Articles | Volume 10, issue 8
https://doi.org/10.5194/amt-10-2785-2017
https://doi.org/10.5194/amt-10-2785-2017
Research article
 | 
04 Aug 2017
Research article |  | 04 Aug 2017

Vertical air motion retrievals in deep convective clouds using the ARM scanning radar network in Oklahoma during MC3E

Kirk W. North, Mariko Oue, Pavlos Kollias, Scott E. Giangrande, Scott M. Collis, and Corey K. Potvin

Related authors

Detection of small drizzle droplets in a large cloud chamber using ultrahigh-resolution radar
Zeen Zhu, Fan Yang, Pavlos Kollias, Raymond A. Shaw, Alex B. Kostinski, Steve Krueger, Katia Lamer, Nithin Allwayin, and Mariko Oue
Atmos. Meas. Tech., 17, 1133–1143, https://doi.org/10.5194/amt-17-1133-2024,https://doi.org/10.5194/amt-17-1133-2024, 2024
Short summary
An intercomparison of EarthCARE cloud, aerosol, and precipitation retrieval products
Shannon L. Mason, Howard W. Barker, Jason N. S. Cole, Nicole Docter, David P. Donovan, Robin J. Hogan, Anja Hünerbein, Pavlos Kollias, Bernat Puigdomènech Treserras, Zhipeng Qu, Ulla Wandinger, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 17, 875–898, https://doi.org/10.5194/amt-17-875-2024,https://doi.org/10.5194/amt-17-875-2024, 2024
Short summary
Thermal-Driven Graupel Generation Process to Explain Dry-Season Convective Vigor over the Amazon
Toshi Matsui, Daniel Hernandez-Deckers, Scott Giangrande, Thiago Biscaro, Ann Fridlind, and Scott Braun
EGUsphere, https://doi.org/10.5194/egusphere-2024-3,https://doi.org/10.5194/egusphere-2024-3, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Examining the vertical heterogeneity of aerosols over the Southern Great Plains
Yang Wang, Chanakya Bagya Ramesh, Scott E. Giangrande, Jerome Fast, Xianda Gong, Jiaoshi Zhang, Ahmet Tolga Odabasi, Marcus Vinicius Batista Oliveira, Alyssa Matthews, Fan Mei, John E. Shilling, Jason Tomlinson, Die Wang, and Jian Wang
Atmos. Chem. Phys., 23, 15671–15691, https://doi.org/10.5194/acp-23-15671-2023,https://doi.org/10.5194/acp-23-15671-2023, 2023
Short summary
The generation of EarthCARE L1 test data sets using atmospheric model data sets
David P. Donovan, Pavlos Kollias, Almudena Velázquez Blázquez, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 16, 5327–5356, https://doi.org/10.5194/amt-16-5327-2023,https://doi.org/10.5194/amt-16-5327-2023, 2023
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Geometrical and optical properties of cirrus clouds in Barcelona, Spain: analysis with the two-way transmittance method of 4 years of lidar measurements
Cristina Gil-Díaz, Michäel Sicard, Adolfo Comerón, Daniel Camilo Fortunato dos Santos Oliveira, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Jasper R. Lewis, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 17, 1197–1216, https://doi.org/10.5194/amt-17-1197-2024,https://doi.org/10.5194/amt-17-1197-2024, 2024
Short summary
Determination of the vertical distribution of in-cloud particle shape using SLDR-mode 35 GHz scanning cloud radar
Audrey Teisseire, Patric Seifert, Alexander Myagkov, Johannes Bühl, and Martin Radenz
Atmos. Meas. Tech., 17, 999–1016, https://doi.org/10.5194/amt-17-999-2024,https://doi.org/10.5194/amt-17-999-2024, 2024
Short summary
Artificial intelligence (AI)-derived 3D cloud tomography from geostationary 2D satellite data
Sarah Brüning, Stefan Niebler, and Holger Tost
Atmos. Meas. Tech., 17, 961–978, https://doi.org/10.5194/amt-17-961-2024,https://doi.org/10.5194/amt-17-961-2024, 2024
Short summary
The EarthCARE mission: science data processing chain overview
Michael Eisinger, Fabien Marnas, Kotska Wallace, Takuji Kubota, Nobuhiro Tomiyama, Yuichi Ohno, Toshiyuki Tanaka, Eichi Tomita, Tobias Wehr, and Dirk Bernaerts
Atmos. Meas. Tech., 17, 839–862, https://doi.org/10.5194/amt-17-839-2024,https://doi.org/10.5194/amt-17-839-2024, 2024
Short summary
Cloud optical and physical properties retrieval from EarthCARE multi-spectral imager: the M-COP products
Anja Hünerbein, Sebastian Bley, Hartwig Deneke, Jan Fokke Meirink, Gerd-Jan van Zadelhoff, and Andi Walther
Atmos. Meas. Tech., 17, 261–276, https://doi.org/10.5194/amt-17-261-2024,https://doi.org/10.5194/amt-17-261-2024, 2024
Short summary

Cited articles

Askelson, M. A. and Straka, J. M.: Response functions for arbitrary weight functions and data distributions. Part I: Framework for interpreting the response function, Mon. Weather Rev., 133, 2117–2131, 2005.
Askelson, M. A., Aubagnac, J.-P., and Straka, J. M.: An Adaptation of the Barnes Filter Applied to the Objective Analysis of Radar Data, Mon. Weather Rev., 128, 3050–3082, 2000.
Askelson, M. A., Pauley, P. M., and Straka, J. M.: Response functions for arbitrary weight functions and data distributions. Part II: Response function derivation and verification, Mon. Weather Rev., 133, 2132–2147, 2005.
Atmospheric Radiation Measurement (ARM) Climate Research Facility: Merged Sounding (MERGESONDE1MACE). 2011-04-25 to 2011-05-24, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1), compiled by: Troyan, D., Giangrande, S., and Toto, T., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive, Oak Ridge, Tennessee, USA, updated hourly, https://doi.org/10.5439/1034922, 1996.
Atmospheric Radiation Measurement (ARM) Climate Research Facility: Radar Wind Profiler (915RWPPRECIPCON). 2011-04-25 to 2011-05-24, Southern Great Plains (SGP) Lamont, OK (NW radar wind profiler site, Intermediate/Auxiliary), compiled by: Muradyan, P., Coulter, R., and Martin, T., Atmospheric Radiation Measurement (ARM) Climate Research Facility Data Archive, Oak Ridge, Tennessee, USA, updated hourly, https://doi.org/10.5439/1025127, 2011a.
Download
Short summary
Vertical air motion retrievals from 3DVAR multiple distributed scanning Doppler radars are compared against collocated profiling radars and retrieved from an upward iteration integration iterative technique to characterize their veracity. The retrieved vertical air motions are generally within 1–2 m s−1 of agreement with profiling radars and better solution than the upward integration technique, and therefore can be used as a means to improve parameterizations in numerical models moving forward.