppler velocities is the terminal velocity of hydrometeors by analysis of simulation results.
Santo Fedele Colosimo, Nathaniel Brockway, Vijay Natraj, Robert Spurr, Klaus Pfeilsticker, Lisa Scalone, Max Spolaor, Sarah Woods, and Jochen Stutz
Atmos. Meas. Tech., 17, 2367–2385, https://doi.org/10.5194/amt-17-2367-2024, https://doi.org/10.5194/amt-17-2367-2024, 2024
Short summary
Short summary
Cirrus clouds are poorly understood components of the climate system, in part due to the challenge of observing thin, sub-visible ice clouds. We address this issue with a new observational approach that uses the remote sensing of near-infrared ice water absorption features from a high-altitude aircraft. We describe the underlying principle of this approach and present a new procedure to retrieve ice concentration in cirrus clouds. Our retrievals compare well with in situ observations.
Shuai Li, Hua Zhang, Yonghang Chen, Zhili Wang, Xiangyu Li, Yuan Li, and Yuanyuan Xue
Atmos. Meas. Tech., 17, 2011–2024, https://doi.org/10.5194/amt-17-2011-2024, https://doi.org/10.5194/amt-17-2011-2024, 2024
Short summary
Short summary
In this paper, Xinjiang was the test area, and nine evaluation indexes of FY-2F/CTA, including precision rate, false rate, missing rate, consistency rate, strong rate, weak rate, bias, AE, and RMSE, were calculated and analyzed under complex underlying surface (subsurface types, temperature and altitude conditions) and different weather conditions (dust effects and different cloud cover levels). The precision, consistency, and error indexes of FY-2F/CTA were tested and evaluated.
Lea Volkmer, Veronika Pörtge, Fabian Jakub, and Bernhard Mayer
Atmos. Meas. Tech., 17, 1703–1719, https://doi.org/10.5194/amt-17-1703-2024, https://doi.org/10.5194/amt-17-1703-2024, 2024
Short summary
Short summary
Three-dimensional radiative transfer simulations are used to evaluate the performance of retrieval algorithms in the derivation of cloud geometry (cloud top heights) and cloud droplet size distributions from two-dimensional polarized radiance measurements of the airborne spectrometer of the Munich Aerosol Cloud Scanner. The cloud droplet size distributions are derived for the effective radius and variance. The simulations are based on cloud data from highly resolved large-eddy simulations.
Chaojun Shi, Leile Han, Ke Zhang, Hongyin Xiang, Xingkuan Li, Zibo Su, and Xian Zheng
Atmos. Meas. Tech., 17, 979–997, https://doi.org/10.5194/amt-17-979-2024, https://doi.org/10.5194/amt-17-979-2024, 2024
Short summary
Short summary
This article mainly studies the problem of ground cloud classification and significantly improves the accuracy of ground cloud classification by applying an improved deep-learning method. The research results show that the method proposed in this article has a significant impact on the classification results of ground cloud images. These conclusions have important implications for providing new insights and future research directions in the field of ground cloud classification.
Shannon L. Mason, Howard W. Barker, Jason N. S. Cole, Nicole Docter, David P. Donovan, Robin J. Hogan, Anja Hünerbein, Pavlos Kollias, Bernat Puigdomènech Treserras, Zhipeng Qu, Ulla Wandinger, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 17, 875–898, https://doi.org/10.5194/amt-17-875-2024, https://doi.org/10.5194/amt-17-875-2024, 2024
Short summary
Short summary
When the EarthCARE mission enters its operational phase, many retrieval data products will be available, which will overlap both in terms of the measurements they use and the geophysical quantities they report. In this pre-launch study, we use simulated EarthCARE scenes to compare the coverage and performance of many data products from the European Space Agency production model, with the intention of better understanding the relation between products and providing a compact guide to users.
Bo-Ram Kim, Gyuyeon Kim, Minjeong Cho, Yong-Sang Choi, and Jhoon Kim
Atmos. Meas. Tech., 17, 453–470, https://doi.org/10.5194/amt-17-453-2024, https://doi.org/10.5194/amt-17-453-2024, 2024
Short summary
Short summary
This study introduces the GEMS cloud algorithm and validates its results using data from GEMS and other environmental satellites. The GEMS algorithm is able to detect the lowest cloud heights among the four satellites, and its effective cloud fraction and cloud centroid pressure are well reflected in the retrieval results. The study highlights the algorithm's usefulness in correcting errors in trace gases caused by clouds in the East Asian region.
Kenan Wu, Tianwen Wei, Jinlong Yuan, Haiyun Xia, Xin Huang, Gaopeng Lu, Yunpeng Zhang, Feifan Liu, Baoyou Zhu, and Weidong Ding
Atmos. Meas. Tech., 16, 5811–5825, https://doi.org/10.5194/amt-16-5811-2023, https://doi.org/10.5194/amt-16-5811-2023, 2023
Short summary
Short summary
A compact all-fiber coherent Doppler wind lidar (CDWL) working at the 1.5 µm wavelength is applied to probe the dynamics and microphysics structure of thunderstorms. It was found that thunderclouds below the 0 ℃ isotherm have significant spectrum broadening and an increase in skewness, and that lightning affects the microphysics structure of the thundercloud. It is proven that the precise spectrum of CDWL is a promising indicator for studying the charge structure of thunderstorms.
