Research article
09 Mar 2017
Research article
| 09 Mar 2017
Flux calculation of short turbulent events – comparison of three methods
Carsten Schaller et al.
Related authors
Bruna R. F. Oliveira, Carsten Schaller, J. Jacob Keizer, and Thomas Foken
Biogeosciences, 18, 285–302, https://doi.org/10.5194/bg-18-285-2021, https://doi.org/10.5194/bg-18-285-2021, 2021
Short summary
Short summary
Forest fires have a significant impact on carbon dioxide emissions. The present study from a pine forest in Portugal is one of the few where measurements of CO2 fluxes were started immediately (1.5 months) after the forest fire. Carbon dioxide emissions were linked to soil humidity. Therefore, they started after the beginning of the rainfall in autumn. Due to the beginning of vegetation, the site was already a carbon dioxide sink the following year.
Mathias Göckede, Fanny Kittler, and Carsten Schaller
Biogeosciences, 16, 3113–3131, https://doi.org/10.5194/bg-16-3113-2019, https://doi.org/10.5194/bg-16-3113-2019, 2019
Short summary
Short summary
Methane is one of the most important greenhouse gases. Methane emissions from land sources to the atmosphere often occur in the form of short but intense outbursts, which are difficult to measure. We developed a new software tool based on wavelets which reliably quantifies such methane outbursts. Using these results as a reference, our study shows that regular data processing using the eddy-covariance technique provides solid long-term methane budgets, but short-term uncertainties can be high.
Carsten Schaller, Fanny Kittler, Thomas Foken, and Mathias Göckede
Atmos. Chem. Phys., 19, 4041–4059, https://doi.org/10.5194/acp-19-4041-2019, https://doi.org/10.5194/acp-19-4041-2019, 2019
Short summary
Short summary
Methane emissions from biogenic sources, e.g. Arctic permafrost ecosystems, are associated with uncertainties due to the high variability of fluxes in both space and time. Besides the traditional eddy covariance method, we evaluated a method based on wavelet analysis, which does not require a stationary time series, to calculate fluxes. The occurrence of extreme methane flux events was strongly correlated with the soil temperature. They were triggered by atmospheric non-turbulent mixing.
Bruna R. F. Oliveira, Jan J. Keizer, and Thomas Foken
Biogeosciences, 19, 2235–2243, https://doi.org/10.5194/bg-19-2235-2022, https://doi.org/10.5194/bg-19-2235-2022, 2022
Short summary
Short summary
This study analyzes the impacts of this windthrow on the aerodynamic characteristics of zero-plane displacement and roughness length and, ultimately, their implications for the turbulent fluxes. The turbulent fluxes were only affected to a minor degree by the windthrow, but the footprint area of the flux tower changed markedly so that the target area of the measurements had to be redetermined.
Wolfgang Fischer, Christoph K. Thomas, Nikita Zimov, and Mathias Göckede
Biogeosciences, 19, 1611–1633, https://doi.org/10.5194/bg-19-1611-2022, https://doi.org/10.5194/bg-19-1611-2022, 2022
Short summary
Short summary
Arctic permafrost ecosystems may release large amounts of carbon under warmer future climates and may therefore accelerate global climate change. Our study investigated how long-term grazing by large animals influenced ecosystem characteristics and carbon budgets at a Siberian permafrost site. Our results demonstrate that such management can contribute to stabilizing ecosystems to keep carbon in the ground, particularly through drying soils and reducing methane emissions.
Martijn M. T. A. Pallandt, Jitendra Kumar, Marguerite Mauritz, Edward A. G. Schuur, Anna-Maria Virkkala, Gerardo Celis, Forrest M. Hoffman, and Mathias Göckede
Biogeosciences, 19, 559–583, https://doi.org/10.5194/bg-19-559-2022, https://doi.org/10.5194/bg-19-559-2022, 2022
Short summary
Short summary
Thawing of Arctic permafrost soils could trigger the release of vast amounts of carbon to the atmosphere, thus enhancing climate change. Our study investigated how well the current network of eddy covariance sites to monitor greenhouse gas exchange at local scales captures pan-Arctic flux patterns. We identified large coverage gaps, e.g., in Siberia, but also demonstrated that a targeted addition of relatively few sites can significantly improve network performance.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Katharina Jentzsch, Julia Boike, and Thomas Foken
Atmos. Meas. Tech., 14, 7291–7296, https://doi.org/10.5194/amt-14-7291-2021, https://doi.org/10.5194/amt-14-7291-2021, 2021
Short summary
Short summary
Very small CO2 fluxes are measured at night in Arctic regions. If the sensible heat flux is not close to zero under these conditions, the WPL correction will take values on the order of the flux. A special quality control is proposed for these cases.
Torben Windirsch, Guido Grosse, Mathias Ulrich, Bruce C. Forbes, Mathias Göckede, Juliane Wolter, Marc Macias-Fauria, Johan Olofsson, Nikita Zimov, and Jens Strauss
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-227, https://doi.org/10.5194/bg-2021-227, 2021
Revised manuscript not accepted
Short summary
Short summary
With global warming, permafrost thaw and associated carbon release are of increasing importance. We examined how large herbivorous animals affect Arctic landscapes and how they might contribute to reduction of these emissions. We show that over a short timespan of roughly 25 years, these animals have already changed the vegetation and landscape. On pastures in a permafrost area in Siberia we found smaller thaw depth and higher carbon content than in surrounding non-pasture areas.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Bruna R. F. Oliveira, Carsten Schaller, J. Jacob Keizer, and Thomas Foken
Biogeosciences, 18, 285–302, https://doi.org/10.5194/bg-18-285-2021, https://doi.org/10.5194/bg-18-285-2021, 2021
Short summary
Short summary
Forest fires have a significant impact on carbon dioxide emissions. The present study from a pine forest in Portugal is one of the few where measurements of CO2 fluxes were started immediately (1.5 months) after the forest fire. Carbon dioxide emissions were linked to soil humidity. Therefore, they started after the beginning of the rainfall in autumn. Due to the beginning of vegetation, the site was already a carbon dioxide sink the following year.
Friedemann Reum, Mathias Göckede, Jost V. Lavric, Olaf Kolle, Sergey Zimov, Nikita Zimov, Martijn Pallandt, and Martin Heimann
Atmos. Meas. Tech., 12, 5717–5740, https://doi.org/10.5194/amt-12-5717-2019, https://doi.org/10.5194/amt-12-5717-2019, 2019
Short summary
Short summary
We present continuous in situ measurements of atmospheric CO2 and CH4 mole fractions at the new station Ambarchik, located in northeastern Siberia. We describe the site, measurements and quality control, characterize the signals in comparison with data from Barrow, Alaska, and show which regions the measurements are sensitive to. Ambarchik data are available upon request.
Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan Chojnicki, Ankur R. Desai, Albertus J. Dolman, Eugenie S. Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara H. Knox, Natalia Kowalska, Lars Kutzbach, Sebastian Lienert, Annalea Lohila, Ivan Mammarella, Daniel F. Nadeau, Mats B. Nilsson, Walter C. Oechel, Matthias Peichl, Thomas Pypker, William Quinton, Janne Rinne, Torsten Sachs, Mateusz Samson, Hans Peter Schmid, Oliver Sonnentag, Christian Wille, Donatella Zona, and Tuula Aalto
Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, https://doi.org/10.5194/essd-11-1263-2019, 2019
Short summary
Short summary
Here we develop a monthly gridded dataset of northern (> 45 N) wetland methane (CH4) emissions. The data product is derived using a random forest machine-learning technique and eddy covariance CH4 fluxes from 25 wetland sites. Annual CH4 emissions from these wetlands calculated from the derived data product are comparable to prior studies focusing on these areas. This product is an independent estimate of northern wetland CH4 emissions and hence could be used, e.g. for process model evaluation.
Mathias Göckede, Fanny Kittler, and Carsten Schaller
Biogeosciences, 16, 3113–3131, https://doi.org/10.5194/bg-16-3113-2019, https://doi.org/10.5194/bg-16-3113-2019, 2019
Short summary
Short summary
Methane is one of the most important greenhouse gases. Methane emissions from land sources to the atmosphere often occur in the form of short but intense outbursts, which are difficult to measure. We developed a new software tool based on wavelets which reliably quantifies such methane outbursts. Using these results as a reference, our study shows that regular data processing using the eddy-covariance technique provides solid long-term methane budgets, but short-term uncertainties can be high.
Norman Rößger, Christian Wille, David Holl, Mathias Göckede, and Lars Kutzbach
Biogeosciences, 16, 2591–2615, https://doi.org/10.5194/bg-16-2591-2019, https://doi.org/10.5194/bg-16-2591-2019, 2019
Carsten Schaller, Fanny Kittler, Thomas Foken, and Mathias Göckede
Atmos. Chem. Phys., 19, 4041–4059, https://doi.org/10.5194/acp-19-4041-2019, https://doi.org/10.5194/acp-19-4041-2019, 2019
Short summary
Short summary
Methane emissions from biogenic sources, e.g. Arctic permafrost ecosystems, are associated with uncertainties due to the high variability of fluxes in both space and time. Besides the traditional eddy covariance method, we evaluated a method based on wavelet analysis, which does not require a stationary time series, to calculate fluxes. The occurrence of extreme methane flux events was strongly correlated with the soil temperature. They were triggered by atmospheric non-turbulent mixing.
