Articles | Volume 13, issue 10
https://doi.org/10.5194/amt-13-5407-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-5407-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development and application of a mass closure PM2.5 composition online monitoring system
Cui-Ping Su
Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
Xing Peng
Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
Xiao-Feng Huang
CORRESPONDING AUTHOR
Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
Li-Wu Zeng
Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
Li-Ming Cao
Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
Meng-Xue Tang
Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
Yao Chen
Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
Yishi Wang
Princeton Day School, 650 Great Road, Princeton, NJ 08540, USA
Ling-Yan He
Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
Related authors
No articles found.
Jia-Yuan Wang, Meng-Xue Tang, Shan Lu, Ke-Jin Tang, Xing Peng, Ling-Yan He, and Xiao-Feng Huang
Atmos. Chem. Phys., 25, 9831–9841, https://doi.org/10.5194/acp-25-9831-2025, https://doi.org/10.5194/acp-25-9831-2025, 2025
Short summary
Short summary
Our study explores how secondary organic aerosols (SOAs), a major component of air pollution, form across different particle sizes in a coastal city in China. We found that SOA in fine particles is mainly produced through aqueous chemical reactions, especially those involving iron. In contrast, coarse particles form SOA through reactions with ozone and gases from both fossil fuels and natural sources. These findings highlight the need for size-specific air pollution models.
Fenghua Wei, Xing Peng, Liming Cao, Mengxue Tang, Ning Feng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 24, 8507–8518, https://doi.org/10.5194/acp-24-8507-2024, https://doi.org/10.5194/acp-24-8507-2024, 2024
Short summary
Short summary
The water solubility of secondary organic aerosols (SOAs) is a crucial factor in determining their hygroscopicity and climatic impact. Stable carbon isotope and mass spectrometry techniques were combined to assess the water solubility of SOAs with different aging degrees in a coastal megacity in China. This work revealed a much higher water-soluble fraction of aged SOA compared to fresh SOA, indicating that the aging degree of SOA has considerable impacts on its water solubility.
Guoxian Zhang, Renzhi Hu, Pinhua Xie, Changjin Hu, Xiaoyan Liu, Liujun Zhong, Haotian Cai, Bo Zhu, Shiyong Xia, Xiaofeng Huang, Xin Li, and Wenqing Liu
Atmos. Chem. Phys., 24, 1825–1839, https://doi.org/10.5194/acp-24-1825-2024, https://doi.org/10.5194/acp-24-1825-2024, 2024
Short summary
Short summary
Comprehensive observation of HOx radicals was conducted at a coastal site in the Pearl River Delta. Radical chemistry was influenced by different air masses in a time-dependent way. Land mass promotes a more active photochemical process, with daily averages of 7.1 × 106 and 5.2 × 108 cm−3 for OH and HO2 respectively. The rapid oxidation process was accompanied by a higher diurnal HONO concentration, which influences the ozone-sensitive system and eventually magnifies the background ozone.
Yiyu Cai, Chenshuo Ye, Wei Chen, Weiwei Hu, Wei Song, Yuwen Peng, Shan Huang, Jipeng Qi, Sihang Wang, Chaomin Wang, Caihong Wu, Zelong Wang, Baolin Wang, Xiaofeng Huang, Lingyan He, Sasho Gligorovski, Bin Yuan, Min Shao, and Xinming Wang
Atmos. Chem. Phys., 23, 8855–8877, https://doi.org/10.5194/acp-23-8855-2023, https://doi.org/10.5194/acp-23-8855-2023, 2023
Short summary
Short summary
We studied the variability and molecular composition of ambient oxidized organic nitrogen (OON) in both gas and particle phases using a state-of-the-art online mass spectrometer in urban air. Biomass burning and secondary formation were found to be the two major sources of OON. Daytime nitrate radical chemistry for OON formation was more important than previously thought. Our results improved the understanding of the sources and molecular composition of OON in the polluted urban atmosphere.