Imke Schirmacher, Pavlos Kollias, Katia Lamer, Mario Mech, Lukas Pfitzenmaier, Manfred Wendisch, and Susanne Crewell
Atmos. Meas. Tech., 16, 4081–4100, https://doi.org/10.5194/amt-16-4081-2023, https://doi.org/10.5194/amt-16-4081-2023, 2023
Short summary
Short summary
CloudSat’s relatively coarse spatial resolution, low sensitivity, and blind zone limit its assessment of Arctic low-level clouds, which affect the surface energy balance. We compare cloud fractions from CloudSat and finely resolved airborne radar observations to determine CloudSat’s limitations. Cloudsat overestimates cloud fractions above its blind zone, especially during cold-air outbreaks over open water, and misses a cloud fraction of 32 % and half of the precipitation inside its blind zone.
Richard M. Schulte, Matthew D. Lebsock, and John M. Haynes
Atmos. Meas. Tech., 16, 3531–3546, https://doi.org/10.5194/amt-16-3531-2023, https://doi.org/10.5194/amt-16-3531-2023, 2023
Short summary
Short summary
In order to constrain climate models and better understand how clouds might change in future climates, accurate satellite estimates of cloud liquid water content are important. The satellite currently best suited to this purpose, CloudSat, is not sensitive enough to detect some non-raining low clouds. In this study we show that information from two other satellite instruments, MODIS and CALIOP, can be combined to provide cloud water estimates for many of the clouds that are missed by CloudSat.
Kameswara S. Vinjamuri, Marco Vountas, Luca Lelli, Martin Stengel, Matthew D. Shupe, Kerstin Ebell, and John P. Burrows
Atmos. Meas. Tech., 16, 2903–2918, https://doi.org/10.5194/amt-16-2903-2023, https://doi.org/10.5194/amt-16-2903-2023, 2023
Short summary
Short summary
Clouds play an important role in Arctic amplification. Cloud data from ground-based sites are valuable but cannot represent the whole Arctic. Therefore the use of satellite products is a measure to cover the entire Arctic. However, the quality of such cloud measurements from space is not well known. The paper discusses the differences and commonalities between satellite and ground-based measurements. We conclude that the satellite dataset, with a few exceptions, can be used in the Arctic.
Hong Chen, K. Sebastian Schmidt, Steven T. Massie, Vikas Nataraja, Matthew S. Norgren, Jake J. Gristey, Graham Feingold, Robert E. Holz, and Hironobu Iwabuchi
Atmos. Meas. Tech., 16, 1971–2000, https://doi.org/10.5194/amt-16-1971-2023, https://doi.org/10.5194/amt-16-1971-2023, 2023
Short summary
Short summary
We introduce the Education and Research 3D Radiative Transfer Toolbox (EaR3T) and propose a radiance self-consistency approach for quantifying and mitigating 3D bias in legacy airborne and spaceborne imagery retrievals due to spatially inhomogeneous clouds and surfaces.
Kumar Abhijeet, Thota Narayana Rao, Nidamanuri Rama Rao, and Kasimahanthi Amar Jyothi
Atmos. Meas. Tech., 16, 871–888, https://doi.org/10.5194/amt-16-871-2023, https://doi.org/10.5194/amt-16-871-2023, 2023
Short summary
Short summary
The present study focuses on retrieving and validating raindrop size distribution (DSD) relations for monsoonal rainfall, which are required for retrieving DSDs with polarimetric radar measurements. The seasonal variation in DSD is quite large and significant, and as a result the coefficients also vary considerably between the seasons and from those existing elsewhere. Among the existing DSD methods, the N-gamma method performs better than the other methods.
Gianluca Di Natale, David D. Turner, Giovanni Bianchini, Massimo Del Guasta, Luca Palchetti, Alessandro Bracci, Luca Baldini, Tiziano Maestri, William Cossich, Michele Martinazzo, and Luca Facheris
Atmos. Meas. Tech., 15, 7235–7258, https://doi.org/10.5194/amt-15-7235-2022, https://doi.org/10.5194/amt-15-7235-2022, 2022
Short summary
Short summary
In this paper, we describe a new approach to test the consistency of the precipitating ice cloud optical and microphysical properties in Antarctica, Dome C, retrieved from hyperspectral measurements in the far-infrared, with the reflectivity detected by a co-located micro rain radar operating at 24 GHz. The retrieved ice crystal sizes were found in accordance with the direct measurements of an optical imager, also installed at Dome C, which can collect the falling ice particles.
Sergey Y. Matrosov, Alexei Korolev, Mengistu Wolde, and Cuong Nguyen
Atmos. Meas. Tech., 15, 6373–6386, https://doi.org/10.5194/amt-15-6373-2022, https://doi.org/10.5194/amt-15-6373-2022, 2022
Short summary
Short summary
A remote sensing method to retrieve sizes of particles in ice clouds and precipitation from radar measurements at two wavelengths is described. This method is based on relating the particle size information to the ratio of radar signals at these two wavelengths. It is demonstrated that this ratio is informative about different characteristic particle sizes. Knowing atmospheric ice particle sizes is important for many applications such as precipitation estimation and climate modeling.
Andrzej Z. Kotarba
Atmos. Meas. Tech., 15, 4307–4322, https://doi.org/10.5194/amt-15-4307-2022, https://doi.org/10.5194/amt-15-4307-2022, 2022
Short summary
Short summary
Space profiling lidars offer a unique insight into cloud properties in Earth’s atmosphere, and are considered the most reliable source of cloud information. However, lidar-based cloud climatologies are infrequently sampled: every 7 to 91 d, and only along the ground track. This study evaluated how accurate are the cloud data from existing (CALIPSO, ICESat-2, Aeolus) and planned (EarthCARE) space lidars, when compared to a cloud climatology obtained with observations taken every day.