Friedemann Reum, Christoph Gerbig, Jost V. Lavric, Chris W. Rella, and Mathias Göckede
Atmos. Meas. Tech., 12, 1013–1027, https://doi.org/10.5194/amt-12-1013-2019, https://doi.org/10.5194/amt-12-1013-2019, 2019
Short summary
Short summary
Atmospheric CO2 and CH4 mole fractions are often measured using greenhouse gas analyzers manufactured by Picarro, Inc. We report biases in these measurements that are related to pressure changes in the optical cavity of the analyzers and occur mainly at low water vapor mole fractions. We provide a method to correct the biases, which contributes to keeping the overall accuracy of CO2 and CH4 measurements with Picarro analyzers within the WMO interlaboratory compatibility goals.
Thomas Foken, Wolfgang Babel, and Christoph Thomas
Atmos. Meas. Tech., 12, 971–976, https://doi.org/10.5194/amt-12-971-2019, https://doi.org/10.5194/amt-12-971-2019, 2019
Short summary
Short summary
Recently reported trends of carbon dioxide uptake pose the question of whether trends may be the result of the limited digitalization of gas analysers and sonic anemometers used in the 1990s. Modifying a 12 bit digitalization and the instrument error reported for the R2 and R3 sonic anemometers found elsewhere, the influence of these deficits in comparison to the now commonly used 16 bit digitalization were quantified. Both issues have an effect only on trace gas fluxes of small magnitude.
Kathrin Gatzsche, Wolfgang Babel, Eva Falge, Rex David Pyles, Kyaw Tha Paw U, Armin Raabe, and Thomas Foken
Biogeosciences, 15, 2945–2960, https://doi.org/10.5194/bg-15-2945-2018, https://doi.org/10.5194/bg-15-2945-2018, 2018
Short summary
Short summary
The ecosystem is a significant sink of carbon dioxide. To quantify this sink, very complex and validated models are required. However, the comparison of modeled and measured energy and matter fluxes in a heterogeneous landscape is still a challenge. On the one hand, models must be applied for various surface types, while on the other hand the comparison of the fluxes is only possible based on the flux source areas. This paper treats the potential aggregation of modeled fluxes and its validation.
Karel Castro-Morales, Thomas Kleinen, Sonja Kaiser, Sönke Zaehle, Fanny Kittler, Min Jung Kwon, Christian Beer, and Mathias Göckede
Biogeosciences, 15, 2691–2722, https://doi.org/10.5194/bg-15-2691-2018, https://doi.org/10.5194/bg-15-2691-2018, 2018
Short summary
Short summary
We present year-round methane emissions from wetlands in Northeast Siberia that were simulated with a land surface model. Ground-based flux measurements from the same area were used for evaluation of the model results, finding a best agreement with the observations in the summertime emissions that take place in this region predominantly through plants. During winter, methane emissions through the snow contribute 4 % of the total annual methane budget, but these are still underestimated.
Mathias Göckede, Fanny Kittler, Min Jung Kwon, Ina Burjack, Martin Heimann, Olaf Kolle, Nikita Zimov, and Sergey Zimov
The Cryosphere, 11, 2975–2996, https://doi.org/10.5194/tc-11-2975-2017, https://doi.org/10.5194/tc-11-2975-2017, 2017
Short summary
Short summary
Shifts in hydrologic conditions will be a key factor for the sustainability of Arctic ecosystems under future climate change. Using a long-term manipulation experiment, we analyzed how energy exchange processes within a permafrost ecosystem react to sustained dry conditions. Changes in several important ecosystem characteristics lead to reduced evapotranspiration and increased sensible heat fluxes. Heat transfer into the soil was strongly reduced, keeping the permafrost colder.
Friedemann Reum, Christoph Gerbig, Jost V. Lavric, Chris W. Rella, and Mathias Göckede
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-174, https://doi.org/10.5194/amt-2017-174, 2017
Revised manuscript not accepted
Short summary
Short summary
High-accuracy observations of atmospheric CO2 and CH4 levels, which are vital for quantifying sources and sinks of these gases, are often obtained using Picarro greenhouse gas analyzers. These require a correction for the effects of water vapor. We report biases in CO2 and CH4 levels obtained using the traditional water correction for Picarro analyzers related to pressure changes in the optical cavity and mainly affecting measurements at low water vapor mole fractions, and how to correct them.
Sonja Kaiser, Mathias Göckede, Karel Castro-Morales, Christian Knoblauch, Altug Ekici, Thomas Kleinen, Sebastian Zubrzycki, Torsten Sachs, Christian Wille, and Christian Beer
Geosci. Model Dev., 10, 333–358, https://doi.org/10.5194/gmd-10-333-2017, https://doi.org/10.5194/gmd-10-333-2017, 2017
Short summary
Short summary
A new consistent, process-based methane module that is integrated with permafrost processes is presented. It was developed within a global land surface scheme and evaluated at a polygonal tundra site in Samoylov, Russia. The calculated methane emissions show fair agreement with field data and capture detailed differences between the explicitly modelled gas transport processes and in the gas dynamics under varying soil water and temperature conditions during seasons and on different microsites.
Fanny Kittler, Ina Burjack, Chiara A. R. Corradi, Martin Heimann, Olaf Kolle, Lutz Merbold, Nikita Zimov, Sergey Zimov, and Mathias Göckede
Biogeosciences, 13, 5315–5332, https://doi.org/10.5194/bg-13-5315-2016, https://doi.org/10.5194/bg-13-5315-2016, 2016
Short summary
Short summary
We compared growing season CO2 fluxes of a wet tussock tundra ecosystem from an area affected by decadal drainage and an undisturbed area on the Kolyma floodplain in northeastern Siberia. The results show systematically reduced CO2 uptake within the drained area, caused by increased respiration, and that the local permafrost ecosystem is capable of adapting to significantly different hydrologic conditions without losing its capacity to act as a net sink for CO2.
Yiying Chen, James Ryder, Vladislav Bastrikov, Matthew J. McGrath, Kim Naudts, Juliane Otto, Catherine Ottlé, Philippe Peylin, Jan Polcher, Aude Valade, Andrew Black, Jan A. Elbers, Eddy Moors, Thomas Foken, Eva van Gorsel, Vanessa Haverd, Bernard Heinesch, Frank Tiedemann, Alexander Knohl, Samuli Launiainen, Denis Loustau, Jérôme Ogée, Timo Vessala, and Sebastiaan Luyssaert
Geosci. Model Dev., 9, 2951–2972, https://doi.org/10.5194/gmd-9-2951-2016, https://doi.org/10.5194/gmd-9-2951-2016, 2016
Short summary
Short summary
In this study, we compiled a set of within-canopy and above-canopy measurements of energy and water fluxes, and used these data to parametrize and validate the new multi-layer energy budget scheme for a range of forest types. An adequate parametrization approach has been presented for the global-scale land surface model (ORCHIDEE-CAN). Furthermore, model performance of the new multi-layer parametrization was compared against the existing single-layer scheme.
Min Jung Kwon, Martin Heimann, Olaf Kolle, Kristina A. Luus, Edward A. G. Schuur, Nikita Zimov, Sergey A. Zimov, and Mathias Göckede
Biogeosciences, 13, 4219–4235, https://doi.org/10.5194/bg-13-4219-2016, https://doi.org/10.5194/bg-13-4219-2016, 2016
Short summary
Short summary
A decade-long drainage on an Arctic floodplain has altered dominant plant species and soil temperature regimes. Consequently, CO2 exchange rates between the atmosphere and the terrestrial ecosystem were modified: CO2 uptake rates by the terrestrial ecosystem decreased and CO2 emission rates to the atmosphere increased. Ongoing global warming may thaw ice-rich permafrost and make some regions drier in the Arctic, and this will reduce carbon accumulation in the terrestrial ecosystem.
T. Gerken, W. Babel, M. Herzog, K. Fuchs, F. Sun, Y. Ma, T. Foken, and H.-F. Graf
Hydrol. Earth Syst. Sci., 19, 4023–4040, https://doi.org/10.5194/hess-19-4023-2015, https://doi.org/10.5194/hess-19-4023-2015, 2015
Short summary
Short summary
Surface moisture is an important control for the development of clouds and precipitation on the Tibetan Plateau. While dry surface conditions do not provided enough water for the development of precipitation and convection, wet surface conditions lead to increased cloud cover and a decrease in solar irradiation, which also reduces convection development. It was found that intermediate soil moistures are associated with the strongest convection.
A. Moravek, P. Stella, T. Foken, and I. Trebs
Atmos. Chem. Phys., 15, 899–911, https://doi.org/10.5194/acp-15-899-2015, https://doi.org/10.5194/acp-15-899-2015, 2015
M. Riederer, J. Hübner, J. Ruppert, W. A. Brand, and T. Foken
Atmos. Meas. Tech., 7, 4237–4250, https://doi.org/10.5194/amt-7-4237-2014, https://doi.org/10.5194/amt-7-4237-2014, 2014
Short summary
Short summary
The REA technique cannot be applied on grassland shortly after management without the risk of REA-flux errors due to large uncertainties of b-factors and lacking scalar similarity.
The NEE flux partitioning model based on REA measurement results is complex but can enhance results of common partitioning by considering ecosystem discrimination of 13C and wind velocity.
