Articles | Volume 8, issue 9
https://doi.org/10.5194/amt-8-3563-2015
https://doi.org/10.5194/amt-8-3563-2015
Research article
 | 
03 Sep 2015
Research article |  | 03 Sep 2015

Finding candidate locations for aerosol pollution monitoring at street level using a data-driven methodology

V. Moosavi, G. Aschwanden, and E. Velasco

Related authors

The role of vegetation in the CO2 flux from a tropical urban neighbourhood
E. Velasco, M. Roth, S. H. Tan, M. Quak, S. D. A. Nabarro, and L. Norford
Atmos. Chem. Phys., 13, 10185–10202, https://doi.org/10.5194/acp-13-10185-2013,https://doi.org/10.5194/acp-13-10185-2013, 2013

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Spatial analysis of PM2.5 using a Concentration Similarity Index applied to air quality sensor networks
Rósín Byrne, John C. Wenger, and Stig Hellebust
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-38,https://doi.org/10.5194/amt-2024-38, 2024
Revised manuscript accepted for AMT
Short summary
A novel probabilistic source apportionment approach: Bayesian auto-correlated matrix factorization
Anton Rusanen, Anton Björklund, Manousos I. Manousakas, Jianhui Jiang, Markku T. Kulmala, Kai Puolamäki, and Kaspar R. Daellenbach
Atmos. Meas. Tech., 17, 1251–1277, https://doi.org/10.5194/amt-17-1251-2024,https://doi.org/10.5194/amt-17-1251-2024, 2024
Short summary
Towards a hygroscopic growth calibration for low-cost PM2.5 sensors
Milan Y. Patel, Pietro F. Vannucci, Jinsol Kim, William M. Berelson, and Ronald C. Cohen
Atmos. Meas. Tech., 17, 1051–1060, https://doi.org/10.5194/amt-17-1051-2024,https://doi.org/10.5194/amt-17-1051-2024, 2024
Short summary
Enhancing characterization of organic nitrogen components in aerosols and droplets using high-resolution aerosol mass spectrometry
Xinlei Ge, Yele Sun, Justin Trousdell, Mindong Chen, and Qi Zhang
Atmos. Meas. Tech., 17, 423–439, https://doi.org/10.5194/amt-17-423-2024,https://doi.org/10.5194/amt-17-423-2024, 2024
Short summary
Machine learning approaches for automatic classification of single-particle mass spectrometry data
Guanzhong Wang, Heinrich Ruser, Julian Schade, Johannes Passig, Thomas Adam, Günther Dollinger, and Ralf Zimmermann
Atmos. Meas. Tech., 17, 299–313, https://doi.org/10.5194/amt-17-299-2024,https://doi.org/10.5194/amt-17-299-2024, 2024
Short summary

Cited articles

Barreto, G. A. and Souza, L. G. M.: Adaptive filtering with the self-organizing map: a performance comparison, Neural Networks, 19, 785–798, 2006.
Bieringer, P. E., Longmore, S., Bieberbach, G., Rodriguez, L. M., Copeland, J., and Hannan, J.: A method for targeting air samplers for facility monitoring in an urban environment, Atmos. Environ., 80, 1–12, 2013.
Guyon, I. and Elisseeff, A.: An introduction to variable and feature selection, J. Mach. Learn. Res., 3, 1157–1182, 2003.
Hidy, G. M. and Pennell, W. T.: Multipollutant air quality management, J. Air Waste Manage., 60, 645–674, 2010.
Download
Short summary
Complexity of urban environments makes the problem of locating air quality monitoring stations at ground level challenging. In this work a data-driven methodology is proposed where using Self Organizing Maps along with several urban parameters and few direct measurements of aerosols at the street level, the concentration of those aerosols in a larger area is estimated. Finally, via clustering of areas with similar urban patterns, the potential locations of monitoring stations are identified.