Edward Gryspeerdt, Daniel T. McCoy, Ewan Crosbie, Richard H. Moore, Graeme J. Nott, David Painemal, Jennifer Small-Griswold, Armin Sorooshian, and Luke Ziemba
Atmos. Meas. Tech., 15, 3875–3892, https://doi.org/10.5194/amt-15-3875-2022, https://doi.org/10.5194/amt-15-3875-2022, 2022
Short summary
Short summary
Droplet number concentration is a key property of clouds, influencing a variety of cloud processes. It is also used for estimating the cloud response to aerosols. The satellite retrieval depends on a number of assumptions – different sampling strategies are used to select cases where these assumptions are most likely to hold. Here we investigate the impact of these strategies on the agreement with in situ data, the droplet number climatology and estimates of the indirect radiative forcing.
Henning Dorff, Heike Konow, and Felix Ament
Atmos. Meas. Tech., 15, 3641–3661, https://doi.org/10.5194/amt-15-3641-2022, https://doi.org/10.5194/amt-15-3641-2022, 2022
Short summary
Short summary
This study elaborates how aircraft-based horizontal geometries of trade wind cumuli differ whether a one-dimensional profiling radar or a two-dimensional imager is used. Cloud size distributions are examined in terms of sensitivity to sample size, resolution, and instrument field of view. While the radar cannot reproduce the double power law distribution due to coarse resolution and restriction to vertical transects, the imager also reveals the elliptic cloud structure enhancing with wind speed.
Qing Yue, Eric J. Fetzer, Likun Wang, Brian H. Kahn, Nadia Smith, John M. Blaisdell, Kerry G. Meyer, Mathias Schreier, Bjorn Lambrigtsen, and Irina Tkatcheva
Atmos. Meas. Tech., 15, 2099–2123, https://doi.org/10.5194/amt-15-2099-2022, https://doi.org/10.5194/amt-15-2099-2022, 2022
Short summary
Short summary
The self-consistency and continuity of cloud retrievals from infrared sounders and imagers aboard Aqua and SNPP (Suomi National Polar-orbiting Partnership) are examined at the pixel scale. Cloud products are found to be consistent with each other. Differences between sounder products are mainly due to cloud clearing and the treatment of clouds in scenes with unsuccessful atmospheric retrievals. The impact of algorithm and instrument differences is clearly seen in the imager cloud retrievals.
Pradeep Khatri, Tadahiro Hayasaka, Hitoshi Irie, Husi Letu, Takashi Y. Nakajima, Hiroshi Ishimoto, and Tamio Takamura
Atmos. Meas. Tech., 15, 1967–1982, https://doi.org/10.5194/amt-15-1967-2022, https://doi.org/10.5194/amt-15-1967-2022, 2022
Short summary
Short summary
Cloud properties observed by the Second-generation Global Imager (SGLI) onboard the Global Change Observation Mission – Climate (GCOM-C) satellite are evaluated using surface observation data. The study finds that SGLI-observed cloud properties are qualitative enough, although water cloud properties are suggested to be more qualitative, and both water and ice cloud properties can reproduce surface irradiance quite satisfactorily. Thus, SGLI cloud products are very useful for different studies.
Artem G. Feofilov, Hélène Chepfer, Vincent Noël, Rodrigo Guzman, Cyprien Gindre, Po-Lun Ma, and Marjolaine Chiriaco
Atmos. Meas. Tech., 15, 1055–1074, https://doi.org/10.5194/amt-15-1055-2022, https://doi.org/10.5194/amt-15-1055-2022, 2022
Short summary
Short summary
Space-borne lidars have been providing invaluable information of atmospheric optical properties since 2006, and new lidar missions are on the way to ensure continuous observations. In this work, we compare the clouds estimated from space-borne ALADIN and CALIOP lidar observations. The analysis of collocated data shows that the agreement between the retrieved clouds is good up to 3 km height. Above that, ALADIN detects 40 % less clouds than CALIOP, except for polar stratospheric clouds (PSCs).
Gregor Köcher, Tobias Zinner, Christoph Knote, Eleni Tetoni, Florian Ewald, and Martin Hagen
Atmos. Meas. Tech., 15, 1033–1054, https://doi.org/10.5194/amt-15-1033-2022, https://doi.org/10.5194/amt-15-1033-2022, 2022
Short summary
Short summary
We present a setup for systematic characterization of differences between numerical weather models and radar observations for convective weather situations. Radar observations providing dual-wavelength and polarimetric variables to infer information about hydrometeor shapes and sizes are compared against simulations using microphysics schemes of varying complexity. Differences are found in ice and liquid phase, pointing towards issues of some schemes in reproducing particle size distributions.
Simon Pfreundschuh, Stuart Fox, Patrick Eriksson, David Duncan, Stefan A. Buehler, Manfred Brath, Richard Cotton, and Florian Ewald
Atmos. Meas. Tech., 15, 677–699, https://doi.org/10.5194/amt-15-677-2022, https://doi.org/10.5194/amt-15-677-2022, 2022
Short summary
Short summary
We test a novel method to remotely measure ice particles in clouds. This is important because such measurements are required to improve climate and weather models. The method combines a radar with newly developed sensors measuring microwave radiation at very short wavelengths. We use observations made from aircraft flying above the cloud and compare them to real measurements from inside the cloud. This works well given that one can model the ice particles in the cloud sufficiently well.