W. Babel, T. Biermann, H. Coners, E. Falge, E. Seeber, J. Ingrisch, P.-M. Schleuß, T. Gerken, J. Leonbacher, T. Leipold, S. Willinghöfer, K. Schützenmeister, O. Shibistova, L. Becker, S. Hafner, S. Spielvogel, X. Li, X. Xu, Y. Sun, L. Zhang, Y. Yang, Y. Ma, K. Wesche, H.-F. Graf, C. Leuschner, G. Guggenberger, Y. Kuzyakov, G. Miehe, and T. Foken
Biogeosciences, 11, 6633–6656, https://doi.org/10.5194/bg-11-6633-2014, https://doi.org/10.5194/bg-11-6633-2014, 2014
J. Hübner, J. Olesch, H. Falke, F. X. Meixner, and T. Foken
Atmos. Meas. Tech., 7, 2967–2980, https://doi.org/10.5194/amt-7-2967-2014, https://doi.org/10.5194/amt-7-2967-2014, 2014
A. Moravek, T. Foken, and I. Trebs
Atmos. Meas. Tech., 7, 2097–2119, https://doi.org/10.5194/amt-7-2097-2014, https://doi.org/10.5194/amt-7-2097-2014, 2014
M. Riederer, A. Serafimovich, and T. Foken
Atmos. Meas. Tech., 7, 1057–1064, https://doi.org/10.5194/amt-7-1057-2014, https://doi.org/10.5194/amt-7-1057-2014, 2014
P. Stella, M. Kortner, C. Ammann, T. Foken, F. X. Meixner, and I. Trebs
Biogeosciences, 10, 5997–6017, https://doi.org/10.5194/bg-10-5997-2013, https://doi.org/10.5194/bg-10-5997-2013, 2013
S. Metzger, W. Junkermann, M. Mauder, K. Butterbach-Bahl, B. Trancón y Widemann, F. Neidl, K. Schäfer, S. Wieneke, X. H. Zheng, H. P. Schmid, and T. Foken
Biogeosciences, 10, 2193–2217, https://doi.org/10.5194/bg-10-2193-2013, https://doi.org/10.5194/bg-10-2193-2013, 2013
M. Li, W. Babel, K. Tanaka, and T. Foken
Atmos. Meas. Tech., 6, 221–229, https://doi.org/10.5194/amt-6-221-2013, https://doi.org/10.5194/amt-6-221-2013, 2013
Related subject area
Subject: Gases | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Controlled-release experiment to investigate uncertainties in UAV-based emission quantification for methane point sources
Ozone formation sensitivity study using machine learning coupled with the reactivity of volatile organic compound species
Evaluating uncertainty in sensor networks for urban air pollution insights
Estimating oil sands emissions using horizontal path-integrated column measurements
Homogenization of the Observatoire de Haute Provence ECC ozonesonde data record: comparison with lidar and satellite observations
Comment on “Comparison of ozone measurement methods in biomass burning smoke: an evaluation under field and laboratory conditions” (Long et al. 2021)
Long-term behavior and stability of calibration models for NO and NO2 low cost sensors
Global evaluation of the precipitable-water-vapor product from MERSI-II (Medium Resolution Spectral Imager) on board the Fengyun-3D satellite
Performance Characterization of Low-cost Air Quality Sensors for Off-grid Deployment in Rural Malawi
Field testing two flux footprint models
Validation of a new cavity ring-down spectrometer for measuring tropospheric gaseous hydrogen chloride
Comparison of formaldehyde measurements by Hantzsch, CRDS and DOAS in the SAPHIR chamber
A field intercomparison of three passive air samplers for gaseous mercury in ambient air
Beef cattle methane emissions measured with tracer-ratio and inverse dispersion modelling techniques
Methane emissions from an oil sands tailings pond: a quantitative comparison of fluxes derived by different methods
Performance of open-path GasFinder3 devices for CH4 concentration measurements close to ambient levels
Water vapor density and turbulent fluxes from three generations of infrared gas analyzers
Quantifying fugitive gas emissions from an oil sands tailings pond with open-path Fourier transform infrared measurements
Robust statistical calibration and characterization of portable low-cost air quality monitoring sensors to quantify real-time O3 and NO2 concentrations in diverse environments
A miniature Portable Emissions Measurement System (PEMS) for real-driving monitoring of motorcycles
In situ measurement of CO2 and CH4 from aircraft over northeast China and comparison with OCO-2 data
Mobile-platform measurement of air pollutant concentrations in California: performance assessment, statistical methods for evaluating spatial variations, and spatial representativeness
Continuous methane concentration measurements at the Greenland ice sheet–atmosphere interface using a low-cost, low-power metal oxide sensor system
The development of the Atmospheric Measurements by Ultra-Light Spectrometer (AMULSE) greenhouse gas profiling system and application for satellite retrieval validation
Atmospheric observations of the water vapour continuum in the near-infrared windows between 2500 and 6600 cm−1
Intercomparison study of atmospheric 222Rn and 222Rn progeny monitors
Sources of error in open-path FTIR measurements of N2O and CO2 emitted from agricultural fields
Constraining the accuracy of flux estimates using OTM 33A
Evaluating the measurement interference of wet rotating-denuder–ion chromatography in measuring atmospheric HONO in a highly polluted area
Intercomparison of nitrous acid (HONO) measurement techniques in a megacity (Beijing)
Validity and limitations of simple reaction kinetics to calculate concentrations of organic compounds from ion counts in PTR-MS
Recent advances in measurement techniques for atmospheric carbon monoxide and nitrous oxide observations
True eddy accumulation trace gas flux measurements: proof of concept
Simultaneous detection of C2H6, CH4, and δ13C-CH4 using optical feedback cavity-enhanced absorption spectroscopy in the mid-infrared region: towards application for dissolved gas measurements
An improved low-power measurement of ambient NO2 and O3 combining electrochemical sensor clusters and machine learning
Comparison of slant open-path flux gradient and static closed chamber techniques to measure soil N2O emissions
Field measurements of methylglyoxal using proton transfer reaction time-of-flight mass spectrometry and comparison to the DNPH–HPLC–UV method
How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition
Estimation of nocturnal CO2 and N2O soil emissions from changes in surface boundary layer mass storage
Intra-urban spatial variability of surface ozone in Riverside, CA: viability and validation of low-cost sensors
Field calibration of electrochemical NO2 sensors in a citizen science context
Calibration and field testing of cavity ring-down laser spectrometers measuring CH4, CO2, and δ13CH4 deployed on towers in the Marcellus Shale region
Calibration and assessment of electrochemical air quality sensors by co-location with regulatory-grade instruments
Comparison of VOC measurements made by PTR-MS, adsorbent tubes–GC-FID-MS and DNPH derivatization–HPLC during the Sydney Particle Study, 2012: a contribution to the assessment of uncertainty in routine atmospheric VOC measurements
Measurement of interferences associated with the detection of the hydroperoxy radical in the atmosphere using laser-induced fluorescence
Measurements of a potential interference with laser-induced fluorescence measurements of ambient OH from the ozonolysis of biogenic alkenes
Statistical atmospheric inversion of local gas emissions by coupling the tracer release technique and local-scale transport modelling: a test case with controlled methane emissions
Comparison of OH reactivity measurements in the atmospheric simulation chamber SAPHIR
Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements
Observations of VOC emissions and photochemical products over US oil- and gas-producing regions using high-resolution H3O+ CIMS (PTR-ToF-MS)
Randulph Morales, Jonas Ravelid, Katarina Vinkovic, Piotr Korbeń, Béla Tuzson, Lukas Emmenegger, Huilin Chen, Martina Schmidt, Sebastian Humbel, and Dominik Brunner
Atmos. Meas. Tech., 15, 2177–2198, https://doi.org/10.5194/amt-15-2177-2022, https://doi.org/10.5194/amt-15-2177-2022, 2022
Short summary
Short summary
Mapping trace gas emission plumes using in situ measurements from unmanned aerial vehicles (UAVs) is an emerging and attractive possibility to quantify emissions from localized sources. We performed an extensive controlled-release experiment to develop an optimal quantification method and to determine the related uncertainties under various environmental and sampling conditions. Our approach was successful in quantifying local methane sources from drone-based measurements.
Junlei Zhan, Yongchun Liu, Wei Ma, Xin Zhang, Xuezhong Wang, Fang Bi, Yujie Zhang, Zhenhai Wu, and Hong Li
Atmos. Meas. Tech., 15, 1511–1520, https://doi.org/10.5194/amt-15-1511-2022, https://doi.org/10.5194/amt-15-1511-2022, 2022
Short summary
Short summary
Our study investigated the O3 formation sensitivity in Beijing using a random forest model coupled with the reactivity of volatile organic
compound (VOC) species. Results found that random forest accurately predicted O3 concentration when initial VOCs were considered, and relative importance correlated well with O3 formation potential. The O3 isopleth curves calculated by the random forest model were generally comparable with those calculated by the box model.
Daniel R. Peters, Olalekan A. M. Popoola, Roderic L. Jones, Nicholas A. Martin, Jim Mills, Elizabeth R. Fonseca, Amy Stidworthy, Ella Forsyth, David Carruthers, Megan Dupuy-Todd, Felicia Douglas, Katie Moore, Rishabh U. Shah, Lauren E. Padilla, and Ramón A. Alvarez
Atmos. Meas. Tech., 15, 321–334, https://doi.org/10.5194/amt-15-321-2022, https://doi.org/10.5194/amt-15-321-2022, 2022
Short summary
Short summary
We present more than 2 years of NO2 pollution measurements from a sensor network in Greater London and compare results to an extensive network of expensive reference-grade monitors. We show the ability of our lower-cost network to generate robust insights about local air pollution. We also show how irregularities in sensor performance lead to some uncertainty in results and demonstrate ways that future users can characterize and mitigate uncertainties to get the most value from sensor data.