Tingting Feng, Yingkun Wang, Weiwei Hu, Ming Zhu, Wei Song, Wei Chen, Yanyan Sang, Zheng Fang, Wei Deng, Hua Fang, Xu Yu, Cheng Wu, Bin Yuan, Shan Huang, Min Shao, Xiaofeng Huang, Lingyan He, Young Ro Lee, Lewis Gregory Huey, Francesco Canonaco, Andre S. H. Prevot, and Xinming Wang
Atmos. Chem. Phys., 23, 611–636, https://doi.org/10.5194/acp-23-611-2023, https://doi.org/10.5194/acp-23-611-2023, 2023
Short summary
Short summary
To investigate the impact of aging processes on organic aerosols (OA), we conducted a comprehensive field study at a continental remote site using an on-line mass spectrometer. The results show that OA in the Chinese outflows were strongly influenced by upwind anthropogenic emissions. The aging processes can significantly decrease the OA volatility and result in a varied viscosity of OA under different circumstances, signifying the complex physiochemical properties of OA in aged plumes.
Xinping Yang, Keding Lu, Xuefei Ma, Yue Gao, Zhaofeng Tan, Haichao Wang, Xiaorui Chen, Xin Li, Xiaofeng Huang, Lingyan He, Mengxue Tang, Bo Zhu, Shiyi Chen, Huabin Dong, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 22, 12525–12542, https://doi.org/10.5194/acp-22-12525-2022, https://doi.org/10.5194/acp-22-12525-2022, 2022
Short summary
Short summary
We present the OH and HO2 radical observations at the Shenzhen site (Pearl River Delta, China) in the autumn of 2018. The diurnal maxima were 4.5 × 106 cm−3 for OH and 4.2 × 108 cm−3 for HO2 (including an estimated interference of 23 %–28 % from RO2 radicals during the daytime). The OH underestimation was identified again, and it was attributable to the missing OH sources. HO2 heterogeneous uptake, ROx sources and sinks, and the atmospheric oxidation capacity were evaluated as well.
Jiayun Li, Liming Cao, Wenkang Gao, Lingyan He, Yingchao Yan, Yuexin He, Yuepeng Pan, Dongsheng Ji, Zirui Liu, and Yuesi Wang
Atmos. Chem. Phys., 21, 4521–4539, https://doi.org/10.5194/acp-21-4521-2021, https://doi.org/10.5194/acp-21-4521-2021, 2021
Short summary
Short summary
For the first time, we investigated the highly time-resolved chemical characterization, sources and evolution of atmospheric submicron aerosols at a regional background site in the North China Plain (NCP) using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer and evaluated the seasonal differentials of photochemical and aqueous-phase processing on SOA composition and oxidation degree of OA. The results will help to understand air pollution in the NCP on a regional scale.
Yujue Wang, Min Hu, Nan Xu, Yanhong Qin, Zhijun Wu, Liwu Zeng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 20, 13721–13734, https://doi.org/10.5194/acp-20-13721-2020, https://doi.org/10.5194/acp-20-13721-2020, 2020
Short summary
Short summary
Field straw residue burning is a widespread type of biomass burning in Asia, while its emissions are poorly understood. In this study, we designed lab-controlled experiments to comprehensively investigate the emission factors, chemical compositions and light absorption properties of both water-soluble and water-insoluble carbonaceous aerosols emitted from straw burning. The results clearly highlight the significant influences of burning conditions and combustion efficiency on the emissions.
Cited articles
Al-Naiema, I. M., Hettiyadura, A. P. S., Wallace, H. W., Sanchez, N. P., Madler, C. J., Cevik, B. K., Bui, A. A. T., Kettler, J., Griffin, R. J., and Stone, E. A.: Source apportionment of fine particulate matter in Houston, Texas: insights to secondary organic aerosols, Atmos. Chem. Phys., 18, 15601–15622, https://doi.org/10.5194/acp-18-15601-2018, 2018.