David Painemal, Douglas Spangenberg, William L. Smith Jr., Patrick Minnis, Brian Cairns, Richard H. Moore, Ewan Crosbie, Claire Robinson, Kenneth L. Thornhill, Edward L. Winstead, and Luke Ziemba
Atmos. Meas. Tech., 14, 6633–6646, https://doi.org/10.5194/amt-14-6633-2021, https://doi.org/10.5194/amt-14-6633-2021, 2021
Short summary
Short summary
Cloud properties derived from satellite sensors are critical for the global monitoring of climate. This study evaluates satellite-based cloud properties over the North Atlantic using airborne data collected during NAAMES. Satellite observations of droplet size and cloud optical depth tend to compare well with NAAMES data. The analysis indicates that the satellite pixel resolution and the specific viewing geometry need to be taken into account in research applications.
Charles H. White, Andrew K. Heidinger, and Steven A. Ackerman
Atmos. Meas. Tech., 14, 3371–3394, https://doi.org/10.5194/amt-14-3371-2021, https://doi.org/10.5194/amt-14-3371-2021, 2021
Short summary
Short summary
Automated detection of clouds in satellite imagery is an important practice that is useful for predicting and understanding both weather and climate. Cloud detection is often difficult at night and over cold surfaces. In this paper, we discuss how a complex statistical model (a neural network) can more accurately detect clouds compared to currently used approaches. Overall, our results suggest that our approach could result in more reliable assessments of global cloud cover.
Hong Chen, Sebastian Schmidt, Michael D. King, Galina Wind, Anthony Bucholtz, Elizabeth A. Reid, Michal Segal-Rozenhaimer, William L. Smith, Patrick C. Taylor, Seiji Kato, and Peter Pilewskie
Atmos. Meas. Tech., 14, 2673–2697, https://doi.org/10.5194/amt-14-2673-2021, https://doi.org/10.5194/amt-14-2673-2021, 2021
Short summary
Short summary
In this paper, we accessed the shortwave irradiance derived from MODIS cloud optical properties by using aircraft measurements. We developed a data aggregation technique to parameterize spectral surface albedo by snow fraction in the Arctic. We found that undetected clouds have the most significant impact on the imagery-derived irradiance. This study suggests that passive imagery cloud detection could be improved through a multi-pixel approach that would make it more dependable in the Arctic.
Steven Compernolle, Athina Argyrouli, Ronny Lutz, Maarten Sneep, Jean-Christopher Lambert, Ann Mari Fjæraa, Daan Hubert, Arno Keppens, Diego Loyola, Ewan O'Connor, Fabian Romahn, Piet Stammes, Tijl Verhoelst, and Ping Wang
Atmos. Meas. Tech., 14, 2451–2476, https://doi.org/10.5194/amt-14-2451-2021, https://doi.org/10.5194/amt-14-2451-2021, 2021
Short summary
Short summary
The high-resolution satellite Sentinel-5p TROPOMI observes several atmospheric gases. To account for cloud interference with the observations, S5P cloud data products (CLOUD OCRA/ROCINN_CAL, OCRA/ROCINN_CRB, and FRESCO) provide vital input: cloud fraction, cloud height, and cloud optical thickness. Here, S5P cloud parameters are validated by comparing with other satellite sensors (VIIRS, MODIS, and OMI) and with ground-based CloudNet data. The agreement depends on product type and cloud height.
Jędrzej S. Bojanowski and Jan P. Musiał
Atmos. Meas. Tech., 13, 6771–6788, https://doi.org/10.5194/amt-13-6771-2020, https://doi.org/10.5194/amt-13-6771-2020, 2020
Short summary
Short summary
Satellites such as NOAA's Advanced Very High Resolution Radiometer can uniquely observe changes in cloud cover but are affected by orbital drift that results in shifted image acquisition times, which in turn lead to spurious trends in cloud cover detected during climatological analyses. Providing a detailed quantification of these trends, we show that climate data records must be analysed with caution, as for some periods and regions they do not comply with the requirements for climate data.
Andrzej Z. Kotarba
Atmos. Meas. Tech., 13, 4995–5012, https://doi.org/10.5194/amt-13-4995-2020, https://doi.org/10.5194/amt-13-4995-2020, 2020
Short summary
Short summary
This paper evaluates the operational approach for producing global (Level 3) cloud amount based on MODIS cloud masks (Level 2). Using CALIPSO we calculate the actual cloud fractions for each cloud mask category, which are 21.5 %, 27.7 %, 66.6 %, and 94.7 % instead of assumed 0 %, 0 %, 100 %, and 100 %. Consequently we find the operational procedure unreliable, especially on a regional/local scale. A method of how to correct and calibrate MODIS global data using CALIPSO detections is suggested.
Benjamin Marchant, Steven Platnick, Kerry Meyer, and Galina Wind
Atmos. Meas. Tech., 13, 3263–3275, https://doi.org/10.5194/amt-13-3263-2020, https://doi.org/10.5194/amt-13-3263-2020, 2020
Short summary
Short summary
Multilayer cloud scenes (such as an ice cloud overlapping a liquid cloud) are common in the Earth's atmosphere and are quite difficult to detect from space. The detection of multilayer clouds is important to better understand how they interact with the light and their impact on the climate. So, for the instrument MODIS an algorithm has been developed to detect those clouds, and this paper presents an evaluation of this algorithm by comparing it with
other instruments.
Alexis Hunzinger, Joseph C. Hardin, Nitin Bharadwaj, Adam Varble, and Alyssa Matthews
Atmos. Meas. Tech., 13, 3147–3166, https://doi.org/10.5194/amt-13-3147-2020, https://doi.org/10.5194/amt-13-3147-2020, 2020
Short summary
Short summary
The calibration of weather radars is one of the most dominant sources of errors hindering their use. This work takes a technique for tracking the changes in radar calibration using the radar clutter from the ground and extends it to higher-frequency research radars. It demonstrates that after modifications the technique is successful but that special care needs to be taken in its application at high frequencies. The technique is verified using data from multiple DOE ARM field campaigns.
