Articles | Volume 9, issue 6
https://doi.org/10.5194/amt-9-2535-2016
https://doi.org/10.5194/amt-9-2535-2016
Research article
 | 
09 Jun 2016
Research article |  | 09 Jun 2016

Return glider radiosonde for in situ upper-air research measurements

Andreas Kräuchi and Rolf Philipona

Related authors

In-situ sounding of radiation flux profiles through the Arctic lower troposphere
Ralf Becker, Marion Maturilli, Rolf Philipona, and Klaus Behrens
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-173,https://doi.org/10.5194/amt-2018-173, 2018
Revised manuscript not accepted
Controlled weather balloon ascents and descents for atmospheric research and climate monitoring
Andreas Kräuchi, Rolf Philipona, Gonzague Romanens, Dale F. Hurst, Emrys G. Hall, and Allen F. Jordan
Atmos. Meas. Tech., 9, 929–938, https://doi.org/10.5194/amt-9-929-2016,https://doi.org/10.5194/amt-9-929-2016, 2016
Short summary
Balloon-borne match measurements of midlatitude cirrus clouds
A. Cirisan, B. P. Luo, I. Engel, F. G. Wienhold, M. Sprenger, U. K. Krieger, U. Weers, G. Romanens, G. Levrat, P. Jeannet, D. Ruffieux, R. Philipona, B. Calpini, P. Spichtinger, and T. Peter
Atmos. Chem. Phys., 14, 7341–7365, https://doi.org/10.5194/acp-14-7341-2014,https://doi.org/10.5194/acp-14-7341-2014, 2014
Raman Lidar for Meteorological Observations, RALMO – Part 2: Validation of water vapor measurements
E. Brocard, R. Philipona, A. Haefele, G. Romanens, A. Mueller, D. Ruffieux, V. Simeonov, and B. Calpini
Atmos. Meas. Tech., 6, 1347–1358, https://doi.org/10.5194/amt-6-1347-2013,https://doi.org/10.5194/amt-6-1347-2013, 2013

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
A new airborne broadband radiometer system and an efficient method to correct dynamic thermal offsets
André Ehrlich, Martin Zöger, Andreas Giez, Vladyslav Nenakhov, Christian Mallaun, Rolf Maser, Timo Röschenthaler, Anna E. Luebke, Kevin Wolf, Bjorn Stevens, and Manfred Wendisch
Atmos. Meas. Tech., 16, 1563–1581, https://doi.org/10.5194/amt-16-1563-2023,https://doi.org/10.5194/amt-16-1563-2023, 2023
Short summary
Toward quantifying turbulent vertical airflow and sensible heat flux in tall forest canopies using fiber-optic distributed temperature sensing
Mohammad Abdoli, Karl Lapo, Johann Schneider, Johannes Olesch, and Christoph K. Thomas
Atmos. Meas. Tech., 16, 809–824, https://doi.org/10.5194/amt-16-809-2023,https://doi.org/10.5194/amt-16-809-2023, 2023
Short summary
A fiber-optic distributed temperature sensor for continuous in situ profiling up to 2 km beneath constant-altitude scientific balloons
J. Douglas Goetz, Lars E. Kalnajs, Terry Deshler, Sean M. Davis, Martina Bramberger, and M. Joan Alexander
Atmos. Meas. Tech., 16, 791–807, https://doi.org/10.5194/amt-16-791-2023,https://doi.org/10.5194/amt-16-791-2023, 2023
Short summary
New Absolute Cavity Pyrgeometer equation by application of Kirchhoff's law and adding a convection term
Bruce W. Forgan, Julian Gröbner, and Ibrahim Reda
Atmos. Meas. Tech., 16, 727–743, https://doi.org/10.5194/amt-16-727-2023,https://doi.org/10.5194/amt-16-727-2023, 2023
Short summary
The DataHawk2 uncrewed aircraft system for atmospheric research
Jonathan Hamilton, Gijs de Boer, Abhiram Doddi, and Dale A. Lawrence
Atmos. Meas. Tech., 15, 6789–6806, https://doi.org/10.5194/amt-15-6789-2022,https://doi.org/10.5194/amt-15-6789-2022, 2022
Short summary

Cited articles

Benton, J. E. and Yakimenko, O. A.: On Development of Autonomous HAHO Parafoil System for Targeted Payload Return, AIAA Aerodynamic Decelerator Systems (ADS) Conference, 26 March 2013, Daytona Beach, FL, USA, https://doi.org/10.2514/6.2013-1312, 2013.
Bodeker, G. E., Bojinksi, S., Cimini, D., Dirksen, R. J., Haeffelin, M., Hannigan, J. W., Hurst, D.F., Leblanc, T., Madonna, F., Maturilli, M., Mikalsen, A. C., Philipona, R., Reale, T., Seidel, D. J., Tan, D. G. H., Thorne, P. W., Vömel, H., and Wang, J.: Reference upper-air observations 1 for climate: From concept to reality, B. Am. Meteorol. Soc., January 2016, 123–135, https://doi.org/10.1175/BAMS-D-14-00072.1, 2015.
Forster, P. M. F. and Shine, K. P.: Assessing the climate impact of trends in stratospheric water vapour, Geophys. Res. Lett., 29, 1086, https://doi.org/10.1029/2001GL013909, 2002.
GCOS-112: GCOS Reference Upper-Air Network (GRUAN): Justification, requirements, siting and instrumentation options, Technical Document 112, WMO TD No.1379, 25 pp., available at: http://www.wmo.int/ pages/prog/gcos/Publications/gcos-112.pdf, last access: April 2007.
Gupta, M., Xu, Z., Zhang,W., Accorsi, M., Leonard, J., Benney, R., and Stein, K.: Recent Advances in Structural Modeling of Parachute Dynamics, AIAA Paper 2001–2030, May 2001.
Download
Short summary
New radiosonde instruments for humidity-, radiation- and gas-profile measurements were introduced in recent years for atmospheric research and climate monitoring. Such instruments are intended to be reused on multiple flights. Here we introduce the return glider radiosonde (RGR), which enables flying and retrieving valuable in situ upper-air instruments. The RGR is lifted with weather balloons to a preset altitude, and a built-in autopilot flies the glider autonomously back to the launch site.