Articles | Volume 9, issue 4
https://doi.org/10.5194/amt-9-1755-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/amt-9-1755-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Measuring droplet fall speed with a high-speed camera: indoor accuracy and potential outdoor applications
Cheng-Ku Yu
CORRESPONDING AUTHOR
Department of Atmospheric Sciences, National Taiwan University,
Taipei, Taiwan
Pei-Rong Hsieh
Department of Atmospheric Sciences, National Taiwan University,
Taipei, Taiwan
Sandra E. Yuter
Department of Marine, Earth, and Atmospheric Sciences, North Carolina
State University, Raleigh, North Carolina, USA
Lin-Wen Cheng
Department of Atmospheric Sciences, National Taiwan University,
Taipei, Taiwan
Chia-Lun Tsai
Department of Atmospheric Sciences, National Taiwan University,
Taipei, Taiwan
Che-Yu Lin
Department of Atmospheric Sciences, Chinese Culture University,
Taipei, Taiwan
Ying Chen
Department of Atmospheric Sciences, National Taiwan University,
Taipei, Taiwan
Related authors
No articles found.
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, Mariko Oue, and Charles N. Helms
EGUsphere, https://doi.org/10.5194/egusphere-2025-6, https://doi.org/10.5194/egusphere-2025-6, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study investigates how radar-detected snow bands relate to snowfall rates during winter storms in the northeastern U.S. Using over a decade of data, we found that snow bands are not consistently linked to heavy snowfall at the surface, as snow particles are often dispersed by wind before reaching the ground. These findings highlight limitations of using radar reflectivity for predicting snow rates and suggest focusing on radar echo duration to better understand snowfall patterns.
Luke R. Allen, Sandra E. Yuter, Declan M. Crowe, Matthew A. Miller, and K. Lee Thornhill
EGUsphere, https://doi.org/10.5194/egusphere-2024-3808, https://doi.org/10.5194/egusphere-2024-3808, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We analyzed in-cloud characteristics using in situ measurements from 42 research flights across two field campaigns into non-orographic, non-lake effect winter storms. Much of the storm volume contains weak vertical motions (a few cm s-1), and most updrafts ≥ 0.5 m s-1 are small (< 1 km). Within 2 km of cloud radar echo top, stronger vertical motions and conditions for ice particle growth are more common. This implies the importance of cloud-top generating cells for production of snow particles.
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
EGUsphere, https://doi.org/10.5194/egusphere-2024-2160, https://doi.org/10.5194/egusphere-2024-2160, 2024
Short summary
Short summary
Atmospheric gravity waves are air oscillations in which buoyancy is the restoring force, which can enhance precipitation production. We used 3+ seasons of pressure data to identify gravity waves with wavelengths ≤ 170 km in the Toronto and New York metropolitan areas in the context of snow storms. Of 79 snow events, only 6 had detectable gravity wave events, suggesting that gravity waves on the scales of typical radar reflectivity features are uncommon in those two locations during snow storms.
Laura M. Tomkins, Sandra E. Yuter, and Matthew A. Miller
Atmos. Meas. Tech., 17, 3377–3399, https://doi.org/10.5194/amt-17-3377-2024, https://doi.org/10.5194/amt-17-3377-2024, 2024
Short summary
Short summary
We have created a new method to better identify enhanced features in radar data from winter storms. Unlike the clear-cut features seen in warm-season storms, features in winter storms are often fuzzier with softer edges. Our technique is unique because it uses two adaptive thresholds that change based on the background radar values. It can identify both strong and subtle features in the radar data and takes into account uncertainties in the detection process.
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
Atmos. Meas. Tech., 17, 113–134, https://doi.org/10.5194/amt-17-113-2024, https://doi.org/10.5194/amt-17-113-2024, 2024
Short summary
Short summary
We present a data set of high-precision surface air pressure observations and a method for detecting wave signals from the time series of pressure. A wavelet-based method is used to find wave signals at specific times and wave periods. From networks of pressure sensors spaced tens of kilometers apart, the wave phase speed and direction are estimated. Examples of wave events and their meteorological context are shown using radar data, weather balloon data, and other surface weather observations.
Laura M. Tomkins, Sandra E. Yuter, Matthew A. Miller, and Luke R. Allen
Atmos. Meas. Tech., 15, 5515–5525, https://doi.org/10.5194/amt-15-5515-2022, https://doi.org/10.5194/amt-15-5515-2022, 2022
Short summary
Short summary
Locally higher radar reflectivity values in winter storms can mean more snowfall or a transition from snow to mixtures of snow, partially melted snow, and/or rain. We use the correlation coefficient to de-emphasize regions of mixed precipitation. Visual muting is valuable for analyzing and monitoring evolving weather conditions during winter storm events.
Matthew A. Miller, Sandra E. Yuter, Nicole P. Hoban, Laura M. Tomkins, and Brian A. Colle
Atmos. Meas. Tech., 15, 1689–1702, https://doi.org/10.5194/amt-15-1689-2022, https://doi.org/10.5194/amt-15-1689-2022, 2022
Short summary
Short summary
Apparent waves in the atmosphere and similar features in storm winds can be detected by taking the difference between successive Doppler weather radar scans measuring radar-relative storm air motions. Applying image filtering to the difference data better isolates the detected signal. This technique is a useful tool in weather research and forecasting since such waves can trigger or enhance precipitation.