Amarloei, A., Fazlzadeh, M., Jafari, A. J., Zarei, A., and Mazloomi, S.:
Particulate matters and bioaerosols during Middle East dust storms events in Ilam, Iran,
Microchem. J.,
152, 104280, https://doi.org/10.1016/j.microc.2019.104280, 2020.
Amil, N., Latif, M. T., Khan, M., and Mohamad, M.: Seasonal variability of PM2.5 composition and sources in the Klang Valley urban-industrial environment, Atmos. Chem. Phys., 16, 5357–5381, https://doi.org/10.5194/acp-16-5357-2016, 2016.
Boris, A. J., Takahama, S., Weakley, A. T., Debus, B. M., Fredrickson, C. D., Esparza-Sanchez, M., Burki, C., Reggente, M., Shaw, S. L., Edgerton, E. S., and Dillner, A. M.: Quantifying organic matter and functional groups in particulate matter filter samples from the southeastern United States – Part 1: Methods, Atmos. Meas. Tech., 12, 5391–5415, https://doi.org/10.5194/amt-12-5391-2019, 2019.
Budisulistiorini, S. H., Canagaratna, M. R., Croteau, P. L., Baumann, K., Edgerton, E. S., Kollman, M. S., Ng, N. L., Verma, V., Shaw, S. L., Knipping, E. M., Worsnop, D. R., Jayne, J. T., Weber, R. J., and Surratt, J. D.: Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia, Atmos. Meas. Tech., 7, 1929–1941, https://doi.org/10.5194/amt-7-1929-2014, 2014.
Campbell, P., Zhang, Y., Yan, F., Lu, Z. F., and Streets, D.:
Impacts of transportation sector emissions on future US air quality in a changing climate. Part II: Air quality projections and the interplay between emissions and climate change,
Environ. Pollut.,
238, 918–903, https://doi.org/10.1016/j.envpol.2018.03.016, 2018.
Canonaco, F., Crippa, M., Slowik, J. G., Baltensperger, U., and Próvôt, A. S. H.: SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data, Atmos. Meas. Tech., 6, 3649–3661, https://doi.org/10.5194/amt-6-3649-2013, 2013.
Carlton, A. G., Wiedinmyer, C., and Kroll, J. H.: A review of Secondary Organic Aerosol (SOA) formation from isoprene, Atmos. Chem. Phys., 9, 4987–5005, https://doi.org/10.5194/acp-9-4987-2009, 2009.
Cesari, D., Donateo, A., Conte, M., Merico, E., Giangreco, A., Giangreco, F., and Contini, D.: An inter-comparison of PM2.5 at urban and urban background sites: Chemical characterization and source apportionment, Atmos. Res., 174, 106–119, https://doi.org/10.1016/j.atmosres.2016.02.004, 2016.
Chow, J. C., Lowenthal, D. H., Chen, L. W. A., Wang, X. L., and Watson, J. G.:
Mass reconstruction methods for PM2.5: a review,
Air. Qual. Atoms. Hlth.,
8, 243–263, https://doi.org/10.1007/s11869-015-0338-3, 2015.
Chow, J. C., Cao, J., Antony Chen, L.-W., Wang, X., Wang, Q., Tian, J., Ho, S. S. H., Watts, A. C., Carlson, T. B., Kohl, S. D., and Watson, J. G.: Changes in PM2.5 peat combustion source profiles with atmospheric aging in an oxidation flow reactor, Atmos. Meas. Tech., 12, 5475–5501, https://doi.org/10.5194/amt-12-5475-2019, 2019.
Cruz Minguillón, M., Querol, X., Alastuey, A., Monfort, E., and Vicente Miró, J.:
PM sources in a highly industrialised area in the process of implementing PM abatement technology. Quantification and evolution,
J. Environ. Monitor.,
9, 1071–1081, https://doi.org/10.1039/b705474b, 2007.