Dieter R. Poelman and Wolfgang Schulz
Atmos. Meas. Tech., 13, 2965–2977, https://doi.org/10.5194/amt-13-2965-2020, https://doi.org/10.5194/amt-13-2965-2020, 2020
Short summary
Short summary
The objective of this work is to quantify the similarities and contrasts between the lightning observations from the Lightning Imaging Sensor (LIS) on the International Space Station (ISS) and the ground-based European Cooperation for Lightning Detection (EUCLID) network. This work is timely, given that the Meteosat Third Generation (MTG), which has a lightning imager (LI) on board, is going to be launched in 2 years.
Manfred Brath, Robin Ekelund, Patrick Eriksson, Oliver Lemke, and Stefan A. Buehler
Atmos. Meas. Tech., 13, 2309–2333, https://doi.org/10.5194/amt-13-2309-2020, https://doi.org/10.5194/amt-13-2309-2020, 2020
Short summary
Short summary
Microwave dual-polarization observations consistently show that larger atmospheric ice particles tend to have a preferred orientation. We provide a publicly available database of microwave and submillimeter wave scattering properties of oriented ice particles based on discrete dipole approximation scattering calculations. Detailed radiative transfer simulations, recreating observed polarization patterns, are additionally presented in this study.
Erin A. Riley, Jessica M. Kleiss, Laura D. Riihimaki, Charles N. Long, Larry K. Berg, and Evgueni Kassianov
Atmos. Meas. Tech., 13, 2099–2117, https://doi.org/10.5194/amt-13-2099-2020, https://doi.org/10.5194/amt-13-2099-2020, 2020
Short summary
Short summary
Discrepancies in hourly shallow cumuli cover estimates can be substantial. Instrument detection differences contribute to long-term bias in shallow cumuli cover estimates, whereas narrow field-of-view configurations impact measurement uncertainty as averaging time decreases. A new tool is introduced to visually assess both impacts on sub-hourly cloud cover estimates. Accurate shallow cumuli cover estimation is needed for model–observation comparisons and studying cloud-surface interactions.
Robin Ekelund, Patrick Eriksson, and Simon Pfreundschuh
Atmos. Meas. Tech., 13, 501–520, https://doi.org/10.5194/amt-13-501-2020, https://doi.org/10.5194/amt-13-501-2020, 2020
Short summary
Short summary
Atmospheric ice particles (e.g. snow and ice crystals) are an important part of weather, climate, and the hydrological cycle. This study investigates whether combined satellite measurements by radar and radiometers at microwave wavelengths can be used to find the most likely shape of such ice particles. The method was limited when using only currently operating sensors (CloudSat radar and the GPM Microwave Imager) but shows promise if the upcoming Ice Cloud Imager is also considered.
Juan Huo, Daren Lu, Shu Duan, Yongheng Bi, and Bo Liu
Atmos. Meas. Tech., 13, 1–11, https://doi.org/10.5194/amt-13-1-2020, https://doi.org/10.5194/amt-13-1-2020, 2020
Short summary
Short summary
Cloud top height (CTH) is one of the important cloud parameters providing information about the vertical structure of cloud water content. To better understand the accuracy of CTH derived from passive satellite data, 2 years of ground-based Ka-band radar measurements are compared with CTH inferred from Terra/Aqua MODIS and Himawari AHI. It is found that MODIS and AHI underestimate CTH relative to radar by −1.10 km. Both MODIS and AHI CTH retrieval accuracy depend strongly on cloud depth.
Vladimir S. Kostsov, Anke Kniffka, Martin Stengel, and Dmitry V. Ionov
Atmos. Meas. Tech., 12, 5927–5946, https://doi.org/10.5194/amt-12-5927-2019, https://doi.org/10.5194/amt-12-5927-2019, 2019
Short summary
Short summary
Cloud liquid water path (LWP) is one of the target atmospheric parameters retrieved remotely from ground-based and space-borne platforms. The LWP data delivered by the satellite instruments SEVIRI and AVHRR together with the data provided by the ground-based radiometer RPG-HATPRO near St. Petersburg, Russia, have been compared. Our study revealed considerable differences between LWP data from SEVIRI and AVHRR in winter over ice-covered relatively small water bodies in this region.
Jonathan K. P. Shonk, Jui-Yuan Christine Chiu, Alexander Marshak, David M. Giles, Chiung-Huei Huang, Gerald G. Mace, Sally Benson, Ilya Slutsker, and Brent N. Holben
Atmos. Meas. Tech., 12, 5087–5099, https://doi.org/10.5194/amt-12-5087-2019, https://doi.org/10.5194/amt-12-5087-2019, 2019
Short summary
Short summary
Retrievals of cloud optical depth made using AERONET radiometers in “cloud mode” rely on the assumption that all cloud is liquid. The presence of ice cloud therefore introduces errors in the retrieved optical depth, which can be over 25 in optically thick ice clouds. However, such clouds are not frequent and the long-term mean optical depth error is about 3 for a sample of real clouds. A correction equation could improve the retrieval further, although this would require extra instrumentation.
Chaojun Shi, Yatong Zhou, Bo Qiu, Jingfei He, Mu Ding, and Shiya Wei
Atmos. Meas. Tech., 12, 4713–4724, https://doi.org/10.5194/amt-12-4713-2019, https://doi.org/10.5194/amt-12-4713-2019, 2019
Short summary
Short summary
Cloud segmentation plays a very important role in astronomical observatory site selection. At present, few researchers segment cloud in nocturnal all-sky imager (ASI) images. We propose a new automatic cloud segmentation algorithm to segment cloud pixels from diurnal and nocturnal ASI images called an enhancement fully convolutional network (EFCN). Experiments showed that the proposed EFCN was much more accurate in cloud segmentation for diurnal and nocturnal ASI images.