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
The ratio of transverse to longitudinal turbulent velocity statistics for aircraft measurements
A Novel Assessment of the Vertical Velocity Correction for Non-orthogonal Sonic Anemometers
Method development and application for the analysis of chiral organic marker species in ice-cores
High-resolution wind speed measurements with quadcopter uncrewed aerial systems: calibration and verification in a wind tunnel with an active grid
High-altitude balloon-launched uncrewed aircraft system measurements of atmospheric turbulence and qualitative comparison with infrasound microphone response
Evaluation of the hyperspectral radiometer (HSR1) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site
Cost-effective off-grid automatic precipitation samplers for pollutant and biogeochemical atmospheric deposition
Modelling of cup anemometry and dynamic overspeeding in average wind speed measurements
Introducing the Video In Situ Snowfall Sensor (VISSS)
Quality evaluation for measurements of wind field and turbulent fluxes from a UAV-based eddy covariance system
A new reference-quality precipitation gauge wind shield
Long-term airborne measurements of pollutants over the United Kingdom to support air quality model development and evaluation
Acquiring high-resolution wind measurements by modifying radiosonde sounding procedures
A new accurate low-cost instrument for fast synchronized spatial measurements of light spectra
Drone-based meteorological observations up to the tropopause – a concept study
A new airborne broadband radiometer system and an efficient method to correct dynamic thermal offsets
Toward quantifying turbulent vertical airflow and sensible heat flux in tall forest canopies using fiber-optic distributed temperature sensing
A fiber-optic distributed temperature sensor for continuous in situ profiling up to 2 km beneath constant-altitude scientific balloons
New Absolute Cavity Pyrgeometer equation by application of Kirchhoff's law and adding a convection term
The DataHawk2 uncrewed aircraft system for atmospheric research
The measurement of mean wind, variances, and covariances from an instrumented mobile car in a rural environment
ICE-CAMERA: a flatbed scanner to study inland Antarctic polar precipitation
3D trajectories and velocities of rainfall drops in a multifractal turbulent wind field
Towards vertical wind and turbulent flux estimation with multicopter uncrewed aircraft systems
Instabilities, Dynamics, and Energetics accompanying Atmospheric Layering (IDEAL): high-resolution in situ observations and modeling in and above the nocturnal boundary layer
Infrasound measurement system for real-time in situ tornado measurements
Quantifying the coastal urban surface layer structure using distributed temperature sensing in Helsinki, Finland
On the quality of RS41 radiosonde descent data
Idealized simulation study of the relationship of disdrometer sampling statistics with the precision of precipitation rate measurement
Use of thermal signal for the investigation of near-surface turbulence
Drone measurements of surface-based winter temperature inversions in the High Arctic at Eureka
Ground mobile observation system for measuring multisurface microwave emissivity
A differential emissivity imaging technique for measuring hydrometeor mass and type
Effect of snow-covered ground albedo on the accuracy of air temperature measurements
Distributed wind measurements with multiple quadrotor unmanned aerial vehicles in the atmospheric boundary layer
The INFRA-EAR: a low-cost mobile multidisciplinary measurement platform for monitoring geophysical parameters
A dedicated robust instrument for water vapor generation at low humidity for use with a laser water isotope analyzer in cold and dry polar regions
Arctic observations and numerical simulations of surface wind effects on Multi-Angle Snowflake Camera measurements
The development of the “Storm Tracker” and its applications for atmospheric high-resolution upper-air observations
Use of automatic radiosonde launchers to measure temperature and humidity profiles from the GRUAN perspective
Using global reanalysis data to quantify and correct airflow distortion bias in shipborne wind speed measurements
The CopterSonde: an insight into the development of a smart unmanned aircraft system for atmospheric boundary layer research
Microphysical properties and fall speed measurements of snow ice crystals using the Dual Ice Crystal Imager (D-ICI)
The Disdrometer Verification Network (DiVeN): a UK network of laser precipitation instruments
The new BELUGA setup for collocated turbulence and radiation measurements using a tethered balloon: first applications in the cloudy Arctic boundary layer
Identification of platform exhaust on the RV Investigator
Evaluation of Windsond S1H2 performance in Kumasi during the 2016 DACCIWA field campaign
Recovery of the three-dimensional wind and sonic temperature data from a physically deformed sonic anemometer
Considerations for temperature sensor placement on rotary-wing unmanned aircraft systems
New calibration procedures for airborne turbulence measurements and accuracy of the methane fluxes during the AirMeth campaigns
Jakub L. Nowak, Marie Lothon, Donald H. Lenschow, and Szymon P. Malinowski
Atmos. Meas. Tech., 18, 93–114, https://doi.org/10.5194/amt-18-93-2025, https://doi.org/10.5194/amt-18-93-2025, 2025
Short summary
Short summary
According to classical theory, the ratio of turbulence statistics corresponding to transverse and longitudinal wind velocity components equals 4/3 in the inertial range of scales. We analyse a large number of measurements obtained with three research aircraft during four field experiments in different locations and show that the observed ratios are almost always significantly smaller. We discuss potential reasons for this disagreement, but the actual explanation remains to be determined.
Kyaw Tha Paw U, Mary Rose Mangan, Jilmarie Stephens, Kosana Suvočarev, Jenae' Clay, Olmo Guerrero Medina, Emma Ware, Amanda Kerr-Munslow, James McGregor, John Kochendorfer, Megan McAuliffe, and Megan Metz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-152, https://doi.org/10.5194/amt-2024-152, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Sonic anemometers measure wind velocity in three dimensions. It is used worldwide to help assess the trace gas exchange, critical to understanding climate change. However, their physical framework interferes with the flow they measure. We present a new way to correct measurements from sonic anemometers of several types. The method uses measurements of vertical wind velocity and other turbulent velocities, compares their ratios, and from this yields correction factors for sonic anemometers.
Johanna Schäfer, Anja Beschnitt, François Burgay, Thomas Singer, Margit Schwikowski, and Thorsten Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2243, https://doi.org/10.5194/egusphere-2024-2243, 2024
Short summary
Short summary
Glaciers preserve organic compounds from atmospheric aerosols, which can serve as markers for emission sources. Most studies overlook the enantiomers of chiral compounds. We developed a 2-dimensional liquid chromatography method to determine the chiral ratios of monoterpene oxidation products cis-pinic acid and cis-pinonic acid in ice-core samples. Applied to samples from the Belukha glacier (1870–1970 CE), the method revealed fluctuating chiral ratios for the analytes.
Johannes Kistner, Lars Neuhaus, and Norman Wildmann
Atmos. Meas. Tech., 17, 4941–4955, https://doi.org/10.5194/amt-17-4941-2024, https://doi.org/10.5194/amt-17-4941-2024, 2024
Short summary
Short summary
We use a fleet of multicopter drones to measure wind. To improve the accuracy of this wind measurement and to evaluate this improvement, we conducted experiments with the drones in a wind tunnel under various conditions. This wind tunnel can generate different kinds and intensities of wind. Here we measured with the drones and with other sensors as a reference and compared the results. We were able to improve our wind measurement and show how accurately it works in different situations.
Anisa N. Haghighi, Ryan D. Nolin, Gary D. Pundsack, Nick Craine, Aliaksei Stratsilatau, and Sean C. C. Bailey
Atmos. Meas. Tech., 17, 4863–4889, https://doi.org/10.5194/amt-17-4863-2024, https://doi.org/10.5194/amt-17-4863-2024, 2024
Short summary
Short summary
This work summarizes measurements conducted in June 2021 using a small, uncrewed, stratospheric glider that was launched from a weather balloon to altitudes up to 30 km above sea level. The aircraft conducted measurements of wind speed and direction, pressure, temperature, and humidity during its descent as well as measurements of infrasonic sound levels. These data were used to evaluate the atmospheric turbulence observed during the descent phase of the flight.
Kelly A. Balmes, Laura D. Riihimaki, John Wood, Connor Flynn, Adam Theisen, Michael Ritsche, Lynn Ma, Gary B. Hodges, and Christian Herrera
Atmos. Meas. Tech., 17, 3783–3807, https://doi.org/10.5194/amt-17-3783-2024, https://doi.org/10.5194/amt-17-3783-2024, 2024
Short summary
Short summary
A new hyperspectral radiometer (HSR1) was deployed and evaluated in the central United States (northern Oklahoma). The HSR1 total spectral irradiance agreed well with nearby existing instruments, but the diffuse spectral irradiance was slightly smaller. The HSR1-retrieved aerosol optical depth (AOD) also agreed well with other retrieved AODs. The HSR1 performance is encouraging: new hyperspectral knowledge is possible that could inform atmospheric process understanding and weather forecasting.
