Articles | Volume 12, issue 6
https://doi.org/10.5194/amt-12-3151-2019
https://doi.org/10.5194/amt-12-3151-2019
Research article
 | 
13 Jun 2019
Research article |  | 13 Jun 2019

Can liquid cloud microphysical processes be used for vertically pointing cloud radar calibration?

Maximilian Maahn, Fabian Hoffmann, Matthew D. Shupe, Gijs de Boer, Sergey Y. Matrosov, and Edward P. Luke

Related authors

A comprehensive in situ and remote sensing data set collected during the HALO–(𝒜 𝒞)3 aircraft campaign
André Ehrlich, Susanne Crewell, Andreas Herber, Marcus Klingebiel, Christof Lüpkes, Mario Mech, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Matthias Buschmann, Hans-Christian Clemen, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Andreas Giez, Sarah Grawe, Christophe Gourbeyre, Jörg Hartmann, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsófia Jurányi, Benjamin Kirbus, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Christian Mallaun, Johanna Mayer, Stephan Mertes, Guillaume Mioche, Manuel Moser, Hanno Müller, Veronika Pörtge, Nils Risse, Greg Roberts, Sophie Rosenburg, Johannes Röttenbacher, Michael Schäfer, Jonas Schaefer, Andreas Schäfler, Imke Schirmacher, Johannes Schneider, Sabrina Schnitt, Frank Stratmann, Christian Tatzelt, Christiane Voigt, Andreas Walbröl, Anna Weber, Bruno Wetzel, Martin Wirth, and Manfred Wendisch
Earth Syst. Sci. Data, 17, 1295–1328, https://doi.org/10.5194/essd-17-1295-2025,https://doi.org/10.5194/essd-17-1295-2025, 2025
Short summary
Investigating KDP signatures inside and below the dendritic growth layer with W-band Doppler Radar and in situ snowfall camera
Anton Kötsche, Alexander Myagkov, Leonie von Terzi, Maximilian Maahn, Veronika Ettrichrätz, Teresa Vogl, Alexander Ryzhkov, Petar Bukovcic, Davide Ori, and Heike Kalesse-Los
EGUsphere, https://doi.org/10.5194/egusphere-2025-734,https://doi.org/10.5194/egusphere-2025-734, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Riming-dependent Snowfall Rate and Ice Water Content Retrievals for W-band cloud radar
Nina Maherndl, Alessandro Battaglia, Anton Kötsche, and Maximilian Maahn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3916,https://doi.org/10.5194/egusphere-2024-3916, 2025
Short summary
How does riming influence the observed spatial variability of ice water in mixed-phase clouds?
Nina Maherndl, Manuel Moser, Imke Schirmacher, Aaron Bansemer, Johannes Lucke, Christiane Voigt, and Maximilian Maahn
Atmos. Chem. Phys., 24, 13935–13960, https://doi.org/10.5194/acp-24-13935-2024,https://doi.org/10.5194/acp-24-13935-2024, 2024
Short summary
How to reduce sampling errors in spaceborne cloud radar-based snowfall estimates
Filippo Emilio Scarsi, Alessandro Battaglia, Maximilian Maahn, and Stef Lhermitte
EGUsphere, https://doi.org/10.5194/egusphere-2024-1917,https://doi.org/10.5194/egusphere-2024-1917, 2024
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Attribution of riming and aggregation processes by application of the vertical distribution of particle shape (VDPS) and spectral retrieval techniques to cloud radar observations
Audrey Teisseire, Anne-Claire Billault-Roux, Teresa Vogl, and Patric Seifert
Atmos. Meas. Tech., 18, 1499–1517, https://doi.org/10.5194/amt-18-1499-2025,https://doi.org/10.5194/amt-18-1499-2025, 2025
Short summary
Factors limiting contrail detection in satellite imagery
Oliver G. A. Driver, Marc E. J. Stettler, and Edward Gryspeerdt
Atmos. Meas. Tech., 18, 1115–1134, https://doi.org/10.5194/amt-18-1115-2025,https://doi.org/10.5194/amt-18-1115-2025, 2025
Short summary
Evaluating spectral cloud effective radius retrievals from the Enhanced MODIS Airborne Simulator (eMAS) during ORACLES
Kerry Meyer, Steven Platnick, G. Thomas Arnold, Nandana Amarasinghe, Daniel Miller, Jennifer Small-Griswold, Mikael Witte, Brian Cairns, Siddhant Gupta, Greg McFarquhar, and Joseph O'Brien
Atmos. Meas. Tech., 18, 981–1011, https://doi.org/10.5194/amt-18-981-2025,https://doi.org/10.5194/amt-18-981-2025, 2025
Short summary
Errors in stereoscopic retrievals of cloud top height for single-layer clouds
Jesse Loveridge and Larry Di Girolamo
EGUsphere, https://doi.org/10.5194/egusphere-2025-20,https://doi.org/10.5194/egusphere-2025-20, 2025
Short summary
A method to retrieve mixed phase cloud vertical structure from airborne lidar
Ewan Crosbie, Johnathan Hair, Amin Nehrir, Richard Ferrare, Chris Hostetler, Taylor Shingler, David Harper, Marta Fenn, James Collins, Rory Barton-Grimley, Brian Collister, K. Lee Thornhill, Christiane Voigt, Simon Kirschler, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-3844,https://doi.org/10.5194/egusphere-2024-3844, 2024
Short summary

Cited articles

Acquistapace, C., Kneifel, S., Löhnert, U., Kollias, P., Maahn, M., and Bauer-Pfundstein, M.: Optimizing observations of drizzle onset with millimeter-wavelength radars, Atmos. Meas. Tech., 10, 1783–1802, https://doi.org/10.5194/amt-10-1783-2017, 2017. a, b, c
Acquistapace, C., Löhnert, U., Maahn, M., and Kollias, P.: A New Criterion to Improve Operational Drizzle Detection with Ground-Based Remote Sensing, J. Atmos. Ocean. Tech., 36, 781–801, https://doi.org/10.1175/JTECH-D-18-0158.1, 2019. a, b, c
Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. a
ARM user facility: Cloud mask from Micropulse Lidar (30SMPLCMASK1ZWANG), Oliktok Point (OLI) and North Slope of Alaska (NSA), compiled by: Sivaraman, C., Johnson, K., Riihimaki, L., and Giangrande, S., ARM Data Center, https://doi.org/10.5439/1027736, 1990 (updated daily). a, b
ARM user facility: Microwave Radiometer (MWRLOS), North Slope of Alaska (NSA), compiled by: Sivaraman, C., Gaustad, K., Riihimaki, L., Cadeddu, M., Shippert, T., and Ghate, V., ARM Data Center, https://doi.org/10.5439/1046211, 1993, (updated daily). a, b
Download
Short summary
Cloud radars are unique instruments for observing cloud processes, but uncertainties in radar calibration have frequently limited data quality. Here, we present three novel methods for calibrating vertically pointing cloud radars. These calibration methods are based on microphysical processes of liquid clouds, such as the transition of cloud droplets to drizzle drops. We successfully apply the methods to cloud radar data from the North Slope of Alaska (NSA) and Oliktok Point (OLI) ARM sites.
Share