Maximilian Maahn, Fabian Hoffmann, Matthew D. Shupe, Gijs de Boer, Sergey Y. Matrosov, and Edward P. Luke
Atmos. Meas. Tech., 12, 3151–3171, https://doi.org/10.5194/amt-12-3151-2019, https://doi.org/10.5194/amt-12-3151-2019, 2019
Short summary
Short summary
Cloud radars are unique instruments for observing cloud processes, but uncertainties in radar calibration have frequently limited data quality. Here, we present three novel methods for calibrating vertically pointing cloud radars. These calibration methods are based on microphysical processes of liquid clouds, such as the transition of cloud droplets to drizzle drops. We successfully apply the methods to cloud radar data from the North Slope of Alaska (NSA) and Oliktok Point (OLI) ARM sites.
Florian Ewald, Silke Groß, Martin Hagen, Lutz Hirsch, Julien Delanoë, and Matthias Bauer-Pfundstein
Atmos. Meas. Tech., 12, 1815–1839, https://doi.org/10.5194/amt-12-1815-2019, https://doi.org/10.5194/amt-12-1815-2019, 2019
Short summary
Short summary
This study gives a summary of lessons learned during the absolute calibration of the airborne, high-power Ka-band cloud radar HAMP MIRA on board the German research aircraft HALO. The first part covers the internal calibration of the instrument where individual instrument components are characterized in the laboratory. In the second part, the internal calibration is validated with external reference sources like the ocean surface backscatter and different air- and spaceborne cloud radars.
Stuart Fox, Jana Mendrok, Patrick Eriksson, Robin Ekelund, Sebastian J. O'Shea, Keith N. Bower, Anthony J. Baran, R. Chawn Harlow, and Juliet C. Pickering
Atmos. Meas. Tech., 12, 1599–1617, https://doi.org/10.5194/amt-12-1599-2019, https://doi.org/10.5194/amt-12-1599-2019, 2019
Short summary
Short summary
Airborne observations of ice clouds are used to validate radiative transfer simulations using a state-of-the-art database of cloud ice optical properties. Simulations at these wavelengths are required to make use of future satellite instruments such as the Ice Cloud Imager. We show that they can generally reproduce observed cloud signals, but for a given total ice mass there is considerable sensitivity to the cloud microphysics, including the particle shape and distribution of ice mass.
Katrin Lonitz and Alan J. Geer
Atmos. Meas. Tech., 12, 405–429, https://doi.org/10.5194/amt-12-405-2019, https://doi.org/10.5194/amt-12-405-2019, 2019
Short summary
Short summary
Permittivity models for microwave frequencies of liquid water below 0°C are poorly constrained due to limited laboratory experiments and observations, especially for high microwave frequencies. This uncertainty translates directly into errors in retrieved liquid water paths of up to 80 %. This study investigates the effect of different liquid water permittivity models including models based on the most recent observations.
Vladimir S. Kostsov, Anke Kniffka, and Dmitry V. Ionov
Atmos. Meas. Tech., 11, 5439–5460, https://doi.org/10.5194/amt-11-5439-2018, https://doi.org/10.5194/amt-11-5439-2018, 2018
Short summary
Short summary
Clouds are a very important component of the climate system and of the hydrological cycle in the Arctic and sub-Arctic. A joint analysis of the cloud parameters obtained remotely from satellite and ground-based observations near St Petersburg, Russia, has been made. Our study has revealed considerable differences between the cloud properties over land and over water areas in the region under investigation.
Fanny Jeanneret, Giovanni Martucci, Simon Pinnock, and Alexis Berne
Atmos. Meas. Tech., 11, 4153–4170, https://doi.org/10.5194/amt-11-4153-2018, https://doi.org/10.5194/amt-11-4153-2018, 2018
Short summary
Short summary
Above mountainous regions, satellites may have difficulty in discriminating snow from clouds: this study proposes a new method that combines different ground-based measurements to assess the sky cloudiness with high temporal resolution. The method's output is used as input to a model capable of identifying false satellite cloud detections. Results show that 62 ± 13 % of these false detections can be identified by the model when applied to the AVHRR-PM and MODIS Aqua data sets of the Cloud_cci.
Cited articles
Aires, F., Prigent, C., Bernardo, F., Jiménez, C., Saunders, R., and Brunel, P.: A Tool to Estimate Land-Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction, Q. J. Roy. Meteor. Soc., 137, 690–699, 2011.
Austin, R. T., Heymsfield, A. J., and Stephens, G. L.: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature, J. Geophys. Res.-Atmos. (1984–2012), 114, D00A23, https://doi.org/10.1029/2008JD010049, 2009.
Battaglia, A., Haynes, J., L'Ecuyer, T., and Simmer, C.: Identifying multiple-scattering-affected profiles in CloudSat observations over the oceans, J. Geophys. Res.-Atmos. (1984–2012), 113, D00A17, https://doi.org/10.1029/2008JD009960, 2008.
Bennartz, R. and Bauer, P.: Sensitivity of microwave radiances at 85–183 GHz to precipitating ice particles, Radio Sci., 38, 8075, 2003.
Bonsignori, R.: The Microwave Humidity Sounder (MHS): in-orbit performance assessment, in: Remote Sensing, International Society for Optics and Photonics, 67440A, 2007.