Alessia A. Colussi, Daniel Persaud, Melodie Lao, Bryan K. Place, Rachel F. Hems, Susan E. Ziegler, Kate A. Edwards, Cora J. Young, and Trevor C. VandenBoer
Atmos. Meas. Tech., 17, 3697–3718, https://doi.org/10.5194/amt-17-3697-2024, https://doi.org/10.5194/amt-17-3697-2024, 2024
Short summary
Short summary
A new modular and affordable instrument was developed to automatically collect wet deposition continuously with an off-grid solar top-up power package. Monthly collections were performed across the Newfoundland and Labrador Boreal Ecosystem Latitudinal Transect of experimental forest sites from 2015 to 2016. The proof-of-concept systems were validated with baseline measurements of pH and conductivity and then applied to dissolved organic carbon as an analyte of emerging biogeochemical interest.
Troels Friis Pedersen and Jan-Åke Dahlberg
Atmos. Meas. Tech., 17, 1441–1461, https://doi.org/10.5194/amt-17-1441-2024, https://doi.org/10.5194/amt-17-1441-2024, 2024
Short summary
Short summary
Accuracy is important in wind speed measurements with cup anemometers. Dynamic overspeeding is historically considered an inherent and significant error, supported by a two-cup drag model. But lower (and even zero) overspeeding might be present for low-to-medium turbulence intensities for conical cups with short arms. A parabolic torque model reveals various dynamic overspeeding characteristics of cup anemometers, but modelling of actual cup anemometers is best made with tabulated data.
Maximilian Maahn, Dmitri Moisseev, Isabelle Steinke, Nina Maherndl, and Matthew D. Shupe
Atmos. Meas. Tech., 17, 899–919, https://doi.org/10.5194/amt-17-899-2024, https://doi.org/10.5194/amt-17-899-2024, 2024
Short summary
Short summary
The open-source Video In Situ Snowfall Sensor (VISSS) is a novel instrument for characterizing particle shape, size, and sedimentation velocity in snowfall. It combines a large observation volume with relatively high resolution and a design that limits wind perturbations. The open-source nature of the VISSS hardware and software invites the community to contribute to the development of the instrument, which has many potential applications in atmospheric science and beyond.
Yibo Sun, Bilige Sude, Xingwen Lin, Bing Geng, Bo Liu, Shengnan Ji, Junping Jing, Zhiping Zhu, Ziwei Xu, Shaomin Liu, and Zhanjun Quan
Atmos. Meas. Tech., 16, 5659–5679, https://doi.org/10.5194/amt-16-5659-2023, https://doi.org/10.5194/amt-16-5659-2023, 2023
Short summary
Short summary
Unoccupied aerial vehicles (UAVs) provide a versatile platform for eddy covariance (EC) flux measurements at regional scales with low cost, transport, and infrastructural requirements. This study evaluates the measurement performance in the wind field and turbulent flux of a UAV-based EC system based on the data from a set of calibration flights and standard operational flights and concludes that the system can measure the georeferenced wind vector and turbulent flux with sufficient precision.
John Kochendorfer, Tilden P. Meyers, Mark E. Hall, Scott D. Landolt, Justin Lentz, and Howard J. Diamond
Atmos. Meas. Tech., 16, 5647–5657, https://doi.org/10.5194/amt-16-5647-2023, https://doi.org/10.5194/amt-16-5647-2023, 2023
Short summary
Short summary
A new wind shield has been designed to reduce the effects of precipitation gauge undercatch. Tested at three separate sites, it compared well to a well-established refence-quality precipitation wind shield. The new wind shield is smaller and more durable than other reference-quality shields, and it was designed for use in operational weather and climate networks.
Angela Mynard, Joss Kent, Eleanor R. Smith, Andy Wilson, Kirsty Wivell, Noel Nelson, Matthew Hort, James Bowles, David Tiddeman, Justin M. Langridge, Benjamin Drummond, and Steven J. Abel
Atmos. Meas. Tech., 16, 4229–4261, https://doi.org/10.5194/amt-16-4229-2023, https://doi.org/10.5194/amt-16-4229-2023, 2023
Short summary
Short summary
Air quality models are key in understanding complex air pollution processes and assist in developing strategies to mitigate the impacts of air pollution. The ability of regional air quality models to skilfully represent pollutant distributions aloft is important to enabling their skilful prediction at the surface. To assist in model development and evaluation, a long-term, quality-assured dataset of the 3-D distribution of key pollutants was collected over the United Kingdom (2019–2022).
Jens Faber, Michael Gerding, and Torsten Köpnick
Atmos. Meas. Tech., 16, 4183–4193, https://doi.org/10.5194/amt-16-4183-2023, https://doi.org/10.5194/amt-16-4183-2023, 2023
Short summary
Short summary
Weather forecasters around the world use uncrewed balloons to measure wind and temperature for their weather models. In these measurements, wind is recorded from the shift of the balloon by the moving air. However, the balloons and the measurement devices also move by themselves in still air. This creates artificial wind measurements that are normally removed from the data. We show new techniques to avoid these movements and increase the altitude resolution of the wind measurement by 6 times.
Bert G. Heusinkveld, Wouter B. Mol, and Chiel C. van Heerwaarden
Atmos. Meas. Tech., 16, 3767–3785, https://doi.org/10.5194/amt-16-3767-2023, https://doi.org/10.5194/amt-16-3767-2023, 2023
Short summary
Short summary
This paper presents a new instrument for fast measurements of solar irradiance in 18 wavebands (400–950 nm): GPS perfectly synchronizes 10 Hz measurement speed to universal time, low-cost (< EUR 200) complete standalone solution for realizing dense measurement grids to study cloud-shading dynamics, 940 nm waveband reveals atmospheric moisture column information, 11 wavebands to study photosynthetic active radiation and light interaction with vegetation, and good reflection spectra performance.
Konrad B. Bärfuss, Holger Schmithüsen, and Astrid Lampert
Atmos. Meas. Tech., 16, 3739–3765, https://doi.org/10.5194/amt-16-3739-2023, https://doi.org/10.5194/amt-16-3739-2023, 2023
Short summary
Short summary
The first atmospheric soundings with an electrically powered small uncrewed aircraft system (UAS) up to an altitude of 10 km are presented and assessed for quality, revealing the potential to augment atmospheric observations and fill observation gaps for numerical weather prediction. This is significant because of the need for high-resolution meteorological data, in particular in remote areas with limited in situ measurements, and for reference data for satellite measurement calibration.
André Ehrlich, Martin Zöger, Andreas Giez, Vladyslav Nenakhov, Christian Mallaun, Rolf Maser, Timo Röschenthaler, Anna E. Luebke, Kevin Wolf, Bjorn Stevens, and Manfred Wendisch
Atmos. Meas. Tech., 16, 1563–1581, https://doi.org/10.5194/amt-16-1563-2023, https://doi.org/10.5194/amt-16-1563-2023, 2023
Short summary
Short summary
Measurements of the broadband radiative energy budget from aircraft are needed to study the effect of clouds, aerosol particles, and surface conditions on the Earth's energy budget. However, the moving aircraft introduces challenges to the instrument performance and post-processing of the data. This study introduces a new radiometer package, outlines a greatly simplifying method to correct thermal offsets, and provides exemplary measurements of solar and thermal–infrared irradiance.