Timothy G. Pernini, T. Scott Zaccheo, Jeremy Dobler, and Nathan Blume
Atmos. Meas. Tech., 15, 225–240, https://doi.org/10.5194/amt-15-225-2022, https://doi.org/10.5194/amt-15-225-2022, 2022
Short summary
Short summary
We demonstrate a novel approach to estimating emissions from oil sands operations that utilizes the GreenLITE™ gas concentration measurement system and an atmospheric model. While deployed at a facility in the Athabasca region of Alberta, Canada, CH4 emissions from a tailings pond were estimated to be 7.2 t/d for July–October 2019, and 5.1 t/d for March–July 2020. CH4 emissions from an open-pit mine were estimated to be 24.6 t/d for September–October 2019.
Gérard Ancellet, Sophie Godin-Beekmann, Herman G. J. Smit, Ryan M. Stauffer, Roeland Van Malderen, Renaud Bodichon, and Andrea Pazmiño
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-7, https://doi.org/10.5194/amt-2022-7, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
The 1991–2020 Observatoire de Haute Provence Electrochemical Concentration Cell (ECC) ozonesonde data have been homogenized according to the recommendations of the Ozonesonde Data Quality Assessment panel. Comparisons with ground based instruments also measuring ozone at the same station (lidar, surface measurements) and with collocated satellite observations show the benefits of this homogenization. Remaining differences between ECC and other observations in the stratosphere are also discussed.
Noah Bernays, Daniel Jaffe, Irina Petropavlovskikh, and Peter Effertz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-11, https://doi.org/10.5194/amt-2022-11, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
Ozone is an important pollutant that impacts millions of people worldwide. It is therefore essential to understand our ability to accurately measure it. A recent surge in wildfire activity in the U.S. has resulted in significant enhancements in ozone concentration. However given the nature of wildfire smoke, there are questions about our ability to accurately measure ozone. In this comment, we discuss previous to understand possible biases and challenges in UV measurements of ozone.
Horim Kim, Michael Müller, Stephan Henne, and Christoph Hüglin
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-433, https://doi.org/10.5194/amt-2021-433, 2022
Revised manuscript accepted for AMT
Short summary
Short summary
In this study, the performance of electrochemical sensors for NO and NO2 for measuring air quality was determined over a longer operating period. The performance of NO sensors remained reliable for more than 18 months. However, the NO2 sensors showed decreasing performance over time. During deployment, we found that the NO2 sensors can distinguish general pollution levels, but they proved unsuitable for accurate measurements due to significant biases.
Wengang Zhang, Ling Wang, Yang Yu, Guirong Xu, Xiuqing Hu, Zhikang Fu, and Chunguang Cui
Atmos. Meas. Tech., 14, 7821–7834, https://doi.org/10.5194/amt-14-7821-2021, https://doi.org/10.5194/amt-14-7821-2021, 2021
Short summary
Short summary
Global precipitable water vapor (PWV) derived from MERSI-II (Medium Resolution Spectral Imager) is compared with PWV from the Integrated Global Radiosonde Archive (IGRA). Our results show a good agreement between PWV from MERSI-II and IGRA and that MERSI-II PWV is slightly underestimated on the whole, especially in summer. The bias between MERSI-II and IGRA grows with a larger spatial distance between the footprint of the satellite and the IGRA station, as well as increasing PWV.
Ashley S. Bittner, Eben S. Cross, David H. Hagan, Carl Malings, Eric Lipsky, and Andrew Grieshop
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-372, https://doi.org/10.5194/amt-2021-372, 2021
Revised manuscript accepted for AMT
Short summary
Short summary
We present findings from a 1-year pilot deployment of low-cost integrated air quality sensor packages in rural Malawi using calibration models developed during collocation with US regulatory monitors. We compare the results with data from remote sensing products and previous field studies. We conclude that while the remote calibration approach can help extract useful data, great care is needed in assessing low-cost sensor data collected in regions without reference instrumentation.
Trevor W. Coates, Monzurul Alam, Thomas K. Flesch, and Guillermo Hernandez-Ramirez
Atmos. Meas. Tech., 14, 7147–7152, https://doi.org/10.5194/amt-14-7147-2021, https://doi.org/10.5194/amt-14-7147-2021, 2021
Short summary
Short summary
A field study tested two footprint models for calculating surface emissions from downwind flux measurements. Emission rates from a 10 × 10 m synthetic source were estimated with the simple Kormann–Meixner model and a sophisticated Lagrangian stochastic model. Both models underestimated emissions by approximately 30 %, and no statistical differences were observed between the models. Footprint models are critically important for interpreting eddy covariance measurements.
Teles C. Furlani, Patrick R. Veres, Kathryn E. R. Dawe, J. Andrew Neuman, Steven S. Brown, Trevor C. VandenBoer, and Cora J. Young
Atmos. Meas. Tech., 14, 5859–5871, https://doi.org/10.5194/amt-14-5859-2021, https://doi.org/10.5194/amt-14-5859-2021, 2021
Short summary
Short summary
This study characterized and validated a commercial spectroscopic instrument for the measurement of hydrogen chloride (HCl) in the atmosphere. Near the Earth’s surface, HCl acts as the dominant reservoir for other chlorine-containing reactive chemicals that play an important role in atmospheric chemistry. The properties of HCl make it challenging to measure. This instrument can overcome many of these challenges, enabling reliable HCl measurements.
Marvin Glowania, Franz Rohrer, Hans-Peter Dorn, Andreas Hofzumahaus, Frank Holland, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Meas. Tech., 14, 4239–4253, https://doi.org/10.5194/amt-14-4239-2021, https://doi.org/10.5194/amt-14-4239-2021, 2021
Short summary
Short summary
Three instruments that use different techniques to measure gaseous formaldehyde concentrations were compared in experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich. The results demonstrated the need to correct the baseline in measurements by instruments that use the Hantzsch reaction or make use of cavity ring-down spectroscopy. After applying corrections, all three methods gave accurate and precise measurements within their specifications.
Attilio Naccarato, Antonella Tassone, Maria Martino, Sacha Moretti, Antonella Macagnano, Emiliano Zampetti, Paolo Papa, Joshua Avossa, Nicola Pirrone, Michelle Nerentorp, John Munthe, Ingvar Wängberg, Geoff W. Stupple, Carl P. J. Mitchell, Adam R. Martin, Alexandra Steffen, Diana Babi, Eric M. Prestbo, Francesca Sprovieri, and Frank Wania
Atmos. Meas. Tech., 14, 3657–3672, https://doi.org/10.5194/amt-14-3657-2021, https://doi.org/10.5194/amt-14-3657-2021, 2021
Short summary
Short summary
Mercury monitoring in support of the Minamata Convention requires effective and reliable analytical tools. Passive sampling is a promising approach for creating a sustainable long-term network for atmospheric mercury with improved spatial resolution and global coverage. In this study the analytical performance of three passive air samplers (CNR-PAS, IVL-PAS, and MerPAS) was assessed over extended deployment periods and the accuracy of concentrations was judged by comparison with active sampling.
Mei Bai, José I. Velazco, Trevor W. Coates, Frances A. Phillips, Thomas K. Flesch, Julian Hill, David G. Mayer, Nigel W. Tomkins, Roger S. Hegarty, and Deli Chen
Atmos. Meas. Tech., 14, 3469–3479, https://doi.org/10.5194/amt-14-3469-2021, https://doi.org/10.5194/amt-14-3469-2021, 2021
Short summary
Short summary
The development and validation of management practices to mitigate methane (CH4) emissions from livestock require accurate emission measurements. We compared the inverse dispersion modelling (IDM) and tracer-ratio techniques to measure CH4 emissions from cattle. Both measurements agreed well but were higher than IPCC estimates. We suggest that the IDM approach can provide an accurate method of estimating cattle emissions, and IPCC estimates may have larger uncertainties.
Yuan You, Ralf M. Staebler, Samar G. Moussa, James Beck, and Richard L. Mittermeier
Atmos. Meas. Tech., 14, 1879–1892, https://doi.org/10.5194/amt-14-1879-2021, https://doi.org/10.5194/amt-14-1879-2021, 2021
Short summary
Short summary
Tailings ponds in the Alberta oil sands can be significant sources of methane, an important greenhouse gas. This paper describes a 1-month study conducted in 2017 to measure methane emissions from a pond using a variety of micrometeorological flux methods and demonstrates some advantages of these methods over flux chambers.
Christoph Häni, Marcel Bühler, Albrecht Neftel, Christof Ammann, and Thomas Kupper
Atmos. Meas. Tech., 14, 1733–1741, https://doi.org/10.5194/amt-14-1733-2021, https://doi.org/10.5194/amt-14-1733-2021, 2021
Seth Kutikoff, Xiaomao Lin, Steven R. Evett, Prasanna Gowda, David Brauer, Jerry Moorhead, Gary Marek, Paul Colaizzi, Robert Aiken, Liukang Xu, and Clenton Owensby
Atmos. Meas. Tech., 14, 1253–1266, https://doi.org/10.5194/amt-14-1253-2021, https://doi.org/10.5194/amt-14-1253-2021, 2021
Short summary
Short summary
Fast-response infrared gas sensors have been used over 3 decades for long-term monitoring of water vapor fluxes. As optically improved infrared gas sensors are newly employed, we evaluated the performance of water vapor density and water vapor flux from three generations of infrared gas sensors in Bushland, Texas, USA. From our experiments, fluxes from the old sensors were best representative of evapotranspiration based on a world-class lysimeter reference measurement.