Bruggeman, D. A. G.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Annalen der Physik, 416, 636–664, 1935.
Buehler, S. A., Courcoux, N., and John, V. O.: Radiative transfer calculations for a passive microwave satellite sensor: Comparing a fast model and a line-by-line model, J. Geophys. Res., 111, D20304, 2006.
Chaboureau, J.-P., Cammas, J.-P., Mascart, P., Pinty, J.-P., Claud, C., Roca, R., and Morcrette, J.-J.: Evaluation of a cloud system life-cycle simulated by the Meso-NH model during FASTEX using METEOSAT radiances and TOVS-3I cloud retrievals, Q. J. Roy. Meteor. Soc., 126, 1735–1750, 2000.
Chaboureau, J.-P., Söhne, N., Pinty, J.-P., Meirold-Mautner, I., Defer, E., Prigent, C., Pardo, J. R., Mech, M., and Crewell, S.: A Midlatitude Precipitating Cloud Database Validated with Satellite Observations, J. Appl. Meteorol. Clim., 47, 1337, https://doi.org/10.1175/2007JAMC1731.1, 2008.
Davis, C. P., Evans, K. F., Buehler, S. A., Wu, D. L., and Pumphrey, H. C.: 3-D polarised simulations of space-borne passive mm/sub-mm midlatitude cirrus observations: a case study, Atmos. Chem. Phys., 7, 4149–4158, https://doi.org/10.5194/acp-7-4149-2007, 2007.
Delanoë, J. and Hogan, R. J.: A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer, J. Geophys. Res.-Atmos. (1984–2012), 113, D07204, https://doi.org/10.1029/2007JD009000, 2008.
Delanoë, J. and Hogan, R. J.: Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds, J. Geophys. Res.-Atmos. (1984–2012), 115, D00H29, https://doi.org/10.1029/2009JD012346, 2010.
Dungey, C. and Bohren: Backscattering by nonspherical hydrometeors as calculated by the coupled-dipole method- An application in radar meteorology, J. Atmos. Ocean. Tech., 10, 526–532, 1993.
Eliasson, S., Buehler, S. A., Milz, M., Eriksson, P., and John, V. O.: Assessing observed and modelled spatial distributions of ice water path using satellite data, Atmos. Chem. Phys., 11, 375–391, https://doi.org/10.5194/acp-11-375-2011, 2011.
Eriksson, P., Buehler, S., Davis, C., Emde, C., and Lemke, O.: ARTS, the atmospheric radiative transfer simulator, version 2, J. Quant. Spectrosc. Ra., 112, 1551–1558, 2011.
Garnett, J. M.: Colours in metal glasses, in metallic films, and in metallic solutions. II, Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 237–288, 1906.
Geer, A. J. and Baordo, F.: Improved scattering radiative transfer for frozen hydrometeors at microwave frequencies, Atmos. Meas. Tech., 7, 1839–1860, https://doi.org/10.5194/amt-7-1839-2014, 2014.
Hanesch, M.: Fall velocity and shape of snowflakes, PhD. thesis, Swiss Federal Institute of Technology, 2009.
Haynes, J., Luo, Z., Stephens, G., Marchand, R., and Bodas-Salcedo, A.: A multipurpose radar simulation package: QuickBeam, B. Am. Meteorol. Soc., 88, 1723–1727, 2007.
Hogan, R. J., Tian, L., Brown, P. R. A., Westbrook, C. D., Heymsfield, A. J., and Eastment, J. D.: Radar Scattering from Ice Aggregates Using the Horizontally Aligned Oblate Spheroid Approximation, J. Appl. Meteorol. Clim., 51, 655–671, 2012.
Johnson, B. T., Petty, G. W., and Skofronick-Jackson, G.: Microwave Properties of Ice-Phase Hydrometeors for Radar and Radiometers: Sensitivity to Model Assumptions, J. Appl. Meteorol. Clim., 51, 2152–2171, 2012.
Katsumata, M., Uyeda, H., Iwanami, K., and Liu, G.: The Response of 36- and 89-GHz Microwave Channels to Convective Snow Clouds over Ocean: Observation and Modeling, J. Appl. Meteorol., 39, 2322–2335, 2000.
Kim, M.-J.: Single scattering parameters of randomly oriented snow particles at microwave frequencies, J. Geophys. Res.-Atmos., 111, D14201, https://doi.org/10.1029/2005JD006892, 2006.
Kneifel, S., Redl, S., Orlandi, E., Lohnert, U., Cadeddu, M. P., Turner, D. D., and Chen, M.-T.,: Absorption Properties of Supercooled Liquid Water between 31 and 225 GHz: Evaluation of Absorption Models Using Ground-based Observations, J. Appl. Meteorol. Clim., 53, 1028–1045, https://doi.org/10.1175/JAMC-D-13-0214.1, 2014.
Korolev, A. and Isaac, G.: Roundness and Aspect Ratio of Particles in Ice Clouds, J. Atmos. Sci., 60, 1795–1808, 2003.
Kulie, M. S., Bennartz, R., Greenwald, T. J., Chen, Y., and Weng, F.: Uncertainties in Microwave Properties of Frozen Precipitation: Implications for Remote Sensing and Data Assimilation, J. Atmos. Sci., 67, 3471–3487, 2010.
Lafore, J. P., Stein, J., Asencio, N., Bougeault, P., Ducrocq, V., Duron, J., Fischer, C., Héreil, P., Mascart, P., Masson, V., Pinty, J. P., Redelsperger, J. L., Richard, E., and Vilà-Guerau de Arellano, J.: The Meso-NH Atmospheric Simulation System. Part I: adiabatic formulation and control simulations, Ann. Geophys., 16, 90–109, https://doi.org/10.1007/s00585-997-0090-6, 1998.