Mohammad Abdoli, Karl Lapo, Johann Schneider, Johannes Olesch, and Christoph K. Thomas
Atmos. Meas. Tech., 16, 809–824, https://doi.org/10.5194/amt-16-809-2023, https://doi.org/10.5194/amt-16-809-2023, 2023
Short summary
Short summary
In this study, we compute the distributed sensible heat flux using a distributed temperature sensing technique, whose magnitude, sign, and temporal dynamics compare reasonably well to estimates from classical eddy covariance measurements from sonic anemometry. Despite the remaining uncertainty in computed fluxes, the results demonstrate the potential of the novel method to compute spatially resolving sensible heat flux measurement and encourage further research.
J. Douglas Goetz, Lars E. Kalnajs, Terry Deshler, Sean M. Davis, Martina Bramberger, and M. Joan Alexander
Atmos. Meas. Tech., 16, 791–807, https://doi.org/10.5194/amt-16-791-2023, https://doi.org/10.5194/amt-16-791-2023, 2023
Short summary
Short summary
An instrument for in situ continuous 2 km vertical profiles of temperature below high-altitude balloons was developed for high-temporal-resolution measurements within the upper troposphere and lower stratosphere using fiber-optic distributed temperature sensing. The mechanical, electrical, and temperature calibration systems were validated from a short mid-latitude constant-altitude balloon flight within the lower stratosphere. The instrument observed small-scale and inertial gravity waves.
Bruce W. Forgan, Julian Gröbner, and Ibrahim Reda
Atmos. Meas. Tech., 16, 727–743, https://doi.org/10.5194/amt-16-727-2023, https://doi.org/10.5194/amt-16-727-2023, 2023
Short summary
Short summary
This paper investigates the Absolute Cavity Pyrgeometer (ACP) and its use in measuring atmospheric terrestrial irradiances traceable to the standard system of units (SI). This work fits into the objective of the Expert Team on Radiation References, established by the World Meteorological Organization (WMO), to develop and validate instrumentation that can be used as reference instruments for terrestrial radiation measurements.
Jonathan Hamilton, Gijs de Boer, Abhiram Doddi, and Dale A. Lawrence
Atmos. Meas. Tech., 15, 6789–6806, https://doi.org/10.5194/amt-15-6789-2022, https://doi.org/10.5194/amt-15-6789-2022, 2022
Short summary
Short summary
The DataHawk2 is a small, low-cost, rugged, uncrewed aircraft system (UAS) used to observe the thermodynamic and turbulence structures of the lower atmosphere, supporting an advanced understanding of the physical processes that regulate weather and climate. This paper discusses the development, performance, and sensing capabilities of the DataHawk2 using data collected during several recent field deployments.
Stefan J. Miller and Mark Gordon
Atmos. Meas. Tech., 15, 6563–6584, https://doi.org/10.5194/amt-15-6563-2022, https://doi.org/10.5194/amt-15-6563-2022, 2022
Short summary
Short summary
This research investigates the measurement of atmospheric turbulence using a low-cost instrumented car that travels at near-highway speeds and is impacted by upwind obstructions and other on-road traffic. We show that our car design can successfully measure the mean flow and atmospheric turbulence near the surface. We outline a technique to isolate and remove the effects of sporadic passing traffic from car-measured velocity variances and discuss potential measurement uncertainties.
Massimo Del Guasta
Atmos. Meas. Tech., 15, 6521–6544, https://doi.org/10.5194/amt-15-6521-2022, https://doi.org/10.5194/amt-15-6521-2022, 2022
Short summary
Short summary
Any instrument on the Antarctic plateau must cope with a harsh environment. Concordia station is a special place for testing new instruments. With low temperatures and weak winds, precipitation can be studied by simply collecting it on horizontal surfaces. This is typically done manually. ICE-CAMERA is intended as an automatic alternative. The combined construction of rugged equipment for taking photographs of particles and the adoption of machine learning techniques have served this purpose.
Auguste Gires, Ioulia Tchiguirinskaia, and Daniel Schertzer
Atmos. Meas. Tech., 15, 5861–5875, https://doi.org/10.5194/amt-15-5861-2022, https://doi.org/10.5194/amt-15-5861-2022, 2022
Short summary
Short summary
Weather radars measure rainfall in altitude whereas hydro-meteorologists are mainly interested in rainfall at ground level. During their fall, drops are advected by the wind which affects the location of the measured field. Governing equation linking acceleration, gravity, buoyancy, and drag force is updated to account for oblateness of drops. Then multifractal wind is used as input to explore velocities and trajectories of drops. Finally consequence on radar rainfall estimation is discussed.
Norman Wildmann and Tamino Wetz
Atmos. Meas. Tech., 15, 5465–5477, https://doi.org/10.5194/amt-15-5465-2022, https://doi.org/10.5194/amt-15-5465-2022, 2022
Short summary
Short summary
Multicopter uncrewed aerial systems (UAS, also known as drones) are very easy to use systems for collecting data in the lowest part of the atmosphere. Wind and turbulence are parameters that are particularly important for understanding the dynamics in the atmosphere. Only with three-dimensional measurements of the wind can a full understanding can be achieved. In this study, we show how even the vertical wind through the UAS can be measured with good accuracy.
Abhiram Doddi, Dale Lawrence, David Fritts, Ling Wang, Thomas Lund, William Brown, Dragan Zajic, and Lakshmi Kantha
Atmos. Meas. Tech., 15, 4023–4045, https://doi.org/10.5194/amt-15-4023-2022, https://doi.org/10.5194/amt-15-4023-2022, 2022
Short summary
Short summary
Small-scale turbulent structures are ubiquitous in the atmosphere, yet our understanding of their structure and dynamics is vastly incomplete. IDEAL aimed to improve our understanding of small-scale turbulent flow features in the lower atmosphere. A small, unmanned, fixed-wing aircraft was employed to make targeted observations of atmospheric columns. Measured data were used to guide atmospheric model simulations designed to describe the structure and dynamics of small-scale turbulence.
Brandon C. White, Brian R. Elbing, and Imraan A. Faruque
Atmos. Meas. Tech., 15, 2923–2938, https://doi.org/10.5194/amt-15-2923-2022, https://doi.org/10.5194/amt-15-2923-2022, 2022
Short summary
Short summary
Tornadic storms have been hypothesized to emit sound at frequencies below human hearing which animals and certain microphones can detect. This study covers the design, fabrication, and deployment of a specialized microphone that can be carried by first responders and storm chasers. The study also presents real-time processing methods, analyzes several recorded severe weather events including a tornado, and introduces a real-time web interface to allow for live monitoring of the mobile sensor.