Yuan You, Samar G. Moussa, Lucas Zhang, Long Fu, James Beck, and Ralf M. Staebler
Atmos. Meas. Tech., 14, 945–959, https://doi.org/10.5194/amt-14-945-2021, https://doi.org/10.5194/amt-14-945-2021, 2021
Short summary
Short summary
Tailings ponds in the Alberta oil sands represent an insufficiently characterized source of fugitive emissions of pollutants to the atmosphere. In this study, a novel approach of using a Fourier transform infrared spectrometer along with measurements of atmospheric turbulence is shown to present a practical, non-intrusive method of quantifying emission rates for ammonia, alkanes, and methane. Results from a 1-month field study are presented and discussed.
Ravi Sahu, Ayush Nagal, Kuldeep Kumar Dixit, Harshavardhan Unnibhavi, Srikanth Mantravadi, Srijith Nair, Yogesh Simmhan, Brijesh Mishra, Rajesh Zele, Ronak Sutaria, Vidyanand Motiram Motghare, Purushottam Kar, and Sachchida Nand Tripathi
Atmos. Meas. Tech., 14, 37–52, https://doi.org/10.5194/amt-14-37-2021, https://doi.org/10.5194/amt-14-37-2021, 2021
Short summary
Short summary
A unique feature of our low-cost sensor deployment is a swap-out experiment wherein four of the six sensors were relocated to different sites in the two phases. The swap-out experiment is crucial in investigating the efficacy of calibration models when applied to weather and air quality conditions vastly different from those present during calibration. We developed a novel local calibration algorithm based on metric learning that offers stable and accurate calibration performance.
Michal Vojtisek-Lom, Alessandro A. Zardini, Martin Pechout, Lubos Dittrich, Fausto Forni, François Montigny, Massimo Carriero, Barouch Giechaskiel, and Giorgio Martini
Atmos. Meas. Tech., 13, 5827–5843, https://doi.org/10.5194/amt-13-5827-2020, https://doi.org/10.5194/amt-13-5827-2020, 2020
Short summary
Short summary
The feasibility of monitoring on-road emissions from small motorcycles with two highly compact portable emissions monitoring systems was evaluated on three motorcycles, with positive results. Mass emissions measured on the road were consistent among repeated runs, with differences between laboratory and on-road tests much larger than those between portable and laboratory systems, which were, on the average, within units of percent over standard test cycles.
Xiaoyu Sun, Minzheng Duan, Yang Gao, Rui Han, Denghui Ji, Wenxing Zhang, Nong Chen, Xiangao Xia, Hailei Liu, and Yanfeng Huo
Atmos. Meas. Tech., 13, 3595–3607, https://doi.org/10.5194/amt-13-3595-2020, https://doi.org/10.5194/amt-13-3595-2020, 2020
Short summary
Short summary
The accurate measurement of greenhouse gases and their vertical distribution in the atmosphere is significant to the study of climate change and satellite remote sensing. Carbon dioxide and methane between 0.6 and 7 km were measured by the aircraft King Air 350ER in Jiansanjiang, northeast China, on 7–11 August 2018. The profiles show strong variation with the altitude and time, so the vertical structure of gases should be taken into account in the current satellite retrieval algorithm.
Paul A. Solomon, Dena Vallano, Melissa Lunden, Brian LaFranchi, Charles L. Blanchard, and Stephanie L. Shaw
Atmos. Meas. Tech., 13, 3277–3301, https://doi.org/10.5194/amt-13-3277-2020, https://doi.org/10.5194/amt-13-3277-2020, 2020
Short summary
Short summary
Analyzing street-level air pollutants (2016–2017), this assessment indicates that mobile measurement is precise and accurate (5 % to 25 % bias) relative to regulatory sites, with higher spatial resolution. Collocated sensor measurements in California showed differences less than 20 %, suggesting that greater differences represent spatial variability. Mobile data confirm regulatory-site spatial representation and that pollutant levels can also be 6 to 8 times higher just blocks apart.
Christian Juncher Jørgensen, Jacob Mønster, Karsten Fuglsang, and Jesper Riis Christiansen
Atmos. Meas. Tech., 13, 3319–3328, https://doi.org/10.5194/amt-13-3319-2020, https://doi.org/10.5194/amt-13-3319-2020, 2020
Short summary
Short summary
Recent discoveries have shown large emissions of methane (CH4) to the atmosphere from meltwater at the Greenland ice sheet (GrIS). Low-cost and low-power gas sensor technology offers great potential to supplement CH4 measurements using very expensive reference analyzers under harsh and remote conditions. In this paper we evaluate the in situ performance at the GrIS of a low-cost CH4 sensor to a state-of-the-art analyzer and find very excellent agreement between the two methods.
Lilian Joly, Olivier Coopmann, Vincent Guidard, Thomas Decarpenterie, Nicolas Dumelié, Julien Cousin, Jérémie Burgalat, Nicolas Chauvin, Grégory Albora, Rabih Maamary, Zineb Miftah El Khair, Diane Tzanos, Joël Barrié, Éric Moulin, Patrick Aressy, and Anne Belleudy
Atmos. Meas. Tech., 13, 3099–3118, https://doi.org/10.5194/amt-13-3099-2020, https://doi.org/10.5194/amt-13-3099-2020, 2020
Short summary
Short summary
This article presents an instrument weighing less than 3 kg for accurate and rapid measurement of greenhouse gases between 0 and 30 km altitude using a meteorological balloon. This article shows the interest of these measurements for the validation of simulations of infrared satellite observations.
Jonathan Elsey, Marc D. Coleman, Tom D. Gardiner, Kaah P. Menang, and Keith P. Shine
Atmos. Meas. Tech., 13, 2335–2361, https://doi.org/10.5194/amt-13-2335-2020, https://doi.org/10.5194/amt-13-2335-2020, 2020
Short summary
Short summary
Water vapour is an important component in trying to understand the flows of energy between the Sun and Earth, since it is opaque to radiation emitted by both the surface and the Sun. In this paper, we study how it absorbs sunlight by way of its
continuum, a property which is poorly understood and with few measurements. Our results indicate that this continuum absorption may be more significant than previously thought, potentially impacting satellite observations and climate studies.
Claudia Grossi, Scott D. Chambers, Olivier Llido, Felix R. Vogel, Victor Kazan, Alessandro Capuana, Sylvester Werczynski, Roger Curcoll, Marc Delmotte, Arturo Vargas, Josep-Anton Morguí, Ingeborg Levin, and Michel Ramonet
Atmos. Meas. Tech., 13, 2241–2255, https://doi.org/10.5194/amt-13-2241-2020, https://doi.org/10.5194/amt-13-2241-2020, 2020
Short summary
Short summary
The sustainable support of radon metrology at the environmental level offers new scientific possibilities for the quantification of greenhouse gas (GHG) emissions and the determination of their source terms as well as for the identification of radioactive sources for the assessment of radiation exposure. This study helps to harmonize the techniques commonly used for atmospheric radon and radon progeny activity concentration measurements.
Cheng-Hsien Lin, Richard H. Grant, Albert J. Heber, and Cliff T. Johnston
Atmos. Meas. Tech., 13, 2001–2013, https://doi.org/10.5194/amt-13-2001-2020, https://doi.org/10.5194/amt-13-2001-2020, 2020
Short summary
Short summary
Gas quantification using the open-path Fourier transform infrared spectrometer (OP-FTIR) is subject to interferences of environmental variables, leading to errors in gas concentration calculations. This study investigated the effects of ambient water vapour content, temperature, path lengths, and wind speed on the quantification of N2O and CO2 concentrations, which can help the OP-FTIR users to avoid these errors and improve the precision and accuracy of the atmospheric gas quantification.
Rachel Edie, Anna M. Robertson, Robert A. Field, Jeffrey Soltis, Dustin A. Snare, Daniel Zimmerle, Clay S. Bell, Timothy L. Vaughn, and Shane M. Murphy
Atmos. Meas. Tech., 13, 341–353, https://doi.org/10.5194/amt-13-341-2020, https://doi.org/10.5194/amt-13-341-2020, 2020
Short summary
Short summary
Ground-based measurements of emissions from oil and natural gas production are important for understanding emission distributions and improving emission inventories. Here, measurement technique Other Test Method 33A (OTM 33A) is validated through several test releases staged at the Methane Emissions Technology Evaluation Center. These tests suggest OTM 33A has no inherent bias and that a group of OTM measurements is within 5 % of the known mean emission rate.
Zheng Xu, Yuliang Liu, Wei Nie, Peng Sun, Xuguang Chi, and Aijun Ding
Atmos. Meas. Tech., 12, 6737–6748, https://doi.org/10.5194/amt-12-6737-2019, https://doi.org/10.5194/amt-12-6737-2019, 2019
Short summary
Short summary
We evaluated the performance of HONO measurement by a wet-denuder--ion0chromatography system (WD/IC, MARGA). We found significant artificial HONO formed from the reaction of NO2 oxidizing SO2 in the denuder solution. High ambient NH3 would elevate the pH of the denuder solution and promote the overestimation of HONO. A method was established to correct the HONO measurement by WD/IC instruments.
