Articles | Volume 11, issue 3
https://doi.org/10.5194/amt-11-1615-2018
https://doi.org/10.5194/amt-11-1615-2018
Research article
 | 
22 Mar 2018
Research article |  | 22 Mar 2018

A prototype method for diagnosing high ice water content probability using satellite imager data

Christopher R. Yost, Kristopher M. Bedka, Patrick Minnis, Louis Nguyen, J. Walter Strapp, Rabindra Palikonda, Konstantin Khlopenkov, Douglas Spangenberg, William L. Smith Jr., Alain Protat, and Julien Delanoe

Related authors

Global clear-sky surface skin temperature from multiple satellites using a single-channel algorithm with angular anisotropy corrections
Benjamin R. Scarino, Patrick Minnis, Thad Chee, Kristopher M. Bedka, Christopher R. Yost, and Rabindra Palikonda
Atmos. Meas. Tech., 10, 351–371, https://doi.org/10.5194/amt-10-351-2017,https://doi.org/10.5194/amt-10-351-2017, 2017
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Raman lidar-derived optical and microphysical properties of ice crystals within thin Arctic clouds during PARCS campaign
Patrick Chazette and Jean-Christophe Raut
Atmos. Meas. Tech., 16, 5847–5861, https://doi.org/10.5194/amt-16-5847-2023,https://doi.org/10.5194/amt-16-5847-2023, 2023
Short summary
Evaluation of four ground-based retrievals of cloud droplet number concentration in marine stratocumulus with aircraft in situ measurements
Damao Zhang, Andrew M. Vogelmann, Fan Yang, Edward Luke, Pavlos Kollias, Zhien Wang, Peng Wu, William I. Gustafson Jr., Fan Mei, Susanne Glienke, Jason Tomlinson, and Neel Desai
Atmos. Meas. Tech., 16, 5827–5846, https://doi.org/10.5194/amt-16-5827-2023,https://doi.org/10.5194/amt-16-5827-2023, 2023
Short summary
Deep convective cloud system size and structure across the global tropics and subtropics
Eric M. Wilcox, Tianle Yuan, and Hua Song
Atmos. Meas. Tech., 16, 5387–5401, https://doi.org/10.5194/amt-16-5387-2023,https://doi.org/10.5194/amt-16-5387-2023, 2023
Short summary
A neural-network-based method for generating synthetic 1.6 µm near-infrared satellite images
Florian Baur, Leonhard Scheck, Christina Stumpf, Christina Köpken-Watts, and Roland Potthast
Atmos. Meas. Tech., 16, 5305–5326, https://doi.org/10.5194/amt-16-5305-2023,https://doi.org/10.5194/amt-16-5305-2023, 2023
Short summary
Numerical model generation of test frames for pre-launch studies of EarthCARE's retrieval algorithms and data management system
Zhipeng Qu, David P. Donovan, Howard W. Barker, Jason N. S. Cole, Mark W. Shephard, and Vincent Huijnen
Atmos. Meas. Tech., 16, 4927–4946, https://doi.org/10.5194/amt-16-4927-2023,https://doi.org/10.5194/amt-16-4927-2023, 2023
Short summary

Cited articles

Ai, Y., Li, J., Shi, W., Schmit, T. J., Cao, C., and Li, W.: Deep convective cloud characterizations from both broadband imager and hyperspectral infrared sounder measurements, J. Geophys. Res.-Atmos., 122, 1700–1712, https://doi.org/10.1002/2016JD025408, 2017.
Apke, J. M., Mecikalski, J. R., and Jewett, C. P.: Analysis of mesoscale atmospheric flows above mature deep convection using super rapid scan geostationary satellite data, J. Appl. Meteorol. Clim., 55, 1859–1887, https://doi.org/10.1175/JAMC-D-15-0253.1, 2016.
Bedka, K., Brunner, J., Dworak, R., Feltz, W., Otkin, J., and Greenwald, T.: Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients, J. Appl. Meteorol. Clim., 49, 181–202, https://doi.org/10.1175/2009JAMC2286.1, 2010.
Bedka, K., Dworak, R., Brunner, J., and Feltz, W.: Validation of satellite-based objective overshooting cloud-top detection methods using CloudSat cloud profiling radar observations, J. Appl. Meteorol. Clim., 51, 1811–1822, https://doi.org/10.1175/JAMC-D-11-0131.1, 2012.
Bedka, K. M. and Khlopenkov, K.: A probabilistic multispectral pattern recognition method for detection of overshooting cloud tops using passive satellite imager observations, J. Appl. Meteorol. Clim., 55, 1983–2005, https://doi.org/10.1175/JAMC-D-15-0249.1, 2016.
Download
Short summary
Accretion of cloud ice particles upon engine or instrument probe surfaces can cause engine malfunction or even power loss, and therefore it is important for aircraft to avoid flight through clouds that may have produced large quantities of ice particles. This study introduces a method by which potentially hazardous conditions can be detected using satellite imagery. It was found that potentially hazardous conditions were often located near or beneath very cold clouds and thunderstorm updrafts.