Articles | Volume 13, issue 1
Atmos. Meas. Tech., 13, 39–52, 2020
https://doi.org/10.5194/amt-13-39-2020
Atmos. Meas. Tech., 13, 39–52, 2020
https://doi.org/10.5194/amt-13-39-2020

Research article 08 Jan 2020

Research article | 08 Jan 2020

Development of an improved two-sphere integration technique for quantifying black carbon concentrations in the atmosphere and seasonal snow

Xin Wang et al.

Related authors

Measurement report: Molecular composition, optical properties, and radiative effects of water-soluble organic carbon in snowpack samples from northern Xinjiang, China
Yue Zhou, Christopher P. West, Anusha P. S. Hettiyadura, Xiaoying Niu, Hui Wen, Jiecan Cui, Tenglong Shi, Wei Pu, Xin Wang, and Alexander Laskin
Atmos. Chem. Phys., 21, 8531–8555, https://doi.org/10.5194/acp-21-8531-2021,https://doi.org/10.5194/acp-21-8531-2021, 2021
Short summary
Enhancement of snow albedo reduction and radiative forcing due to coated black carbon in snow
Wei Pu, Tenglong Shi, Jiecan Cui, Yang Chen, Yue Zhou, and Xin Wang
The Cryosphere, 15, 2255–2272, https://doi.org/10.5194/tc-15-2255-2021,https://doi.org/10.5194/tc-15-2255-2021, 2021
Short summary
Enhanced light absorption and reduced snow albedo due to internally mixed mineral dust in grains of snow
Tenglong Shi, Jiecan Cui, Yang Chen, Yue Zhou, Wei Pu, Xuanye Xu, Quanliang Chen, Xuelei Zhang, and Xin Wang
Atmos. Chem. Phys., 21, 6035–6051, https://doi.org/10.5194/acp-21-6035-2021,https://doi.org/10.5194/acp-21-6035-2021, 2021
Short summary
Satellite-based radiative forcing by light-absorbing particles in snow across the Northern Hemisphere
Jiecan Cui, Tenglong Shi, Yue Zhou, Dongyou Wu, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 21, 269–288, https://doi.org/10.5194/acp-21-269-2021,https://doi.org/10.5194/acp-21-269-2021, 2021
Short summary
Haze pollution under a high atmospheric oxidization capacity in summer in Beijing: insights into formation mechanism of atmospheric physicochemical processes
Dandan Zhao, Guangjing Liu, Jinyuan Xin, Jiannong Quan, Yuesi Wang, Xin Wang, Lindong Dai, Wenkang Gao, Guiqian Tang, Bo Hu, Yongxiang Ma, Xiaoyan Wu, Lili Wang, Zirui Liu, and Fangkun Wu
Atmos. Chem. Phys., 20, 4575–4592, https://doi.org/10.5194/acp-20-4575-2020,https://doi.org/10.5194/acp-20-4575-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Technique: Laboratory Measurement | Topic: Instruments and Platforms
A method for liquid spectrophotometric measurement of total and water-soluble iron and copper in ambient aerosols
Yuhan Yang, Dong Gao, and Rodney J. Weber
Atmos. Meas. Tech., 14, 4707–4719, https://doi.org/10.5194/amt-14-4707-2021,https://doi.org/10.5194/amt-14-4707-2021, 2021
Short summary
Efficacy of a portable, moderate-resolution, fast-scanning differential mobility analyzer for ambient aerosol size distribution measurements
Stavros Amanatidis​​​​​​​, Yuanlong Huang, Buddhi Pushpawela, Benjamin C. Schulze, Christopher M. Kenseth, Ryan X. Ward, John H. Seinfeld, Susanne V. Hering, and Richard C. Flagan
Atmos. Meas. Tech., 14, 4507–4516, https://doi.org/10.5194/amt-14-4507-2021,https://doi.org/10.5194/amt-14-4507-2021, 2021
Short summary
Comparative characterization of the performance of bio-aerosol nebulizers in connection with atmospheric simulation chambers
Silvia G. Danelli, Marco Brunoldi, Dario Massabò, Franco Parodi, Virginia Vernocchi, and Paolo Prati
Atmos. Meas. Tech., 14, 4461–4470, https://doi.org/10.5194/amt-14-4461-2021,https://doi.org/10.5194/amt-14-4461-2021, 2021
Short summary
Coupling a gas chromatograph simultaneously to a flame ionization detector and chemical ionization mass spectrometer for isomer-resolved measurements of particle-phase organic compounds
Chenyang Bi, Jordan E. Krechmer, Graham O. Frazier, Wen Xu, Andrew T. Lambe, Megan S. Claflin, Brian M. Lerner, John T. Jayne, Douglas R. Worsnop, Manjula R. Canagaratna, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 14, 3895–3907, https://doi.org/10.5194/amt-14-3895-2021,https://doi.org/10.5194/amt-14-3895-2021, 2021
Short summary
Investigation of structural changes of atmospheric aerosol samples during two thermal–optical measurement procedures (EUSAAR2, NIOSH870)
Theresa Haller, Eva Sommer, Thomas Steinkogler, Christian Rentenberger, Anna Wonaschuetz, Anne Kasper-Giebl, Hinrich Grothe, and Regina Hitzenberger
Atmos. Meas. Tech., 14, 3721–3735, https://doi.org/10.5194/amt-14-3721-2021,https://doi.org/10.5194/amt-14-3721-2021, 2021
Short summary

Cited articles

Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006. 
Ban-Weiss, G. A., Cao, L., Bala, G., and Caldeira, K.: Dependence of climate forcing and response on the altitude of black carbon aerosols, Clim. Dynam., 38, 897–911, https://doi.org/10.1007/s00382-011-1052-y, 2012. 
Ballach, J., Hitzenberger, R., Schultz, E., and Jaeschke, W.: Development of an improved optical transmission technique for black carbon (BC) analysis, Atmos. Environ., 35, 2089–2100, https://doi.org/10.1016/S1352-2310(00)00499-4, 2001. 
Baumgardner, D., Kok, G., and Raga, G.: Warming of the Arctic lower stratosphere by light absorbing particles, Geophys. Res. Lett., 31, L06117, https://doi.org/10.1029/2003GL018883, 2004. 
Download
Short summary
We developed an improved two-sphere integration (TSI) technique to quantify black carbon (BC) concentrations in the atmosphere and seasonal snow. The major advantage of this system is that it combines two distinct integrated spheres to reduce the scattering effect due to light-absorbing particles and thus provides accurate determinations of total light absorption from BC collected on Nuclepore filters.