Diómoz, H., Barnaba, F., Magri, T., Pession, G., Dionisi, D., Pittavino, S., Tombolato, I. K. F., Campanelli, M., Della Ceca, L. S., Hervo, M., Di Liberto, L., Ferrero, L., and Gobbi, G. P.: Transport of Po Valley aerosol pollution to the northwestern Alps – Part 1: Phenomenology, Atmos. Chem. Phys., 19, 3065–3095, https://doi.org/10.5194/acp-19-3065-2019, 2019.
Ellis, R. A., Murphy, J. G., Markovic, M. Z., VandenBoer, T. C., Makar, P. A., Brook, J., and Mihele, C.: The influence of gas-particle partitioning and surface-atmosphere exchange on ammonia during BAQS-Met, Atmos. Chem. Phys., 11, 133–145, https://doi.org/10.5194/acp-11-133-2011, 2011.
Gao, J., Peng, X., Chen, G., Xu, J., Shi, G. L., Zhang, Y. C., and Feng, Y. C.:
Insights into the chemical characterization and sources of PM2.5 in Beijing at a 1-h time resolution,
Sci. Total Environ.,
542, 162–171, https://doi.org/10.1016/j.scitotenv.2015.10.082, 2016.
Gao, M., Saide, P. E., Xin, J., Wang, Y., Wang, Z., Pagowski, M., Guttikunda, S. K., and Carmichael, G. R.:
Estimates of Health Impacts and Radiative Forcing in Winter Haze in Eastern China through Constraints of Surface PM2.5 Predictions,
Environ. Sci. Technol.,
51, 2178–2185, https://doi.org/10.1021/acs.est.6b03745, 2017.
Glotfelty, T., Zhang, Y., Karamchandani, P., and Streets, D. G.: Will the role of intercontinental transport change in a changing climate?, Atmos. Chem. Phys., 14, 9379–9402, https://doi.org/10.5194/acp-14-9379-2014, 2014.
Han, B., Zhang, R., Yang, W., Bai, Z. P., Ma, Z. Q., and Zhang, W. J.: Heavy haze episodes in Beijing during January 2013: Inorganic ion chemistry and source analysis using highly time-resolved measurements from an urban site, Sci. Total. Environ., 544, 319–329, https://doi.org/10.1016/j.scitotenv.2015.10.053, 2016.
Hand, J. L., Copeland, S. A., Day, D. E., Dillner, A. E., Indresand, H., Malm, W. C., McDade, C. E., Moore Jr., C. T., Pitchford, M. L., Schichtel, B. A., and Watson, J. G.:
Spatial and Seasonal Patterns and Temporal Variability of Haze and its Constituents in the United States, IMPROVE Report V,
Cooperative Institute for Research in the Atmosphere, C. S. U, Fort Collins, Colorado, ISSN 0737-5352-97, 2011.
Hand, J. L., Prenni, A. J., Schichtel, B. A., Malm, W. C., and Chow, J. C.
Trends in remote PM2.5 residual mass across the United States: Implications for aerosol mass reconstruction in the IMPROVE network,
Atmos. Environ.,
203, 141–152, https://doi.org/10.1016/j.atmosenv.2019.01.049, 2019.
Harry, T. B., Otjes, R., Jongejan, P., and Slanina, S.:
An instrument for semi-continuous monitoring of the size-distribution of nitrate, ammonium, sulphate,and chloride in aerosol,
Atmos. Environ.,
41, 2768–2779, https://doi.org/10.1016/j.atmosenv.2006.11.041, 2007.
He, L. Y., Huang, X. F., Xue, L., Hu, M., Lin, Y., Zheng, J., Zhang, R., and Zhang, Y. H.:
Submicron aerosol analysis and organic source apportionment in an urban atmosphere in Pearl River Delta of China using high-resolution aerosol mass spectrometry,
J. Geophys. Res.,
116, D12304, https://doi.org/10.1029/2010JD014566, 2011.