Sasu Karttunen, Ewan O'Connor, Olli Peltola, and Leena Järvi
Atmos. Meas. Tech., 15, 2417–2432, https://doi.org/10.5194/amt-15-2417-2022, https://doi.org/10.5194/amt-15-2417-2022, 2022
Short summary
Short summary
To study the complex structure of the lowest tens of metres of atmosphere in urban areas, measurement methods with great spatial and temporal coverage are needed. In our study, we analyse measurements with a promising and relatively new method, distributed temperature sensing, capable of providing detailed information on the near-surface atmosphere. We present multiple ways to utilise these kinds of measurements, as well as important considerations for planning new studies using the method.
Bruce Ingleby, Martin Motl, Graeme Marlton, David Edwards, Michael Sommer, Christoph von Rohden, Holger Vömel, and Hannu Jauhiainen
Atmos. Meas. Tech., 15, 165–183, https://doi.org/10.5194/amt-15-165-2022, https://doi.org/10.5194/amt-15-165-2022, 2022
Short summary
Short summary
Radiosonde descent data could provide extra profiles of the atmosphere for forecasting and other uses. Descent data from Vaisala RS41 radiosondes have been compared with the ascent profiles and with ECMWF short-range forecasts. The agreement is mostly good. The descent rate is very variable and high descent rates cause temperature biases, especially at upper levels. Ascent winds are affected by pendulum motion; on average, the descent winds are smoother.
Karlie N. Rees and Timothy J. Garrett
Atmos. Meas. Tech., 14, 7681–7691, https://doi.org/10.5194/amt-14-7681-2021, https://doi.org/10.5194/amt-14-7681-2021, 2021
Short summary
Short summary
Monte Carlo simulations are used to establish baseline precipitation measurement uncertainties according to World Meteorological Organization standards. Measurement accuracy depends on instrument sampling area, time interval, and precipitation rate. Simulations are compared with field measurements taken by an emerging hotplate precipitation sensor. We find that the current collection area is sufficient for light rain, but a larger collection area is required to detect moderate to heavy rain.
Matthias Zeeman
Atmos. Meas. Tech., 14, 7475–7493, https://doi.org/10.5194/amt-14-7475-2021, https://doi.org/10.5194/amt-14-7475-2021, 2021
Short summary
Short summary
Understanding turbulence near the surface is important for many applications. In this work, methods for observing and analysing temperature structures in a near-surface volume were explored. Experiments were conducted to identify modes of organised motion. These help explain interactions between the vegetation and the atmosphere that are not currently well understood. Techniques used include fibre-optic sensing, thermal infrared imaging, signal decomposition, and machine learning.
Alexey B. Tikhomirov, Glen Lesins, and James R. Drummond
Atmos. Meas. Tech., 14, 7123–7145, https://doi.org/10.5194/amt-14-7123-2021, https://doi.org/10.5194/amt-14-7123-2021, 2021
Short summary
Short summary
Two commercial quadcopters (DJI Matrice 100 and M210 RTK) were equipped with an air temperature measurement system. They were flown at the Polar Environment Atmospheric Research Laboratory, Eureka, Nunavut, Canada, at 80° N latitude to study surface-based temperature inversion during February–March field campaigns in 2017 and 2020. It was demonstrated that the drones can be effectively used in the High Arctic to measure vertical temperature profiles up to 75 m off the ground.
Wenying He, Hongbin Chen, Yuejian Xuan, Jun Li, Minzheng Duan, and Weidong Nan
Atmos. Meas. Tech., 14, 7069–7078, https://doi.org/10.5194/amt-14-7069-2021, https://doi.org/10.5194/amt-14-7069-2021, 2021
Short summary
Short summary
Large microwave surface emissivities (ε) cause difficulties in widely using satellite microwave data over land. Usually, ground-based radiometers are fixed to a scan field to obtain the temporal evolution of ε over a single land-cover area. To obtain the long-term temporal evolution of ε over different land-cover surfaces simultaneously, we developed a ground mobile observation system to enhance in situ ε observations and presented some preliminary results.
Dhiraj K. Singh, Spencer Donovan, Eric R. Pardyjak, and Timothy J. Garrett
Atmos. Meas. Tech., 14, 6973–6990, https://doi.org/10.5194/amt-14-6973-2021, https://doi.org/10.5194/amt-14-6973-2021, 2021
Short summary
Short summary
This paper describes a new instrument for quantifying the physical characteristics of hydrometeors such as snow and rain. The device can measure the mass, size, density and type of individual hydrometeors as well as their bulk properties. The instrument is called the Differential Emissivity Imaging Disdrometer (DEID) and is composed of a thermal camera and hotplate. The DEID measures hydrometeors at sampling frequencies up to 1 Hz with masses and effective diameters greater than 1 µg and 200 µm.
Chiara Musacchio, Graziano Coppa, Gaber Begeš, Christina Hofstätter-Mohler, Laura Massano, Guido Nigrelli, Francesca Sanna, and Andrea Merlone
Atmos. Meas. Tech., 14, 6195–6212, https://doi.org/10.5194/amt-14-6195-2021, https://doi.org/10.5194/amt-14-6195-2021, 2021
Short summary
Short summary
In the context of the overhaul of the WMO/CIMO guide (no. 8) on instruments and methods of observation, we performed an experiment to quantify uncertainties in air temperature measurements due to reflected solar radiation from a snow-covered surface. Coupled sensors with different radiation shields were put under different ground conditions (grass vs. snow) for a whole winter. Results show that different shields may reduce the influence of backward radiation, which can produce errors up to 3 °C.
Tamino Wetz, Norman Wildmann, and Frank Beyrich
Atmos. Meas. Tech., 14, 3795–3814, https://doi.org/10.5194/amt-14-3795-2021, https://doi.org/10.5194/amt-14-3795-2021, 2021
Short summary
Short summary
A fleet of quadrotors is presented as a system to measure the spatial distribution of atmospheric boundary layer flow. The big advantage of this approach is that multiple and flexible measurement points in space can be sampled synchronously. The algorithm to calculate the horizontal wind is based on the principle of aerodynamic drag and the related quadrotor dynamics. The validation reveals that an average accuracy of < 0.3 m s−1 for the wind speed and < 8° for the wind direction was achieved.
Olivier F. C. den Ouden, Jelle D. Assink, Cornelis D. Oudshoorn, Dominique Filippi, and Läslo G. Evers
Atmos. Meas. Tech., 14, 3301–3317, https://doi.org/10.5194/amt-14-3301-2021, https://doi.org/10.5194/amt-14-3301-2021, 2021
Christophe Leroy-Dos Santos, Mathieu Casado, Frédéric Prié, Olivier Jossoud, Erik Kerstel, Morgane Farradèche, Samir Kassi, Elise Fourré, and Amaëlle Landais
Atmos. Meas. Tech., 14, 2907–2918, https://doi.org/10.5194/amt-14-2907-2021, https://doi.org/10.5194/amt-14-2907-2021, 2021
Short summary
Short summary
We developed an instrument that can generate water vapor at low humidity at a very stable level. This instrument was conceived to calibrate water vapor isotopic records obtained in very dry places such as central Antarctica. Here, we provide details on the instrument as well as results obtained for correcting water isotopic records for diurnal variability during a long field season at the Concordia station in East Antarctica.