Leigh R. Crilley, Louisa J. Kramer, Bin Ouyang, Jun Duan, Wenqian Zhang, Shengrui Tong, Maofa Ge, Ke Tang, Min Qin, Pinhua Xie, Marvin D. Shaw, Alastair C. Lewis, Archit Mehra, Thomas J. Bannan, Stephen D. Worrall, Michael Priestley, Asan Bacak, Hugh Coe, James Allan, Carl J. Percival, Olalekan A. M. Popoola, Roderic L. Jones, and William J. Bloss
Atmos. Meas. Tech., 12, 6449–6463, https://doi.org/10.5194/amt-12-6449-2019, https://doi.org/10.5194/amt-12-6449-2019, 2019
Short summary
Short summary
Nitrous acid (HONO) is key species for understanding tropospheric chemistry, yet accurate and precise measurements are challenging. Here we report an inter–comparison exercise of a number of instruments that measured HONO in a highly polluted location (Beijing). All instruments agreed on the temporal trends yet displayed divergence in absolute concentrations. The cause of this divergence was unclear, but it may in part be due to spatial variability in instrument location.
Rupert Holzinger, W. Joe F. Acton, William J. Bloss, Martin Breitenlechner, Leigh R. Crilley, Sébastien Dusanter, Marc Gonin, Valerie Gros, Frank N. Keutsch, Astrid Kiendler-Scharr, Louisa J. Kramer, Jordan E. Krechmer, Baptiste Languille, Nadine Locoge, Felipe Lopez-Hilfiker, Dušan Materić, Sergi Moreno, Eiko Nemitz, Lauriane L. J. Quéléver, Roland Sarda Esteve, Stéphane Sauvage, Simon Schallhart, Roberto Sommariva, Ralf Tillmann, Sergej Wedel, David R. Worton, Kangming Xu, and Alexander Zaytsev
Atmos. Meas. Tech., 12, 6193–6208, https://doi.org/10.5194/amt-12-6193-2019, https://doi.org/10.5194/amt-12-6193-2019, 2019
Christoph Zellweger, Rainer Steinbrecher, Olivier Laurent, Haeyoung Lee, Sumin Kim, Lukas Emmenegger, Martin Steinbacher, and Brigitte Buchmann
Atmos. Meas. Tech., 12, 5863–5878, https://doi.org/10.5194/amt-12-5863-2019, https://doi.org/10.5194/amt-12-5863-2019, 2019
Short summary
Short summary
We analysed results obtained through CO and N2O performance audits conducted within the framework of the Global Atmosphere Watch (GAW) quality management system of the World Meteorology Organization (WMO). The results reveal that current spectroscopic measurement techniques have clear advantages with respect to data quality objectives compared to more traditional methods. Further, they allow for a smooth continuation of historic CO and N2O time series.
Lukas Siebicke and Anas Emad
Atmos. Meas. Tech., 12, 4393–4420, https://doi.org/10.5194/amt-12-4393-2019, https://doi.org/10.5194/amt-12-4393-2019, 2019
Short summary
Short summary
We present the emerging flux measurement method
true eddy accumulation(TEA), able to quantify the land–atmosphere exchange of a large number of trace gases which are important for air quality and atmospheric composition. Our innovative implementation provides proof of concept of TEA and compared well to the established reference, outperforming previous works on TEA. Key to the success was the innovative high-speed air sampling and fully digital real-time data processing system.
Loic Lechevallier, Roberto Grilli, Erik Kerstel, Daniele Romanini, and Jérôme Chappellaz
Atmos. Meas. Tech., 12, 3101–3109, https://doi.org/10.5194/amt-12-3101-2019, https://doi.org/10.5194/amt-12-3101-2019, 2019
Short summary
Short summary
In this work we describe a highly sensitive optical spectrometer for simultaneous measurement of methane, ethane, and the isotopic composition of methane. The coupling of the spectrometer with a dissolved gas extraction system will provide a suitable tool for understanding the origins of the dissolved hydrocarbons and discriminate between the different sources (e.g., biogenic vs. thermogenic).
Kate R. Smith, Peter M. Edwards, Peter D. Ivatt, James D. Lee, Freya Squires, Chengliang Dai, Richard E. Peltier, Mat J. Evans, Yele Sun, and Alastair C. Lewis
Atmos. Meas. Tech., 12, 1325–1336, https://doi.org/10.5194/amt-12-1325-2019, https://doi.org/10.5194/amt-12-1325-2019, 2019
Short summary
Short summary
Clusters of low-cost, low-power atmospheric gas sensors were built into a sensor instrument to monitor NO2 and O3 in Beijing, alongside reference instruments, aiming to improve the reliability of sensor measurements. Clustering identical sensors and using the median sensor signal was used to minimize drift over short and medium timescales. Three different machine learning techniques were used for all the sensor data in an attempt to correct for cross-interferences, which worked to some degree.
Mei Bai, Helen Suter, Shu Kee Lam, Thomas K. Flesch, and Deli Chen
Atmos. Meas. Tech., 12, 1095–1102, https://doi.org/10.5194/amt-12-1095-2019, https://doi.org/10.5194/amt-12-1095-2019, 2019
Short summary
Short summary
Improving direct field measurement techniques to quantify gas emissions from large agriculture farm is challenging. We measured nitrous oxide (N2O) emissions with static closed chambers and slant open-path flux gradient (FG) approaches following chicken manure application. The concurrent emission ratios (FG / chamber) showed N2O fluxes measured by FG were 1.22-1.40 times higher than those from the chambers. This study provides important information for the agriculture gas measurement community.
Vincent Michoud, Stéphane Sauvage, Thierry Léonardis, Isabelle Fronval, Alexandre Kukui, Nadine Locoge, and Sébastien Dusanter
Atmos. Meas. Tech., 11, 5729–5740, https://doi.org/10.5194/amt-11-5729-2018, https://doi.org/10.5194/amt-11-5729-2018, 2018
Short summary
Short summary
This study presents the first measurements of ambient methylglyoxal, an important atmospheric α-dicarbonyl, using proton transfer reaction time-of-flight mass spectrometry. These measurements mostly agree with concomitant measurements from a reference technique: the DNPH derivatization technique and high-performance liquid chromatography with UV detection. In addition, a careful investigation of the differences between the two techniques is carried out to explain the disagreements observed.
Michael J. Prather, Clare M. Flynn, Xin Zhu, Stephen D. Steenrod, Sarah A. Strode, Arlene M. Fiore, Gustavo Correa, Lee T. Murray, and Jean-Francois Lamarque
Atmos. Meas. Tech., 11, 2653–2668, https://doi.org/10.5194/amt-11-2653-2018, https://doi.org/10.5194/amt-11-2653-2018, 2018
Short summary
Short summary
A new protocol for merging in situ atmospheric chemistry measurements with 3-D models is developed. This technique can identify the most reactive air parcels in terms of tropospheric production/loss of O3 & CH4. This approach highlights differences in 6 global chemistry models even with composition specified. Thus in situ measurements from, e.g., NASA's ATom mission can be used to develop a chemical climatology of, not only the key species, but also the rates of key reactions in each air parcel.
Richard H. Grant and Rex A. Omonode
Atmos. Meas. Tech., 11, 2119–2133, https://doi.org/10.5194/amt-11-2119-2018, https://doi.org/10.5194/amt-11-2119-2018, 2018
Short summary
Short summary
Annual emissions of trace gases requires knowledge of the emissions throughout the day and year. Unfortunately emissions into the surface boundary layer during calm nights are rarely measured. During such conditions surface layer concentrations of carbon dioxide (CO2) and nitrous oxide (N2O) often accumulate in the surface boundary layer and the time rate of change of this accumulation was used to estimate emissions. Results showed this approach to be reasonable.
Kira Sadighi, Evan Coffey, Andrea Polidori, Brandon Feenstra, Qin Lv, Daven K. Henze, and Michael Hannigan
Atmos. Meas. Tech., 11, 1777–1792, https://doi.org/10.5194/amt-11-1777-2018, https://doi.org/10.5194/amt-11-1777-2018, 2018
Short summary
Short summary
Ground-level ozone has negative human health impacts. In the summer of 2015, 13 low-cost sensor monitors were deployed to several neighborhoods around Riverside, California. There were significant spatial differences between monitors. This is important because it means that ozone in certain places may be higher than what EPA monitors report for an area, which is pertinent for residents of those communities. This research helps inform the limitations and advantages of low-cost sensor networks.
Bas Mijling, Qijun Jiang, Dave de Jonge, and Stefano Bocconi
Atmos. Meas. Tech., 11, 1297–1312, https://doi.org/10.5194/amt-11-1297-2018, https://doi.org/10.5194/amt-11-1297-2018, 2018
Short summary
Short summary
Although in many cities the population is exposed to air pollution, real-time air quality is usually only measured at a few locations. New low-cost sensor technology has the potential to extend the monitoring network significantly. We show that citizen science campaigns using the current generations of electrochemical NO2 sensors may provide useful complementary data on local air quality in an urban setting, provided that experiments are properly set up and the data are carefully analysed.
Natasha L. Miles, Douglas K. Martins, Scott J. Richardson, Christopher W. Rella, Caleb Arata, Thomas Lauvaux, Kenneth J. Davis, Zachary R. Barkley, Kathryn McKain, and Colm Sweeney
Atmos. Meas. Tech., 11, 1273–1295, https://doi.org/10.5194/amt-11-1273-2018, https://doi.org/10.5194/amt-11-1273-2018, 2018
Short summary
Short summary
Analyzers measuring methane and methane isotopic ratio were deployed at four towers in the Marcellus Shale natural gas extraction region of Pennsylvania. The methane isotopic ratio is helpful for differentiating emissions from natural gas activities from other sources (e.g., landfills). We describe the analyzer calibration. The signals observed in the study region were generally small, but the instrumental performance demonstrated here could be used in regions with stronger enhancements.