Hu, W., Campuzano-Jost, P., Day, D. A., Croteau, P., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., and Jimenez, J. L.: Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS) through laboratory studies of inorganic species, Atmos. Meas. Tech., 10, 2897–2921, https://doi.org/10.5194/amt-10-2897-2017, 2017.
Hu, W. W.: Sources and secondary transformation of submicron organic aerosols in typical atmospheric environments in China, PhD thesis, Peking University, Beijing, China, 266 pp., 2012.
Huang, F., Zhou, J. B., Chen, N., Li, Y. H., Li, K., and Wu, S. P.:
Chemical characteristics and source apportionment of PM2.5 in Wuhan, China,
J. Atmos. Chem.,
76, 245–262, https://doi.org/10.1007/s10874-019-09395-0, 2019.
Huang, X.-F., Zou, B.-B., He, L.-Y., Hu, M., Próvôt, A. S. H., and Zhang, Y.-H.: Exploration of PM2.5 sources on the regional scale in the Pearl River Delta based on ME-2 modeling, Atmos. Chem. Phys., 18, 11563–11580, https://doi.org/10.5194/acp-18-11563-2018, 2018.
Huang, X. H. H., Bian, Q., Ng, W. M., Louie, P. K., and Yu, J. Z.:
Characterization of PM2.5 Major Components and Source Investigation in Suburban Hong Kong: A One Year Monitoring Study,
Aerosol Air Qual. Res.,
14, 237–250, https://doi.org/10.4209/aaqr.2013.01.0020, 2014.
Jayarathne, T., Stockwell, C. E., Gilbert, A. A., Daugherty, K., Cochrane, M. A., Ryan, K. C., Putra, E. I., Saharjo, B. H., Nurhayati, A. D., Albar, I., Yokelson, R. J., and Stone, E. A.: Chemical characterization of fine particulate matter emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño, Atmos. Chem. Phys., 18, 2585–2600, https://doi.org/10.5194/acp-18-2585-2018, 2018.
Ji, D. S., Cui, Y., Li, L., He, J., Wang, L. L., Zhang, H. L., Wang, W., Zhou, L. X., Maenhaut, W., Wen, T. X., and Wang, Y. S.:
Characterization and source identification of fine particulate matter in urban Beijing during the 2015 Spring Festival,
Sci. Total Environ.,
628–629, 430–440, https://doi.org/10.1016/j.scitotenv.2018.01.304, 2018.
Kong, S. F., Ji, Y. Q., Lu, B., Chen, L., Han, B., Li, Z. Y., and Bai, Z. P.: Characterization of PM10 source profiles for fugitive dust in Fushun-a city famous for coal, Atmos. Environ., 45, 5351–5365, https://doi.org/10.1016/j.atmosenv.2011.06.050, 2011.
Kuokka, S., Teinilä, K., Saarnio, K., Aurela, M., Sillanpää, M., Hillamo, R., Kerminen, V.-M., Pyy, K., Vartiainen, E., Kulmala, M., Skorokhod, A. I., Elansky, N. F., and Belikov, I. B.: Using a moving measurement platform for determining the chemical composition of atmospheric aerosols between Moscow and Vladivostok, Atmos. Chem. Phys., 7, 4793–4805, https://doi.org/10.5194/acp-7-4793-2007, 2007.
Lewis, C. W. and Macias E. S.:
Composition of size-fractionated aerosol in Charleston, West Virginia,
Atmos. Environ.,
14, 185–194, https://doi.org/10.1016/0004-6981(80)90277-2, 1980.
Li, Y. J., Sun, Y., Zhang, Q., Li, X., Li, M., Zhou, Z., and Chan, C. K.: Real-time chemical characterization of atmospheric particulate matter in China: A review, Atmos. Environ., 158, 270–304, https://doi.org/10.1016/j.atmosenv.2017.02.027, 2017.