Kyle E. Fitch, Chaoxun Hang, Ahmad Talaei, and Timothy J. Garrett
Atmos. Meas. Tech., 14, 1127–1142, https://doi.org/10.5194/amt-14-1127-2021, https://doi.org/10.5194/amt-14-1127-2021, 2021
Short summary
Short summary
Snow measurements are very sensitive to wind. Here, we compare airflow and snowfall simulations to Arctic observations for a Multi-Angle Snowflake Camera to show that measurements of fall speed, orientation, and size are accurate only with a double wind fence and winds below 5 m s−1. In this case, snowflakes tend to fall with a nearly horizontal orientation; the largest flakes are as much as 5 times more likely to be observed. Adjustments are needed for snow falling in naturally turbulent air.
Wei-Chun Hwang, Po-Hsiung Lin, and Hungjui Yu
Atmos. Meas. Tech., 13, 5395–5406, https://doi.org/10.5194/amt-13-5395-2020, https://doi.org/10.5194/amt-13-5395-2020, 2020
Short summary
Short summary
We have developed a small, light-weight (radiosonde of 20 g with battery), low-cost, and easy-to-use upper-air radiosonde system: the Storm Tracker. With the ability to receive multiple radiosondes simultaneously, the system enables high temporal and spatial resolution atmospheric observations. In the 2018 field campaign, the accuracy of the Storm tracker was tested using co-launched data with Vaisala RS41-SGP radiosondes, and the measurements show an overall good agreement.
Fabio Madonna, Rigel Kivi, Jean-Charles Dupont, Bruce Ingleby, Masatomo Fujiwara, Gonzague Romanens, Miguel Hernandez, Xavier Calbet, Marco Rosoldi, Aldo Giunta, Tomi Karppinen, Masami Iwabuchi, Shunsuke Hoshino, Christoph von Rohden, and Peter William Thorne
Atmos. Meas. Tech., 13, 3621–3649, https://doi.org/10.5194/amt-13-3621-2020, https://doi.org/10.5194/amt-13-3621-2020, 2020
Short summary
Short summary
Radiosondes are one of the primary sources of upper-air data for weather and climate monitoring. In the last two decades, technological progress made available automated radiosonde launchers (ARLs), which are able to replace measurements typically performed manually. This work presents a comparative analysis of the technical performance of the ARLs currently available on the market and contribute to define a strategy to achieve the full traceability of the ARL products.
Sebastian Landwehr, Iris Thurnherr, Nicolas Cassar, Martin Gysel-Beer, and Julia Schmale
Atmos. Meas. Tech., 13, 3487–3506, https://doi.org/10.5194/amt-13-3487-2020, https://doi.org/10.5194/amt-13-3487-2020, 2020
Short summary
Short summary
Shipborne wind speed measurements are relevant for field studies of air–sea interaction processes. Distortion of the airflow by the ship’s structure can, however, lead to errors. We estimate the flow distortion bias by comparing the observations to ERA-5 reanalysis data. The underlying assumptions are that the bias depends only on the relative orientation of the ship to the wind direction and that the ERA-5 wind speeds are (on average) representative of the true wind speed.
Antonio R. Segales, Brian R. Greene, Tyler M. Bell, William Doyle, Joshua J. Martin, Elizabeth A. Pillar-Little, and Phillip B. Chilson
Atmos. Meas. Tech., 13, 2833–2848, https://doi.org/10.5194/amt-13-2833-2020, https://doi.org/10.5194/amt-13-2833-2020, 2020
Short summary
Short summary
The CopterSonde is an unmanned aircraft system designed with the purpose of sampling thermodynamic and kinematic parameters of the lower Earth's atmosphere, with a focus on vertical profiles in the planetary boundary layer. By incorporating adaptive sampling techniques and optimizing the sensor placement, our study shows that CopterSonde can provide similar information as a radiosonde, but with more control of its sampling location at much higher temporal and spatial resolution.
Thomas Kuhn and Sandra Vázquez-Martín
Atmos. Meas. Tech., 13, 1273–1285, https://doi.org/10.5194/amt-13-1273-2020, https://doi.org/10.5194/amt-13-1273-2020, 2020
Short summary
Short summary
Directly measured shape and fall speed are two important parameters needed for models and remote sensing. This can be done by the new Dual Ice Crystal Imager (D-ICI) instrument, which takes two high-resolution pictures of falling snow crystals from two different angles. Fall speed is measured by doubly exposing the side-view picture. Size and shape are determined from the second picture providing the top view of the snow crystal. D-ICI has been tested on the ground in Kiruna, northern Sweden.
Ben S. Pickering, Ryan R. Neely III, and Dawn Harrison
Atmos. Meas. Tech., 12, 5845–5861, https://doi.org/10.5194/amt-12-5845-2019, https://doi.org/10.5194/amt-12-5845-2019, 2019
Short summary
Short summary
A new network of precipitation instruments has been established for the UK. The instruments are capable of detecting the fall velocity and diameter of each particle that falls through a laser beam. The particle characteristics are derived from the duration and amount of decrease in beam brightness as perceived by a receiving diode. A total of 14 instruments make up the network and all instruments upload 60 s frequency data in near-real time to a publicly available website with plots.
Ulrike Egerer, Matthias Gottschalk, Holger Siebert, André Ehrlich, and Manfred Wendisch
Atmos. Meas. Tech., 12, 4019–4038, https://doi.org/10.5194/amt-12-4019-2019, https://doi.org/10.5194/amt-12-4019-2019, 2019
Short summary
Short summary
In this study, we introduce the new tethered balloon system BELUGA, which includes different modular instrument packages for measuring turbulence and radiation in the atmospheric boundary layer. BELUGA was deployed in an Arctic field campaign in 2017, providing details of boundary layer processes in combination with low-level clouds. Those processes are still not fully understood and in situ measurements in the Arctic improve our understanding of the Arctic response in terms of global warming.
Ruhi S. Humphries, Ian M. McRobert, Will A. Ponsonby, Jason P. Ward, Melita D. Keywood, Zoe M. Loh, Paul B. Krummel, and James Harnwell
Atmos. Meas. Tech., 12, 3019–3038, https://doi.org/10.5194/amt-12-3019-2019, https://doi.org/10.5194/amt-12-3019-2019, 2019
Short summary
Short summary
Undertaking atmospheric observations from ships provides important data in regions where measurements are impossible by other means. However, making measurements so close to a diesel exhaust plume is difficult. In this paper, we describe an algorithm that utilises ongoing measurements of aerosol number concentrations, black carbon mass concentrations, and mixing ratios of carbon monoxide and carbon dioxide to accurately distinguish between exhaust and background data periods.
Geoffrey Elie Quentin Bessardon, Kwabena Fosu-Amankwah, Anders Petersson, and Barbara Jane Brooks
Atmos. Meas. Tech., 12, 1311–1324, https://doi.org/10.5194/amt-12-1311-2019, https://doi.org/10.5194/amt-12-1311-2019, 2019
Short summary
Short summary
This paper presents the first performance assessment during a field campaign of a new reusable radiosonde: the Windsond S1H2. The reuse feature of the S1H2 requires evaluation of the data alteration due to sonde reuse in addition to performance and reproducibility assessments. A comparison with the Vaisala RS41-SG, a well-proven system, shows the potential of the S1H2, with no major performance degradation arising from S1H2 sonde reuse but shows the need for improving the S1H2 GPS system.