David H. Hagan, Gabriel Isaacman-VanWertz, Jonathan P. Franklin, Lisa M. M. Wallace, Benjamin D. Kocar, Colette L. Heald, and Jesse H. Kroll
Atmos. Meas. Tech., 11, 315–328, https://doi.org/10.5194/amt-11-315-2018, https://doi.org/10.5194/amt-11-315-2018, 2018
Short summary
Short summary
The use of low-cost sensors for air pollution research has outpaced our understanding of their capabilities and limitations under real-world conditions. Here we describe the deployment, calibration and evaluation of electrochemical sensors on the Island of Hawai‘i. We obtain excellent performance (RMSE < 7 ppb, r2 = 0.997) across a wide dynamic range (1 ppb–2 ppm). We introduce a hybrid regression algorithm which works across a large dynamic range and shows little decay in sensitivity over time.
Erin Dunne, Ian E. Galbally, Min Cheng, Paul Selleck, Suzie B. Molloy, and Sarah J. Lawson
Atmos. Meas. Tech., 11, 141–159, https://doi.org/10.5194/amt-11-141-2018, https://doi.org/10.5194/amt-11-141-2018, 2018
Short summary
Short summary
A comparison of measurements of 7 volatile organic compounds (VOCs) in urban air by 3 different methods is presented. An uncertainty was calculated for each method and VOCs measured to provide some idea of the reliability of the data. Even when this uncertainty was accounted for, the measurements from the different methods did not agree for 4 of the 7 VOCs. Thus, there is unaccounted uncertainty in VOC measurements which must be considered when utilizing the data and assessing their reliability.
Michelle M. Lew, Sebastien Dusanter, and Philip S. Stevens
Atmos. Meas. Tech., 11, 95–109, https://doi.org/10.5194/amt-11-95-2018, https://doi.org/10.5194/amt-11-95-2018, 2018
Short summary
Short summary
This paper describes measurements of the conversion efficiency of several organic peroxy radicals upon reaction with nitric oxide to the hydroperoxy radical, which can interfere with measurements of the latter. This interference could explain some of the discrepancies between measurements and model predictions of the hydroperoxy radical. Previous measurements of the hydroperoxy radical during the Mexico City Metropolitan Area campaign in 2006 are reanalyzed to account for the interference.
Pamela Rickly and Philip S. Stevens
Atmos. Meas. Tech., 11, 1–16, https://doi.org/10.5194/amt-11-1-2018, https://doi.org/10.5194/amt-11-1-2018, 2018
Short summary
Short summary
The hydroxyl radical is the primary atmospheric oxidant in the atmosphere, and measurements of its concentration provide a rigorous test of our understanding of atmospheric chemistry. This paper presents measurements of a potential interference with measurements of OH using laser-induced fluorescence techniques, which may contribute to measurements of OH in forested environments. The results may help to explain discrepancies between measurements and model predictions in these environments.
Sébastien Ars, Grégoire Broquet, Camille Yver Kwok, Yelva Roustan, Lin Wu, Emmanuel Arzoumanian, and Philippe Bousquet
Atmos. Meas. Tech., 10, 5017–5037, https://doi.org/10.5194/amt-10-5017-2017, https://doi.org/10.5194/amt-10-5017-2017, 2017
Short summary
Short summary
This study presents a new concept for estimating the pollutant emission rates of a site combining the tracer release method, local-scale atmospheric transport modelling and a statistical atmospheric inversion approach. The potential of this new concept is evaluated with a practical implementation based on a series of inversions of controlled methane and tracer point sources in different spatial configurations to assess the efficiency of the method in comparison with the classic tracer method.
Hendrik Fuchs, Anna Novelli, Michael Rolletter, Andreas Hofzumahaus, Eva Y. Pfannerstill, Stephan Kessel, Achim Edtbauer, Jonathan Williams, Vincent Michoud, Sebastien Dusanter, Nadine Locoge, Nora Zannoni, Valerie Gros, Francois Truong, Roland Sarda-Esteve, Danny R. Cryer, Charlotte A. Brumby, Lisa K. Whalley, Daniel Stone, Paul W. Seakins, Dwayne E. Heard, Coralie Schoemaecker, Marion Blocquet, Sebastien Coudert, Sebastien Batut, Christa Fittschen, Alexander B. Thames, William H. Brune, Cheryl Ernest, Hartwig Harder, Jennifer B. A. Muller, Thomas Elste, Dagmar Kubistin, Stefanie Andres, Birger Bohn, Thorsten Hohaus, Frank Holland, Xin Li, Franz Rohrer, Astrid Kiendler-Scharr, Ralf Tillmann, Robert Wegener, Zhujun Yu, Qi Zou, and Andreas Wahner
Atmos. Meas. Tech., 10, 4023–4053, https://doi.org/10.5194/amt-10-4023-2017, https://doi.org/10.5194/amt-10-4023-2017, 2017
Short summary
Short summary
Hydroxyl radical reactivity (k(OH)) is closely related to processes that lead to the formation of oxidised, secondary pollutants such as ozone and aerosol. In order to compare the performances of instruments measuring k(OH), experiments were conducted in the simulation chamber SAPHIR. Chemical conditions were chosen either to be representative of the atmosphere or to test potential limitations of instruments. Overall, the results show that instruments are capable of measuring k(OH).
Eben S. Cross, Leah R. Williams, David K. Lewis, Gregory R. Magoon, Timothy B. Onasch, Michael L. Kaminsky, Douglas R. Worsnop, and John T. Jayne
Atmos. Meas. Tech., 10, 3575–3588, https://doi.org/10.5194/amt-10-3575-2017, https://doi.org/10.5194/amt-10-3575-2017, 2017
Short summary
Short summary
Low-cost air quality sensor technologies offer new opportunities for fast and distributed measurements of air pollution, but a persistent characterization gap remains when it comes to evaluating sensor performance under realistic environmental sampling conditions. We present results from a newly developed integrated AQ-sensor system (ARISense) and demonstrate the utility of using high-dimensional model representation to improve the conversion of raw sensor signal to ambient concentration.
Abigail Koss, Bin Yuan, Carsten Warneke, Jessica B. Gilman, Brian M. Lerner, Patrick R. Veres, Jeff Peischl, Scott Eilerman, Rob Wild, Steven S. Brown, Chelsea R. Thompson, Thomas Ryerson, Thomas Hanisco, Glenn M. Wolfe, Jason M. St. Clair, Mitchell Thayer, Frank N. Keutsch, Shane Murphy, and Joost de Gouw
Atmos. Meas. Tech., 10, 2941–2968, https://doi.org/10.5194/amt-10-2941-2017, https://doi.org/10.5194/amt-10-2941-2017, 2017
Short summary
Short summary
Oil and gas extraction activity can cause air quality issues through emission of reactive chemicals. VOCs related to extraction operations in the United States were measured by PTR-ToF-MS from aircraft during the SONGNEX campaign in March–April 2015. The detailed analysis in this work provides a guide to interpreting PTR-ToF measurements in oil- and gas-producing regions, and it includes fundamental observations of VOC speciation and mixing ratios.
Cited articles
Antonia, R. A.: Conditional sampling in turbulence measurement, Annu. Rev. Fluid. Mech., 13, 131–56, 1981.
Aubinet, M., Vesala, T., and Papale, D. (Eds.): Eddy covariance: a practical guide to measurement and data analysis, Springer, Dordrecht, 2012.
Charuchittipan, D., Babel, W., Mauder, M., Leps, J.-P., and Foken, T.: Extension of the Averaging Time in Eddy-Covariance Measurements and Its Effect on the Energy Balance Closure, Bound.-Lay. Meteorol., 152, 303–327, https://doi.org/10.1007/s10546-014-9922-6, 2014.
Collineau, S. and Brunet, Y.: Detection of turbulent coherent motions in a forest canopy part I: Wavelet analysis, Bound.-Lay. Meteorol., 65, 357–379, 1993a.
Collineau, S. and Brunet, Y.: Detection of turbulent coherent motions in a forest canopy part II: Time-scales and conditional averages, Bound.-Lay. Meteorol., 66, 49–73, https://doi.org/10.1007/BF00705459, 1993b.
Desjardins, R. L.: Description and evaluation of a sensible heat flux detector, Bound.-Lay. Meteorol., 11, 147–154, https://doi.org/10.1007/BF02166801, 1977.
Desjardins, R. L., MacPherson, J. I., Schuepp, P. H., and Karanja, F.: An evaluation of aircraft flux measurements of CO2, water vapor and sensible heat, Bound.-Lay. Meteorol., 47, 55–69, https://doi.org/10.1007/BF00122322, 1989.
Dunn, G.: Statistical evaluation of measurement errors, Arnold, London, 2 edn., 2004.
Farge, M.: Wavelet Transforms and their Applications to Turbulence, Annu. Rev. Fluid. Mech., 24, 395–458, https://doi.org/10.1146/annurev.fl.24.010192.002143, 1992.
Finnigan, J. J., Clement, R., Malhi, Y., Leuning, R., and Cleugh, H.: A Re-Evaluation of Long-Term Flux Measurement Techniques Part I: Averaging and Coordinate Rotation, Bound.-Lay. Meteorol., 107, 1–48, 2003.
Foken, T.: Micrometeorology, Springer, Berlin, 2nd edn., 2016.
