Articles | Volume 9, issue 8
Atmos. Meas. Tech., 9, 3687–3706, 2016
https://doi.org/10.5194/amt-9-3687-2016
Atmos. Meas. Tech., 9, 3687–3706, 2016
https://doi.org/10.5194/amt-9-3687-2016

Research article 10 Aug 2016

Research article | 10 Aug 2016

A new set-up for simultaneous high-precision measurements of CO2, δ13C-CO2 and δ18O-CO2 on small ice core samples

Theo Manuel Jenk et al.

Related authors

Brief communication: New evidence further constraining Tibetan ice core chronologies to the Holocene
Shugui Hou, Wangbin Zhang, Ling Fang, Theo M. Jenk, Shuangye Wu, Hongxi Pang, and Margit Schwikowski
The Cryosphere, 15, 2109–2114, https://doi.org/10.5194/tc-15-2109-2021,https://doi.org/10.5194/tc-15-2109-2021, 2021
Short summary
Radiocarbon dating of alpine ice cores with the dissolved organic carbon (DOC) fraction
Ling Fang, Theo M. Jenk, Thomas Singer, Shugui Hou, and Margit Schwikowski
The Cryosphere, 15, 1537–1550, https://doi.org/10.5194/tc-15-1537-2021,https://doi.org/10.5194/tc-15-1537-2021, 2021
Short summary
Significant mass loss in the accumulation area of the Adamello glacier indicated by the chronology of a 46 m ice core
Daniela Festi, Margit Schwikowski, Valter Maggi, Klaus Oeggl, and Theo Manuel Jenk
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-334,https://doi.org/10.5194/tc-2020-334, 2020
Preprint under review for TC
Apparent discrepancy of Tibetan ice core δ18O records may be attributed to misinterpretation of chronology
Shugui Hou, Wangbin Zhang, Hongxi Pang, Shuang-Ye Wu, Theo M. Jenk, Margit Schwikowski, and Yetang Wang
The Cryosphere, 13, 1743–1752, https://doi.org/10.5194/tc-13-1743-2019,https://doi.org/10.5194/tc-13-1743-2019, 2019
Short summary
A Holocene black carbon ice-core record of biomass burning in the Amazon Basin from Illimani, Bolivia
Dimitri Osmont, Michael Sigl, Anja Eichler, Theo M. Jenk, and Margit Schwikowski
Clim. Past, 15, 579–592, https://doi.org/10.5194/cp-15-579-2019,https://doi.org/10.5194/cp-15-579-2019, 2019
Short summary

Related subject area

Subject: Gases | Technique: Laboratory Measurement | Topic: Instruments and Platforms
A method for resolving changes in atmospheric He ∕ N2 as an indicator of fossil fuel extraction and stratospheric circulation
Benjamin Birner, William Paplawsky, Jeffrey Severinghaus, and Ralph F. Keeling
Atmos. Meas. Tech., 14, 2515–2527, https://doi.org/10.5194/amt-14-2515-2021,https://doi.org/10.5194/amt-14-2515-2021, 2021
Short summary
Application of chemical derivatization techniques combined with chemical ionization mass spectrometry to detect stabilized Criegee intermediates and peroxy radicals in the gas phase
Alexander Zaytsev, Martin Breitenlechner, Anna Novelli, Hendrik Fuchs, Daniel A. Knopf, Jesse H. Kroll, and Frank N. Keutsch
Atmos. Meas. Tech., 14, 2501–2513, https://doi.org/10.5194/amt-14-2501-2021,https://doi.org/10.5194/amt-14-2501-2021, 2021
Short summary
Atomic emission detector with gas chromatographic separation and cryogenic pre-concentration (CryoTrap–GC–AED) for atmospheric trace gas measurements
Einar Karu, Mengze Li, Lisa Ernle, Carl A. M. Brenninkmeijer, Jos Lelieveld, and Jonathan Williams
Atmos. Meas. Tech., 14, 1817–1831, https://doi.org/10.5194/amt-14-1817-2021,https://doi.org/10.5194/amt-14-1817-2021, 2021
Short summary
Measurement of iodine species and sulfuric acid using bromide chemical ionization mass spectrometers
Mingyi Wang, Xu-Cheng He, Henning Finkenzeller, Siddharth Iyer, Dexian Chen, Jiali Shen, Mario Simon, Victoria Hofbauer, Jasper Kirkby, Joachim Curtius, Norbert Maier, Theo Kurtén, Douglas R. Worsnop, Markku Kulmala, Matti Rissanen, Rainer Volkamer, Yee Jun Tham, Neil M. Donahue, and Mikko Sipilä
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-494,https://doi.org/10.5194/amt-2020-494, 2020
Revised manuscript accepted for AMT
Short summary
New technique for high-precision, simultaneous measurements of CH4, N2O and CO2 concentrations; isotopic and elemental ratios of N2, O2 and Ar; and total air content in ice cores by wet extraction
Ikumi Oyabu, Kenji Kawamura, Kyotaro Kitamura, Remi Dallmayr, Akihiro Kitamura, Chikako Sawada, Jeffrey P. Severinghaus, Ross Beaudette, Anaïs Orsi, Satoshi Sugawara, Shigeyuki Ishidoya, Dorthe Dahl-Jensen, Kumiko Goto-Azuma, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Meas. Tech., 13, 6703–6731, https://doi.org/10.5194/amt-13-6703-2020,https://doi.org/10.5194/amt-13-6703-2020, 2020
Short summary

Cited articles

Ahn, J. H., Brook, E. J., and Howell, K.: A high-precision method for measurement of paleoatmospheric CO2 in small polar ice samples, J. Glaciol., 55, 499–506, 2009.
Anklin, M., Barnola, J.-M., Schwander, J., Stauffer, B., and Raynaud, B.: Processes affecting the CO2 concentrations measured in Greenland ice, Tellus, 47 B, 461–470, 1995.
Assonov, S. S., Brenninkmeijer, C. A. M., and Jöckel, P.: The 18O isotope exchange rate between firn air CO2 and the firn matrix at three Antarctic sites, J. Geophys. Res.-Atmos., 110, D18310, https://doi.org/10.1029/2005JD005769, 2005.
Barnola, J.-M., Anklin, M., Porcheron, J., Raynaud, D., Schwander, J., and Stauffer, B.: CO2 evolution during the last millenium as recorded by Antarctic and Greenland ice, Tellus, 47B, 264–272, 1995.
Bauska, T. K., Brook, E. J., Mix, A. C., and Ross, A.: High-precision dual-inlet IRMS measurements of the stable isotopes of CO2 and the N2O/CO2 ratio from polar ice core samples, Atmos. Meas. Tech., 7, 3825–3837, https://doi.org/10.5194/amt-7-3825-2014, 2014.
Download
Short summary
Atmospheric CO2 and δ13C-CO2 records from polar ice cores provide important constraints on the natural carbon cycle variability. Still, data exist only from a limited number of sampling sites and time periods due to demanding analytical challenges. Additional analytical state-of-the-art resources are desirable. This study describes such a new facility. Its analytical performance and new approaches for dealing with procedural blank contribution and analytical outliers are discussed in detail.