Xinhua Zhou, Qinghua Yang, Xiaojie Zhen, Yubin Li, Guanghua Hao, Hui Shen, Tian Gao, Yirong Sun, and Ning Zheng
Atmos. Meas. Tech., 11, 5981–6002, https://doi.org/10.5194/amt-11-5981-2018, https://doi.org/10.5194/amt-11-5981-2018, 2018
Short summary
Short summary
The three-dimensional wind and sonic temperature data from a physically deformed sonic anemometer was successfully recovered by developing equations, algorithms, and related software. Using two sets of geometry data from production calibration and return re-calibration, this algorithm can recover wind with/without transducer shadow correction and sonic temperature with crosswind correction, and then obtain fluxes at quality as expected. This study is applicable as a reference for related topics.
Brian R. Greene, Antonio R. Segales, Sean Waugh, Simon Duthoit, and Phillip B. Chilson
Atmos. Meas. Tech., 11, 5519–5530, https://doi.org/10.5194/amt-11-5519-2018, https://doi.org/10.5194/amt-11-5519-2018, 2018
Short summary
Short summary
With the recent commercial availability of rotary-wing unmanned aircraft systems (rwUAS), their ability to collect observations in the lower atmosphere is quickly being realized. However, integrating sensors with an rwUAS can introduce errors if not sited properly. This study discusses an objective method of determining some of these error sources in temperature, including improper airflow and rotary motor heating. Errors can be mitigated by mounting thermistors under propellers near the tips.
Jörg Hartmann, Martin Gehrmann, Katrin Kohnert, Stefan Metzger, and Torsten Sachs
Atmos. Meas. Tech., 11, 4567–4581, https://doi.org/10.5194/amt-11-4567-2018, https://doi.org/10.5194/amt-11-4567-2018, 2018
Short summary
Short summary
We present new in-flight calibration procedures for airborne turbulence measurements that exploit suitable regular flight legs without the need for dedicated calibration patterns. Furthermore we estimate the accuracy of the airborne wind measurement and of the turbulent fluxes of the traces gases methane and carbon dioxide.
Cited articles
Atlas, D., Srivastava, R. C., and Sekhon, R. S.: Doppler radar characteristics of precipitation at vertical incidence, Rev. Geophys. Space GE, 11, 1–35, https://doi.org/10.1029/RG011i001p00001, 1973.
Barthazy, E., Göke, S., Schefold, R., and Högl, D.: An optical array instrument for shape and fall velocity measurements of hydrometeors, J. Atmos. Ocean. Tech., 21, 1400–1416, https://doi.org/10.1175/1520-0426(2004)021<1400:AOAIFS>2.0.CO;2, 2004.
Battaglia, A., Rustemeier, E., Tokay, A., Blahak, U., and Simmer, C.: PARSIVEL snow observations: a critical assessment, J. Atmos. Ocean Tech., 27, 333–344, https://doi.org/10.1175/2009JTECHA1332.1, 2010.
Beard, K. V.: Terminal velocity and shape of cloud and precipitation drops aloft, J. Atmos. Sci., 33, 851–864, https://doi.org/10.1175/1520-0469(1976)033<0851:TVASOC>2.0.CO;2, 1976.
Beard, K. V. Simple altitude adjustments to raindrop velocities for Doppler radar analysis, J. Atmos. Ocean Tech., 2, 468–471, https://doi.org/10.1175/1520-0426(1985)002<0468:SAATRV>2.0.CO;2, 1985.
Blanchard, D. C.: The behavior of water drops at terminal velocity in air, Trans. Amer. Geophys. Union, 31, 836–842, https://doi.org/10.1029/TR031i006p00836, 1950.
Cannon, T. W.: High-speed photography of airborne atmospheric particles, J. Appl. Meteorol., 9, 104–108, https://doi.org/10.1175/1520-0450(1970)009<0104:HSPOAA>2.0.CO;2, 1970.
Chowdhury, M. N., Testik, F. Y., Hornack, M. C., and Khan, A. A.: Free fall of water drops in laboratory rainfall simulations, Atmos. Res., 168, 158–168, https://doi.org/10.1016/j.atmosres.2015.08.024, 2016.
Cotton, W. and Gokhale, N. R.: Collision, coalescence, and breakup of large water drops in a vertical wind tunnel, J. Geophys. Res., 72, 4041–4049, https://doi.org/10.1029/JZ072i016p04041, 1967.
Donnadieu, G.: Comparison of results obtained with the VIDIAZ spectropluviometer and the Joss-Waldvogel rainfall disdrometer in a “rain of a thundery type”, J. Appl. Meteorol., 19, 593–597, https://doi.org/10.1175/1520-0450(1980)019<0593:COROWT>2.0.CO;2, 1980.
Doviak, R. J. and Zrnić, D. S.: Doppler Radar and Weather Observations., 2nd edn. Academic Press, San Diego, CA, USA, 562 pp., 1993.
Foote, G. B. and duToit, P. S.: Terminal velocity of raindrops aloft, J. Appl. Meteorol., 8, 249–253, https://doi.org/10.1175/1520-0450(1969)008<0249:TVORA>2.0.CO;2, 1969.
Friedrich, K., Higgins, S., Masters, F. J., and Lopez, C. R.: Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall, J. Atmos. Ocean Tech., 30, 2063–2080, https://doi.org/10.1175/JTECH-D-12-00254.1, 2013.
Fukada, M. and Fujiwara, T.: Photographic analysis on the impact of raindrops on the water's surface, Trans. JSIDRE, 143, 21–29, https://doi.org/10.11408/jsidre1965.1989.143_21, 1989.
Garrett, T. J., Fallgatter, C., Shkurko, K., and Howlett, D.: Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall, Atmos. Meas. Tech., 5, 2625–2633, https://doi.org/10.5194/amt-5-2625-2012, 2012.
Ghadiri, H.: Raindrop impact and splash erosion, Encyclopedia of Soil Science, 2, 1428–1432, https://doi.org/10.1081/E-ESS, 2006.
Gunn, R. and Kinzer, G. D.: The terminal velocity of fall for water droplets in stagnant air, J. Meteorol., 6, 243–248, https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2, 1949.
Hauser, D., Amayenc, P., Nutten, B., and Waldteufel, P.: A new optical instrument for simultaneous measurement of raindrop diameter and fall speed distributions, J. Atmos. Ocean Tech., 1, 256–269, https://doi.org/10.1175/1520-0426(1984)001<0256:ANOIFS>2.0.CO;2, 1984.
Houze Jr., R. A.: Cloud Dynamics, Academic Press, San Diego, CA, USA, 573 pp., 1993.