Liebe, H. J., Hufford, G. A., and Manabe, T.: A model for the complex permittivity of water at frequencies below 1 THz, Int. J. Infrared. Milli., 12, 659–675, 1991.
Liu, G.: Approximation of single scattering properties of ice and snow particles for high microwave frequencies, J. Atmos. Sci., 61, 2441–2456, 2004.
Liu, Q., Weng, F., and English, S.: An Improved Fast Microwave Water Emissivity Model, Geoscience and Remote Sensing, IEEE Transactions on, 49, 1238–1250, 2011.
Mace, G.: Level 2 GEOPROF product process description and interface control document algorithm version 5.3, NASA Jet Propulsion Laboratory, 2007.
Matrosov, S. Y., Heymsfield, A. J., and Wang, Z.: Dual-frequency radar ratio of nonspherical atmospheric hydrometeors, Geophys. Res.-Lett., 32, L13816, https://doi.org/10.1029/2005GL023210, 2005.
Mätzler, C.: Thermal microwave radiation: applications for remote sensing, vol. 52, Iet, 2006.
Meirold-Mautner, I., Prigent, C., Defer, E., Pardo, J. R., Chaboureau, J.-P., Pinty, J.-P., Mech, M., and Crewell, S.: Radiative Transfer Simulations Using Mesoscale Cloud Model Outputs: Comparisons with Passive Microwave and Infrared Satellite Observations for Midlatitudes, J. Atmos. Sci., 64, 1550–1568, 2007.
Melsheimer, C., Verdes, C., Buehler, S. A., Emde, C., Eriksson, P., Feist, D. G., Ichizawa, S., John, V. O., Kasai, Y., Kopp, G., Koulev, N., Kuhn, T., Lemke, O., Ochiai, S., Schreier, F., Sreerekha, T. R., Suzuki, M., Takahashi, C., Tsujimaru, S., and Urban, J.: Intercomparison of general purpose clear sky atmospheric radiative transfer models for the millimeter/submillimeter spectral range, Radio Sci., 40, RS1007, https://doi.org/10.1029/2004RS003110, 2005.
Mishchenko, M. I.: Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation, Appl. Optics, 39, 1026–1031, 2000.
Noh, Y.-J., Liu, G., Seo, E.-K., Wang, J. R., and Aonashi, K.: Development of a snowfall retrieval algorithm at high microwave frequencies, J. Geophys. Res.-Atmos., 111, D22216, https://doi.org/10.1029/2005JD006826, 2006.
Nowell, H., Liu, G., and Honeyager, R.: Modeling the microwave single-scattering properties of aggregate snowflakes, J. Geophys. Res.-Atmos., 118, 7873–7885, 2013.
Pinty, J. and Jabouille, P.: A mixed-phase cloud parameterization for use in a mesoscale non-hydrostatic model: simulations of a squall line and of orographic precipitations, in: Conf. on Cloud Physics, 217–220, 1998.
Purcell, E. M. and Pennypacker, C. R.: Scattering and absorption of light by nonspherical dielectric grains, Astrophys. J., 186, 705–714, 1973.
Saunders, R., Rayer, P., Brunel, P., von Engeln, A., Bormann, N., Strow, L., Hannon, S., Heilliette, S., Liu, X., Miskolczi, F., Han, Y., Masiello, G., Moncet, J.-L., Uymin, G., Sherlock, V., and Turner, D. S.: A comparison of radiative transfer models for simulating Atmospheric Infrared Sounder (AIRS) radiances, J. Geophys. Res.-Atmos., 112, D01S90, https://doi.org/10.1029/2006JD007088, 2007.
Skofronick-Jackson, G. and Johnson, B.: Thresholds of detection for falling snow from satellite-borne active and passive sensors, in: Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International, 2637–2640, 2011.
Skofronick-Jackson, G., Gasiewski, A. J., and Wang, J. R.: Influence of microphysical cloud parameterizations on microwave brightness temperatures, IEEE T. Geosci. Remote., 40, 187–196, 2002.
Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang, Z., Illingworth, A. J., O'Connor, E. J., Rossow, W. B., Durden, S. L., Miller, S. D., Austin, R. T., Benedetti, A., Mitrescu, C., and CloudSat Science Team, T.: THE CLOUDSAT MISSION AND THE A-TRAIN, B. Am. Meteorol. Soc., 83, 1771–1790, 2002.
Thompson, G., Rasmussen, R. M., and Manning, K.: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis, Mon. Weather Rev., 132, 519–542, 2004.
Waliser, D. E., Li, J.-L. F., Woods, C. P., Austin, R. T., Bacmeister, J., Chern, J., Del Genio, A., Jiang, J. H., Kuang, Z., Meng, H., Minnis, P., Platnick, S., Rossow, W. B., Stephens, G. L., Sun-Mack, S., Tao, W.-K., Tompkins, A. M., Vane, D. G., Walker, C., and Wu, D.: Cloud ice: A climate model challenge with signs and expectations of progress, J. Geophys. Res.-Atmos., 114, D00A21, https://doi.org/10.1029/2008JD010015, 2009.
Wiedner, M., Prigent, C., Pardo, J. R., Nuissier, O., Chaboureau, J.-P., Pinty, J.-P., and Mascart, P.: Modeling of passive microwave responses in convective situations using output from mesoscale models: Comparison with TRMM/TMI satellite observations, J. Geophys. Res.-Atmos. (1984–2012), 109, D06214, https://doi.org/10.1029/2003JD004280, 2004.