Articles | Volume 11, issue 11
https://doi.org/10.5194/amt-11-5981-2018
https://doi.org/10.5194/amt-11-5981-2018
Research article
 | 
30 Oct 2018
Research article |  | 30 Oct 2018

Recovery of the three-dimensional wind and sonic temperature data from a physically deformed sonic anemometer

Xinhua Zhou, Qinghua Yang, Xiaojie Zhen, Yubin Li, Guanghua Hao, Hui Shen, Tian Gao, Yirong Sun, and Ning Zheng

Related authors

Field assessments on the impact of CO2 concentration fluctuations along with complex-terrain flows on the estimation of the net ecosystem exchange of temperate forests
Dexiong Teng, Jiaojun Zhu, Tian Gao, Fengyuan Yu, Yuan Zhu, Xinhua Zhou, and Bai Yang
Atmos. Meas. Tech., 17, 5581–5599, https://doi.org/10.5194/amt-17-5581-2024,https://doi.org/10.5194/amt-17-5581-2024, 2024
Short summary
Accuracies of field CO2–H2O data from open-path eddy-covariance flux systems: assessment based on atmospheric physics and biological environment
Xinhua Zhou, Tian Gao, Ning Zheng, Bai Yang, Yanlei Li, Fengyuan Yu, Tala Awada, and Jiaojun Zhu
Geosci. Instrum. Method. Data Syst., 11, 335–357, https://doi.org/10.5194/gi-11-335-2022,https://doi.org/10.5194/gi-11-335-2022, 2022
Short summary
Air temperature equation derived from sonic temperature and water vapor mixing ratio for turbulent airflow sampled through closed-path eddy-covariance flux systems
Xinhua Zhou, Tian Gao, Eugene S. Takle, Xiaojie Zhen, Andrew E. Suyker, Tala Awada, Jane Okalebo, and Jiaojun Zhu
Atmos. Meas. Tech., 15, 95–115, https://doi.org/10.5194/amt-15-95-2022,https://doi.org/10.5194/amt-15-95-2022, 2022
Short summary
An eddy-covariance system with an innovative vortex intake for measuring carbon dioxide and water fluxes of ecosystems
Jingyong Ma, Tianshan Zha, Xin Jia, Steve Sargent, Rex Burgon, Charles P.-A. Bourque, Xinhua Zhou, Peng Liu, Yujie Bai, and Yajuan Wu
Atmos. Meas. Tech., 10, 1259–1267, https://doi.org/10.5194/amt-10-1259-2017,https://doi.org/10.5194/amt-10-1259-2017, 2017
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: In Situ Measurement | Topic: Instruments and Platforms
An introduction of the Three-Dimensional Precipitation Particle Imager (3D-PPI)
Jiayi Shi, Xichuan Liu, Lei Liu, Liying Liu, and Peng Wang
Atmos. Meas. Tech., 18, 2261–2278, https://doi.org/10.5194/amt-18-2261-2025,https://doi.org/10.5194/amt-18-2261-2025, 2025
Short summary
SAMURAI-S: Sonic Anemometer on a MUlti-Rotor drone for Atmospheric turbulence Investigation in a Sling load configuration
Mauro Ghirardelli, Stephan T. Kral, Etienne Cheynet, and Joachim Reuder
Atmos. Meas. Tech., 18, 2103–2124, https://doi.org/10.5194/amt-18-2103-2025,https://doi.org/10.5194/amt-18-2103-2025, 2025
Short summary
A novel assessment of the vertical velocity correction for non-orthogonal sonic anemometers
Kyaw Tha Paw U, Mary Rose Mangan, Jilmarie Stephens, Kosana Suvočarev, Jenae' Clay, Olmo Guerrero Medina, Emma Ware, Amanda Kerr-Munslow, James McGregor, John Kochendorfer, Megan McAuliffe, and Megan Metz
Atmos. Meas. Tech., 18, 1485–1497, https://doi.org/10.5194/amt-18-1485-2025,https://doi.org/10.5194/amt-18-1485-2025, 2025
Short summary
Improving the accuracy in particle concentration measurements of a balloon-borne optical particle counter UCASS
Sina Jost, Ralf Weigel, Konrad Kandler, Luis Valero, Jessica Girdwood, Chris Stopford, Warren Stanley, Luca Katharina Eichhorn, Christian von Glahn, and Holger Tost
EGUsphere, https://doi.org/10.5194/egusphere-2025-451,https://doi.org/10.5194/egusphere-2025-451, 2025
Short summary
Justification for high ascent attainment for balloon radiosonde soundings at GRUAN and other sites
Masatomo Fujiwara, Bomin Sun, Anthony Reale, Domenico Cimini, Salvatore Larosa, Lori Borg, Christoph von Rohden, Michael Sommer, Ruud Dirksen, Marion Maturilli, Holger Vömel, Rigel Kivi, Bruce Ingleby, Ryan J. Kramer, Belay Demoz, Fabio Madonna, Fabien Carminati, Owen Lewis, Brett Candy, Christopher Thomas, David Edwards, Noersomadi, Kensaku Shimizu, and Peter Thorne
EGUsphere, https://doi.org/10.5194/egusphere-2024-3906,https://doi.org/10.5194/egusphere-2024-3906, 2025
Short summary

Cited articles

Barrett, E. W. and Suomi V. E.: Preliminary report on temperature measurement by sonic means, J. Atmos. Sci., 6, 273–276, https://doi.org/10.1175/1520-0469(1949)006<0273:PROTMB>2.0.CO;2, 1949. 
Blonquist, J. M. J., Norman, J. M., and Bugbee, B.: Automated measurement of canopy stomatal conductance based on infrared temperature, Agr. Forest Meteorol., 149, 2183–2197, https://doi.org/10.1016/j.agrformet.2009.06.021, 2009. 
Buck, A. L.: New equations for computing vapor pressure and enhancement factor, J. Appl. Meteorol., 20, 1527–1532, https://doi.org/10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2, 1981. 
Burns, S. P., Horst, T. W., Jacobsen, L., Blanken, P. D., and Monson, R. K.: Using sonic anemometer temperature to measure sensible heat flux in strong winds, Atmos. Meas. Tech., 5, 2095–2111, https://doi.org/10.5194/amt-5-2095-2012, 2012. 
Campbell Scientific Inc.: EasyFlux DL CR3000OP for CR3000 and Open-Path eddy-Covariance System, Instruction Manual, 140 pp., Logan, UT, 2016. 
Download
Short summary
The three-dimensional wind and sonic temperature data from a physically deformed sonic anemometer was successfully recovered by developing equations, algorithms, and related software. Using two sets of geometry data from production calibration and return re-calibration, this algorithm can recover wind with/without transducer shadow correction and sonic temperature with crosswind correction, and then obtain fluxes at quality as expected. This study is applicable as a reference for related topics.
Share