Jones, B. K. and Saylor, J. R.: Axis ratios of water drops levitated in a vertical wind tunnel, J. Atmos. Ocean Tech., 26, 2413–2419, https://doi.org/10.1175/2009JTECHA1275.1, 2009.
Jones, B. K., Saylor, J. R., and Bliven, L. F.: Single-camera method to determine the optical axis position of ellipsoidal drops, Appl. Optics., 42, 972–978, https://doi.org/10.1364/AO.42.000972, 2003.
Kruger, A. and Krajewski, W. F.: Two-dimensional video disdrometer: a description, J. Atmos. Ocean Tech., 19, 602–617, https://doi.org/10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2, 2002.
Laws, J. O.: Measurement of the fall velocity of water drops and raindrops, Trans. Amer. Geophys. Union, 22, 709–721, https://doi.org/10.1029/TR022i003p00709, 1941.
Lenard, P.: Über Regen, Meteorol. Z., 21, 248–262, 1904.
Licznar P., Łomotowski, J., Błoński, S., and Ciach, G. J.: Microprocessor field impactometer calibration: do we measure drops' momentum or their kinetic energy?, J. Atmos. Ocean Tech., 25, 742–753, https://doi.org/10.1175/2007JTECHA938.1, 2008.
Löffler-Mang, M. and Joss, J.: An optical disdrometer for measuring size and velocity of hydrometeors, J. Atmos. Ocean Tech., 17, 130–139, https://doi.org/10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2, 2000.
Magono, C., Kikuchi, K., Nakamura, T., and Kimura, T.: An experiment on fog dispersion by the use of downward air current caused by the fall of water drops, J. Appl. Meteorol., 2, 484–493, https://doi.org/10.1175/1520-0450(1963)002<0484:AEOFDB>2.0.CO;2, 1963.
Montero-Martínez, G., Kostinski, A. B., Shaw, R. A., and García-García, F.: Do all raindrops fall at terminal speed?, Geophys. Res. Lett., 36, L11818, https://doi.org/10.1029/2008GL037111, 2009.
Niu, S., Jia, X., Sang, J., Liu, X., Lu, C., and Liu, Y.: Distributions of raindrop sizes and fall velocities in a semiarid plateau climate: convective versus stratiform rains, J. Appl. Meteorol. Clim., 49, 632–645, https://doi.org/10.1175/2009JAMC2208.1, 2010.
Parodi, A. and Emanuel, K.: A theory for buoyancy and velocity scales in deep moist convection, J. Atmos. Sci., 66, 3449–3463, https://doi.org/10.1175/2009JAS3103.1, 2009.
Pinsky, M. B. and Khain, A. P.: Simulations of drop fall in a homogeneous isotropic turbulent flow, Atmos. Res., 40, 223–259, https://doi.org/10.1016/0169-8095(95)00047-X, 1996.
Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Precipitation, 2nd edn., Springer, 954 pp., https://doi.org/10.1007/978-0-306-48100-0, 1997.
Pruppacher, H. R. and Pitter, R. L.: A semi-empirical determination of the shape of cloud and rain drops, J. Atmos. Sci., 28, 86–94, https://doi.org/10.1175/1520-0469(1971)028<0086:ASEDOT>2.0.CO;2, 1971.
Rogers, R. R. and Yau, M. K.: A Short Course in Cloud Physics, 3rd edn., Pergamon Press, New York, USA, 284 pp., 1989.
Sangren, K. L., Ray, P. S., and Walker, G. W.: A comparison of techniques to estimate vertical air motions and raindrop size distributions, J. Atmos. Ocean Tech., 1, 152–165, https://doi.org/10.1175/1520-0426(1984)001<0152:ACOTTE>2.0.CO;2, 1984.
Schmidt, W.: Eine unmittelbare bestimmung der fallgeschwindigkeit von regentropfen, Sitz. Akad. Wiss. Wien. Mathem.-naturw. Klasse, 118, 71–84, 1909.
Schönhuber, M., Urban, H. E., Poiares Baptista, P. P. V., Randeu, W. L., and Riedler, W.: Weather radar versus 2D-video-distrometer data, in: Weather Radar Technology for Water Resources Management, edited by: Bragg Jr., B. and Massambani, O., Unesco Press, Uruguay, 159–171, 1997.
Siebert, H. and Muschinski, A.: Relevance of a tuning-fork effect for temperature measurements with the Gill Solent HS ultrasonic anemometer–thermometer, J. Atmos. Ocean Tech., 18, 1367–1376, https://doi.org/10.1175/1520-0426(2001)018<1367:ROATFE>2.0.CO;2, 2001.
Szakáll, M., Mitra, S. K., Diehl, K., and Borrmann, S.: Shapes and osillations of falling raindrops – A review, Atmos. Res., 97, 416–425, https://doi.org/10.1016/j.atmosres.2010.03.024, 2010.
Szakáll, M., Kessler, S., Diehl, K., Mitra, S. K., and Borrmann, S.: A wind tunnel study of the effects of collision processes on the shape and oscillation for moderate-size raindrops, Atmos. Res., 142, 67–78, https://doi.org/10.1016/j.atmosres.2013.09.005, 2014.
Testik, F. Y., Barros, A. P., and Bliven, L. F.: Field observations of multimode raindrop oscillations by high-speed imaging, J. Atmos. Sci., 63, 2663–2668, https://doi.org/10.1175/JAS3773.1, 2006.
Thurai, M., Bringi, V. N., Petersen, W. A., and Gatlin, P. N.: Drop shapes and fall speeds in rain: Two contrasting examples, J. Appl. Meteorol. Clim., 52, 2567–2581, https://doi.org/10.1175/JAMC-D-12-085.1, 2013.
Wang, P. K. and Pruppacher, H. R.: Acceleration to terminal velocity of cloud and raindrops, J. Appl. Meteorol., 16, 275–280, https://doi.org/10.1175/1520-0450(1977)016<0275:ATTVOC>2.0.CO;2, 1977.
Yu, C.-K. and Cheng, L.-W.: Radar observations of intense orographic precipitation associated with Typhoon Xangsane (2000), Mon. Weather Rev., 136, 497–521, https://doi.org/10.1175/2007MWR2129.1, 2008.
Yu, C.-K. and Cheng, L.-W.: Distribution and mechanisms of orographic precipitation associated with Typhoon Morakot (2009), J. Atmos. Sci., 70, 2894–2915, https://doi.org/10.1175/JAS-D-12-0340.1, 2013.
Yuter, S. E., Kingsmill, D. E., Nance, L. B., and Löffler-Mang, M.: Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow, J. Appl. Meteorol. Clim., 45, 1450–1464, https://doi.org/10.1175/JAM2406.1, 2006.
Short summary
How to accurately measure droplet fall speed in natural outdoor conditions has been a long-standing and highly challenging issue in the meteorological community. Results from this article are not only to demonstrate the great potential for high-speed imaging to provide a reliable measurement of droplet fall speed without suffering from sampling uncertainties but also to share a new approach and different thoughts about the retrieval of the droplet fall speed information.
How to accurately measure droplet fall speed in natural outdoor conditions has been a...