Foken, T. and Wichura, B.: Tools for quality assessment of surface-based flux measurements, Agr. Forest. Meteorol., 78, 83–105, https://doi.org/10.1016/0168-1923(95)02248-1, 1996.
Foken, T., Göckede, M., Mauder, M., Mahrt, L., Amiro, B., and Munger, W.: Post-Field Data Quality Control, in: Handbook of Micrometeorology, edited by: Lee, X., Massman, W., and Law, B., 181–208, Kluwer, Dordrecht, 2004.
Foken, T., Wimmer, F., Mauder, M., Thomas, C., and Liebethal, C.: Some aspects of the energy balance closure problem, Atmos. Chem. Phys., 6, 4395–4402, https://doi.org/10.5194/acp-6-4395-2006, 2006.
Foken, T., Aubinet, M., and Leuning, R.: The eddy covariance method, in: Eddy covariance: a practical guide to measurement and data analysis, edited by: Aubinet, M., Vesala, T., and Papale, D., Springer Atmospheric Sciences, 1–19, Springer, Dordrecht, 2012.
Fratini, G. and Mauder, M.: Towards a consistent eddy-covariance processing: an intercomparison of EddyPro and TK3, Atmos. Meas. Tech., 7, 2273–2281, https://doi.org/10.5194/amt-7-2273-2014, 2014.
Gouhier, T.: biwavelet: Conduct univariate and bivariate wavelet analyses, Library for R, Version 0.17.2, available at: https://cran.r-project.org/package=biwavelet (last access: September 2014), 2014.
Handorf, D. and Foken, T.: Analysis of turbulent structure over an Antarctic ice shelf by means of wavelet transformation. 12th Symosium on Boundary Layer and Turbulence, American Meteorological Society, 245–246, 1997.
Hoaglin, D. C., Mosteller, F., and Tukey, J. W.: Understanding robust and exploratory data analysis, John Wiley & Sons, New York, 2000.
Hollander, M. and Wolfe, D. A.: Nonparametric Statistical Methods, John Wiley & Sons, New York, 1973.
Hudgins, L., Friehe, C. A., and Mayer, M. E.: Wavelet transforms and atmopsheric turbulence, Phys. Rev. Lett., 71, 3279–3282, 1993.
Katul, G. G. and Parlange, M. B.: Analysis of land-surface heat fluxes using the orthonormal wavelet approach, Water Resour. Res., 31, 2743–2749, https://doi.org/10.1029/95WR00003, 1995.
Kolle, O. and Rebmann, C.: EddySoft – Documentation of a Software Package to Acquire and Process Eddy Covariance Data, Technical Report Nr. 10. Max-Planck-Institute for Biogeochemistry, Jena, 2007.
Kumar, P. and Foufoula-Georgiou, E.: Wavelet analysis for geophysical applications, Rev. Geophys., 35, 385–412, https://doi.org/10.1029/97RG00427, 1997.
Mahrt, L.: Eddy asymmetry in the sheared heated boundary layer, J. Atmos. Sci., 48, 472–492, https://doi.org/10.1175/1520-0469(1991)048<0472:EAITSH>2.0.CO;2, 1991.
Mauder, M. and Foken, T.: Documentation and Instruction Manual of the Eddy-Covariance Software Package TK3 (update), available at: https://epub.uni-bayreuth.de/2130/, work report, University of Bayreuth, Department of Micrometeorology, 62, 2015a.
Mauder, M. and Foken, T.: Eddy-Covariance software TK3, Zenodo, https://doi.org/10.5281/zenodo.20349, 2015b.
Mauder, M., Liebethal, C., Göckede, M., Leps, J.-P., Beyrich, F., and Foken, T.: Processing and quality control of flux data during LITFASS-2003, Bound.-Lay. Meteorol., 121, 67–88, https://doi.org/10.1007/s10546-006-9094-0, 2006.
Mauder, M., Desjardins, R. L., Oncley, S. P., and MacPherson, I.: Atmospheric response to a partial solar eclipse over a cotton field in central California, J. Appl. Meteor. Climatol., 46, 1792–1803, https://doi.org/10.1175/2007JAMC1495.1, 2007a.
Mauder, M., Oncley, S. P., Vogt, R., Weidinger, T., Ribeiro, L., Bernhofer, C., Foken, T., Kohsiek, W., De Bruin, H. A. R., and Liu, H.: The energy balance experiment EBEX-2000. Part II: Intercomparison of eddy-covariance sensors and post-field data processing methods, Bound.-Lay. Meteorol., 123, 29–54, https://doi.org/10.1007/s10546-006-9139-4, 2007b.
Mauder, M., Foken, T., Clement, R., Elbers, J. A., Eugster, W., Grünwald, T., Heusinkveld, B., and Kolle, O.: Quality control of CarboEurope flux data – Part 2: Inter-comparison of eddy-covariance software, Biogeosciences, 5, 451–462, https://doi.org/10.5194/bg-5-451-2008, 2008.
Moore, C.: Frequency response corrections for eddy correlation systems, Bound.-Lay. Meteorol., 37, 17–35, https://doi.org/10.1007/BF00122754, 1986.
Nordbo, A. and Katul, G.: A Wavelet-Based Correction Method for Eddy-Covariance High-Frequency Losses in Scalar Concentration Measurements, Bound.-Lay. Meteorol., 146, 81–102, 2013.
Oncley, S. P., Businger, J. A., Itsweire, E. C., Friehe, C. A., LaRue, J. C., and Chang, S. S.: Surface layer profiles and turbulence measurements over uniform land under near-neutral conditions, in: 9th Symp on Boundary Layer and Turbulence, 237–240, American Meteorological Society, Roskilde, Denmark, 1990.
Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., and Yakir, D.: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation, Biogeosciences, 3, 571–583, https://doi.org/10.5194/bg-3-571-2006, 2006.
Percival, D. and Walden, A. T.: Wavelet methods for time series analysis, Cambridge Univ. Press, Cambridge, 2008.
Rebmann, C., Kolle, O., Heinesch, B., Queck, R., Ibrom, A., and Aubinet, M.: Data Acquisition and Flux Calculations, in: Eddy covariance: a practical guide to measurement and data analysis, edited by: Aubinet, M., Vesala, T., and Papale, D., Springer Atmospheric Sciences, 59–84, Springer, Dordrecht, 2012.
Riederer, M., Hübner, J., Ruppert, J., Brand, W. A., and Foken, T.: Prerequisites for application of hyperbolic relaxed eddy accumulation on managed grasslands and alternative net ecosystem exchange flux partitioning, Atmos. Meas. Tech., 7, 4237–4250, https://doi.org/10.5194/amt-7-4237-2014, 2014.
Saito, M. and Asanuma, J.: Eddy Covariance Calculation Revisited with Wavelet Cospectra, Sola, 4, 49–52, https://doi.org/10.2151/sola.2008-013, 2008.
Schaller, C., Göckede, M., and Foken, T.: Flux calculation of short turbulent events in Chersky in the Sakha (Yakutia) Republic, Far Eastern Federal District of Russia, available at: https://doi.pangaea.de/10.1594/PANGAEA.873260, 2017.
Schotanus, P., Nieuwstadt, F., and De Bruin, H.: Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes, Bound.-Lay. Meteorol., 26, 81–93, https://doi.org/10.1007/BF00164332, 1983.
Strunin, M. A. and Hiyama, T.: Applying wavelet transforms to analyse aircraft-measured turbulence and turbulent fluxes in the atmospheric boundary layer over eastern Siberia, Hydrol. Process., 18, 3081–3098, https://doi.org/10.1002/hyp.5750, 2004.
Stull, R. B.: An Introduction to Boundary Layer Meteorology, Kluwer Acad. Publ., Dordrecht, Boston, London, 1988.
Terradellas, E., Morales, G., Cuxart, J., and Yagüe, C.: Wavelet methods: application to the study of the stable atmospheric boundary layer under non-stationary conditions, Dynam. Atmos. Oceans, 34, 225–244, https://doi.org/10.1016/S0377-0265(01)00069-0, 2001.
Thomas, C. K. and Foken, T.: Detection of long-term coherent exchange over spruce forest using wavelet analysis, Theor. Appl. Climatol., 80, 91–104, https://doi.org/10.1007/s00704-004-0093-0, 2005.
Thomas, C. K. and Foken, T.: Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy, Bound.-Lay. Meteorol., 123, 317–337, https://doi.org/10.1007/s10546-006-9144-7, 2007.
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis, B. Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998.
Treviño, G. and Andreas, E. L.: On wavelet analysis of nonstationary turbulence, Bound.-Lay. Meteorol., 81, 271–288, https://doi.org/10.1007/BF02430332, 1996.
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements for density effects due to heat and water vapour transfer, Q. J. Roy. Meteor. Soc., 106, 85–100, https://doi.org/10.1002/qj.49710644707, 1980.
Wilczak, J. M., Oncley, S. P., and Stage, S. A.: Sonic Anemometer Tilt Correction Algorithms, Bound.-Lay. Meteorol., 99, 127–150, https://doi.org/10.1023/A:1018966204465, 2001.
Short summary
The eddy covariance (EC) method allows for measuring and calculating vertical turbulent exchange fluxes between ecosystems and the atmosphere. It fails in non-steady-state flow conditions, e.g. in Arctic regions. Two alternative calculation methods, conditional sampling and wavelet analysis, were implemented and compared to EC. Wavelet analysis for allows calculating a trustworthy flux even in non-stationary times and offers new possibilities for exact flux calculation in difficult environments.
The eddy covariance (EC) method allows for measuring and calculating vertical turbulent exchange...