Liu, B. S., Wu, J. H., Zhang, J. Y., Wang, L., Yang, J. M., Liang, D. N., Dai, Q. L., Bi, X. H., Feng, Y. C., Zhang, Y. F., and Zhang, Q. X.:
Characterization and source apportionment of PM2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China,
Environ. Pollut.,
222, 10–22, https://doi.org/10.1016/j.envpol.2017.01.005, 2017.
Liu, J., Chu, B. W., and He, H.: Diurnal Variation of SOA Formation Potential from Ambient Air at an Urban Site in Beijing, Environ. Sci., 39, 2505–2511, https://doi.org/10.13227/j.hjkx.201711112, 2018.
Liu, S., Hu, M., and Slanina, S., He, L. Y., Niu, Y. W., Bruegemann, E., Gnauk, T., and Herrmann, H.:
Size distribution and source analysis of ionic compositions of aerosols in polluted periods at Xinken in Pearl River Delta (PRD) of China,
Atmos. Environ.,
42, 6284–6295, https://doi.org/10.1016/j.atmosenv.2007.12.035, 2008.
Liu, Y., Zheng, M., Yu, M., Cai, X., Du, H., Li, J., Zhou, T., Yan, C., Wang, X., Shi, Z., Harrison, R. M., Zhang, Q., and He, K.: High-time-resolution source apportionment of PM2.5 in Beijing with multiple models, Atmos. Chem. Phys., 19, 6595–6609, https://doi.org/10.5194/acp-19-6595-2019, 2019.
Middlebrook, A. M., Bahreini, R., Jimenez, J. L., and Canagaratna, M. R.:
Evaluation of Composition-Dependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer using Field Data,
Aerosol. Sci. Tech.,
46, 258–271, https://doi.org/10.1080/02786826.2011.620041, 2012.
Mou, J. M., Chen, P. F., He, Y. X., Yip, T. L., Li, W. H., Tang, J., and Zhang, H. Z.: Vessel traffic safety in busy waterways: A case study of accidents in western Shenzhen port, Accident.Anal.Prev, 123, 461–468, https://doi.org/10.1016/j.aap.2016.07.037, 2019.
Murphy, B. N. and Pandis, S. N.:
Simulating the Formation of Semivolatile Primary and Secondary Organic Aerosol in a Regional Chemical Transport Model,
Environ. Sci. Technol.,
43, 4722–4728, https://doi.org/10.1021/es803168a, 2009.
Okazaki, K., Wiener, R. W., and Willeke, K.:
Isoaxial aerosol sampling: nondimensional representation of overall sampling efficiency,
Environ. Sci. Technol.,
21, 178–182, https://doi.org/10.1021/es00156a007, 1987.
Paatero, P.:
The Multilinear Engine-A Table-Driven, Least Squares Program for Solving Multilinear Problems, Including the n-Way Parallel Factor Analysis Model,
J. Comput. Graph. Stat.,
8, 854–888, https://doi.org/10.1080/10618600.1999.10474853, 1999.
Paatero, P. and Tapper, U.:
Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values,
Environmetrics,
5, 111–126, https://doi.org/10.1002/env.3170050203, 1994.
Peng, X., Shi, G. L., Gao, J., Liu, J. Y., Huang, Y. Q., Ma, T., Wang, H. W., Zhang, Y. C., Wang, H., Li, H., Ivey, C. E., and Feng, Y. C.:
Characteristics and sensitivity analysis of multiple-time-resolved source patterns of PM2.5 with real time data using Multilinear Engine 2,
Atmos. Environ.,
139, 113–121, https://doi.org/10.1016/j.atmosenv.2016.05.032, 2016b.
