Articles | Volume 11, issue 1
https://doi.org/10.5194/amt-11-315-2018
https://doi.org/10.5194/amt-11-315-2018
Research article
 | 
15 Jan 2018
Research article |  | 15 Jan 2018

Calibration and assessment of electrochemical air quality sensors by co-location with regulatory-grade instruments

David H. Hagan, Gabriel Isaacman-VanWertz, Jonathan P. Franklin, Lisa M. M. Wallace, Benjamin D. Kocar, Colette L. Heald, and Jesse H. Kroll

Related authors

Biomass-burning-derived particles from a wide variety of fuels – Part 2: Effects of photochemical aging on particle optical and chemical properties
Christopher D. Cappa, Christopher Y. Lim, David H. Hagan, Matthew Coggon, Abigail Koss, Kanako Sekimoto, Joost de Gouw, Timothy B. Onasch, Carsten Warneke, and Jesse H. Kroll
Atmos. Chem. Phys., 20, 8511–8532, https://doi.org/10.5194/acp-20-8511-2020,https://doi.org/10.5194/acp-20-8511-2020, 2020
Short summary
Biomass-burning-derived particles from a wide variety of fuels – Part 1: Properties of primary particles
Crystal D. McClure, Christopher Y. Lim, David H. Hagan, Jesse H. Kroll, and Christopher D. Cappa
Atmos. Chem. Phys., 20, 1531–1547, https://doi.org/10.5194/acp-20-1531-2020,https://doi.org/10.5194/acp-20-1531-2020, 2020
Short summary
OH chemistry of non-methane organic gases (NMOGs) emitted from laboratory and ambient biomass burning smoke: evaluating the influence of furans and oxygenated aromatics on ozone and secondary NMOG formation
Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Kanako Sekimoto, Bin Yuan, Jessica B. Gilman, David H. Hagan, Vanessa Selimovic, Kyle J. Zarzana, Steven S. Brown, James M. Roberts, Markus Müller, Robert Yokelson, Armin Wisthaler, Jordan E. Krechmer, Jose L. Jimenez, Christopher Cappa, Jesse H. Kroll, Joost de Gouw, and Carsten Warneke
Atmos. Chem. Phys., 19, 14875–14899, https://doi.org/10.5194/acp-19-14875-2019,https://doi.org/10.5194/acp-19-14875-2019, 2019
Short summary
Secondary organic aerosol formation from the laboratory oxidation of biomass burning emissions
Christopher Y. Lim, David H. Hagan, Matthew M. Coggon, Abigail R. Koss, Kanako Sekimoto, Joost de Gouw, Carsten Warneke, Christopher D. Cappa, and Jesse H. Kroll
Atmos. Chem. Phys., 19, 12797–12809, https://doi.org/10.5194/acp-19-12797-2019,https://doi.org/10.5194/acp-19-12797-2019, 2019
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Validation and Intercomparisons
Improving consistency in methane emission quantification from the natural gas distribution systems across measurement devices
Judith Tettenborn, Daniel Zavala-Araiza, Daan Stroeken, Hossein Maazallahi, Carina van der Veen, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, Felix Vogel, Lawson Gillespie, Sebastien Ars, James France, David Lowry, Rebecca Fisher, and Thomas Röckmann
Atmos. Meas. Tech., 18, 3569–3584, https://doi.org/10.5194/amt-18-3569-2025,https://doi.org/10.5194/amt-18-3569-2025, 2025
Short summary
Interpretation of mass spectra by a Vocus proton-transfer-reaction mass spectrometer (PTR-MS) at an urban site: insights from gas chromatographic pre-separation
Ying Zhang, Yuwei Wang, Chuang Li, Yueyang Li, Sijia Yin, Megan S. Claflin, Brian M. Lerner, Douglas Worsnop, and Lin Wang
Atmos. Meas. Tech., 18, 3547–3568, https://doi.org/10.5194/amt-18-3547-2025,https://doi.org/10.5194/amt-18-3547-2025, 2025
Short summary
Improving the quantification of peak concentrations for air quality sensors via data weighting
Caroline Frischmon, Jonathan Silberstein, Annamarie Guth, Erick Mattson, Jack Porter, and Michael Hannigan
Atmos. Meas. Tech., 18, 3147–3159, https://doi.org/10.5194/amt-18-3147-2025,https://doi.org/10.5194/amt-18-3147-2025, 2025
Short summary
Long-term observations of atmospheric CO2 and CH4 trends and comparison of two measurement systems at Pallas-Sammaltunturi station in Northern Finland
Antti Laitinen, Hermanni Aaltonen, Christoph Zellweger, Aki Tsuruta, Tuula Aalto, and Juha Hatakka
Atmos. Meas. Tech., 18, 3109–3133, https://doi.org/10.5194/amt-18-3109-2025,https://doi.org/10.5194/amt-18-3109-2025, 2025
Short summary
Evaluating mass flow meter measurements from chambers for greenhouse gas emission from orphan wells and other point sources
Karl B. Haase and Nicholas J. Gianoutsos
EGUsphere, https://doi.org/10.5194/egusphere-2025-1201,https://doi.org/10.5194/egusphere-2025-1201, 2025
Short summary

Cited articles

Altman, N. S.: An introduction to kernel and nearest-neighbor nonparametric regression, Am. Stat., 46, 175–185, https://doi.org/10.1080/00031305.1992.10475879, 1992.
Breiman, L.: Bagging predictors, Mach. Learn., 24, 123–140, https://doi.org/10.1007/BF00058655, 1996.
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.: Classification and Regression Trees, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, USA, 1984.
Cao, Z., Buttner, W. J., and Stetter, J. R.: The properties and applications of amperometric gas sensors, Electroanal., 4, 253–266, https://doi.org/10.1002/elan.1140040302, 1992.
Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., Broday, D., and Bartonova, A.: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?, Environ. Int., 99, 293–302, https://doi.org/10.1016/j.envint.2016.12.007, 2017.
Download
Short summary
The use of low-cost sensors for air pollution research has outpaced our understanding of their capabilities and limitations under real-world conditions. Here we describe the deployment, calibration and evaluation of electrochemical sensors on the Island of Hawai‘i. We obtain excellent performance (RMSE < 7 ppb, r2 = 0.997) across a wide dynamic range (1 ppb–2 ppm). We introduce a hybrid regression algorithm which works across a large dynamic range and shows little decay in sensitivity over time.
Share