Prasad, P., Raman, R. M., Ratnam, V. M., Chen, W. N., Rao, B. V. S., Gogoi, M. M., Kompalli, K. S., Kuar, K. S., and Babu, S. S.:
Characterization of atmospheric Black Carbon over a semi-urban site of Southeast India: Local sources and long-range transport,
Atmos. Res.,
213, 411–421, https://doi.org/10.1016/j.atmosres.2018.06.024, 2018.
Puthussery, J. V., Zhang, C., and Verma, V.: Development and field testing of an online instrument for measuring the real-time oxidative potential of ambient particulate matter based on dithiothreitol assay, Atmos. Meas. Tech., 11, 5767–5780, https://doi.org/10.5194/amt-11-5767-2018, 2018.
Querol, X., Viana, M., and Alastuey, A.:
Source origin of trace elements in PM from regional background, urban and industrial sites of Spain,
Atmos. Environ.,
41, 7219–7231, https://doi.org/10.1016/j.atmosenv.2007.05.022, 2007.
Sillapapiromsuk, S., Chantara, S., Tengjaroenkul, U., Prasitwattanaseree, S., and Prapamontol, T.:
Determination of PM10 and its ion composition emitted from biomass burning in the chamber for estimation of open burning emissions,
Chemosphere,
93, 1912–1919, 2013.
Su, Y. S., Sofowote, U., Debosz, J., White, L., and Munoz, A.:
Multi-Year Continuous PM2.5 Measurements with the Federal Equivalent Method SHARP 5030 and Comparisons to Filter-Based and TEOM Measurements in Ontario, Canada,
Atmosphere,
9, 191, https://doi.org/10.3390/atmos9050191, 2018.
Sun, T. L., He, L. Y., He, L., Li, Y. T., Zhuang, X., Zhang, M. D., and Lin, C. X.:
The vertical distribution of atmosphere pollutants in Shenzhen in Winter,
Acta Scientiae Circumstantiae,
39, 64–71, https://doi.org/10.13671/j.hjkxxb.2018.0241, 2019.
Taylor, S. R. and Mclennan, S. M.:
The geochemical evolution of the continental crust,
Rev. Geophys.,
33, 241–265, https://doi.org/10.1029/95RG00262, 1995.
Tsai, H. H., Chien, L. H., Yuan, C. S., Lin, Y. C., Jen, Y. H., and Ie, I. R.:
Influences of fireworks on chemical characteristics of atmospheric fine and coarse particles during Taiwan's Lantern Festival,
Atmos. Environ.,
62, 256–264, https://doi.org/10.1016/j.atmosenv.2012.08.012, 2012.
Turpin, B. J. and Lim, H. J.:
Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass,
Aerosol Sci. Technol.,
35, 602–610, 2001.
Vodicka, P., Schwarz, J., and Zdimal, V.:
Analysis of one year's OC∕EC data at a Prague suburban site with 2-h time resolution,
Atoms. Environ.,
77, 865–872, https://doi.org/10.1016/j.atmosenv.2013.06.013, 2013.
Wang, Q. Q., Huang, X. H. H., Zhang, T., Zhang, Q., Feng, Y., Yuan, Z.,Wu, D., Lau, A. K. H., and Yu, J. Z.:
Organic tracer-based source analysis of PM2.5 organic and elemental carbon: a case study at Dongguan in the Pearl River Delta, China,
Atmos. Environ.,
118, 164–175, https://doi.org/10.1016/j.atmosenv.2015.07.033, 2015
Wang, Q. Q., Qiao, L. P., Zhou, M., Zhu, S. H., Griffith, S., Li, L., and Yu, J. Z.:
Source Apportionment of PM2.5 Using Hourly Measurements of Elemental Tracers and Major Constituents in an Urban Environment: Investigation of Time-Resolution Influence,
J. Geophys. Res.,
123, 5284–5300, https://doi.org/10.1029/2017JD027877, 2018.
Wang, Y. Q., Zhang, X. Y., and Draxler, R. R.:
TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data,
Environ. Modell. Softw.,
24, 938–939, https://doi.org/10.1016/j.envsoft.2009.01.004, 2009.
Xu, J., Zhang, Q., Chen, M., Ge, X., Ren, J., and Qin, D.: Chemical composition, sources, and processes of urban aerosols during summertime in northwest China: insights from high-resolution aerosol mass spectrometry, Atmos. Chem. Phys., 14, 12593–12611, https://doi.org/10.5194/acp-14-12593-2014, 2014.
Yamasoe, M. A., Artaxo, P., Miguel, A. H., and Allen, A. G.:
Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements,
Atmos. Environ.,
34, 1641–1653, https://doi.org/10.1016/S1352-2310(99)00329-5, 2000.
Yu, J. T., Yan, C. Q., Liu, Y., Li, X. Y., Zhou, T., and Zheng, M.:
Potassium: A Tracer for Biomass Burning in Beijing,
Aerosol Air Qual. Res.,
18, 2447–2459, https://doi.org/10.4209/aaqr.2017.11.0536, 2018.
Yu, Y. Y., He, S. Y., Wu, X. L., Zhang, C., Yao, Y., Liao, H., Wang, Q. G., and Xie, M. J.:
PM2.5 elements at an urban site in Yangtze River Delta, China: High time-resolved measurement and the application in source apportionment,
Environ. Pollut.,
253, 1089–1099, https://doi.org/10.1016/j.envpol.2019.07.096, 2019.
Yuan, Z., Lau, A., Zhang, H., Yu, J., Louie, P., and Fung, J.:
Identification and spatiotemporal variations of dominant PM10 sources over Hong Kong,
Atmos. Environ.,
40, 1803–1815, https://doi.org/10.1016/j.atmosenv.2005.11.030, 2006.
Yudovich, Y. E. and Ketris, M. P.:
Chlorine in coal: a review.,
Int. J. Coal Geol.,
67, 127–144, https://doi.org/10.1016/j.coal.2005.09.004, 2006.
Zabalza, J., Ogulei, D., and Hopke, P. K.:
Concentration and Sources of PM10 and its Constituents in Alsasua, Spain,
Water Air Soil Poll.,
174, 385–404, https://doi.org/10.1007/s11270-006-9136-8, 2006.
Zhang, L. Q., Liu, W. W., Hou, K., Lin, J. T., Song, C. Q., Zhou, C. H., Huang, B., Tong, X. H., Wang, J. F., Rhine, W., Jiao, Y., Wang, Z. W., Ni, R. J., Liu, M. Y., Zhang, L., Wang, Z. Y., Wang, Y. B., Li, X. G., Liu, S. H., and Wang, Y. H.:
Air pollution exposure associates with increased risk of neonatal jaundice,
Nat. Commun.,
10, 3741, https://doi.org/10.1038/S41467-019-11387-3, 2019.
Zhu, Q., Huang, X.-F., Cao, L.-M., Wei, L.-T., Zhang, B., He, L.-Y., Elser, M., Canonaco, F., Slowik, J. G., Bozzetti, C., El-Haddad, I., and Próvôt, A. S. H.: Improved source apportionment of organic aerosols in complex urban air pollution using the multilinear engine (ME-2), Atmos. Meas. Tech., 11, 1049–1060, https://doi.org/10.5194/amt-11-1049-2018, 2018.
Zou, B. B.: Analysis of PM2.5 sources in the pearl river delta re gion based on me-2 model, PhD thesis, Peking University, Beijing, China, 167 pp., 2018.
Short summary
Online instruments have been widely applied for the measurement of PM2.5 and its chemical components; however, these instruments have a major shortcoming in terms of the limited number (or lack) of species in field measurements. To this end, a new mass closure PM2.5 online-integrated system was developed and applied in this work to achieve more comprehensive information on chemical species in PM2.5, thus providing a powerful tool for PM2.5 long-term daily measurement and source apportionment.
Online instruments have been widely applied for the measurement of PM2.5 and its chemical...