Articles | Volume 14, issue 3
https://doi.org/10.5194/amt-14-2237-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-2237-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Aerosol pH indicator and organosulfate detectability from aerosol mass spectrometry measurements
Melinda K. Schueneman
Department of Chemistry, and Cooperative Institute for Research in
Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
Benjamin A. Nault
Department of Chemistry, and Cooperative Institute for Research in
Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
now at: Aerodyne Research, Inc., Billerica, MA, USA
Pedro Campuzano-Jost
Department of Chemistry, and Cooperative Institute for Research in
Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
Duseong S. Jo
Department of Chemistry, and Cooperative Institute for Research in
Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO 80301, USA
Douglas A. Day
Department of Chemistry, and Cooperative Institute for Research in
Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
Jason C. Schroder
Department of Chemistry, and Cooperative Institute for Research in
Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
now at: Air Pollution Control Division, Colorado Department of Public Health and the Environment, Denver, CO, USA
Brett B. Palm
Department of Chemistry, and Cooperative Institute for Research in
Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
Alma Hodzic
Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO 80301, USA
Jack E. Dibb
Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
Jose L. Jimenez
CORRESPONDING AUTHOR
Department of Chemistry, and Cooperative Institute for Research in
Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
Related authors
No articles found.
Laura M. D. Heinlein, Junwei He, Michael Oluwatoyin Sunday, Fangzhou Guo, James Campbell, Allison Moon, Sukriti Kapur, Ting Fang, Kasey Edwards, Meeta Cesler-Maloney, Alyssa J. Burns, Jack Dibb, William Simpson, Manabu Shiraiwa, Becky Alexander, Jingqiu Mao, James H. Flynn III, Jochen Stutz, and Cort Anastasio
Atmos. Chem. Phys., 25, 9561–9581, https://doi.org/10.5194/acp-25-9561-2025, https://doi.org/10.5194/acp-25-9561-2025, 2025
Short summary
Short summary
High-latitude cities like Fairbanks, Alaska, experience severe wintertime pollution episodes. While conventional wisdom holds that oxidation is slow under these conditions, field measurements find oxidized products in particles. To explore this, we measured oxidants in aqueous extracts of winter particles from Fairbanks. We find high concentrations of oxidants during illumination experiments, indicating that particle photochemistry can be significant even in high latitudes during winter.
Xu-Cheng He, Nathan Luke Abraham, Han Ding, Maria R. Russo, Daniel P. Grosvenor, Yao Ge, Xuemei Wang, Anthony C. Jones, Pedro Campuzano-Jost, Benjamin Nault, Agnieszka Kupc, Donald Blake, Jose L. Jimenez, Christina J. Williamson, Kenneth S. Carslaw, James Weber, Alexander T. Archibald, and Hamish Gordon
EGUsphere, https://doi.org/10.5194/egusphere-2025-3700, https://doi.org/10.5194/egusphere-2025-3700, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Aerosols affect clouds and climate. However, current climate models still struggle to simulate them accurately. We used aircraft data from a global mission to evaluate how well the UK Earth System Model represents aerosols and their precursors. Our results show that the model misses key formation processes in clean ocean regions, suggesting that future improvements should focus on better representing how aerosols form naturally in the atmosphere.
Sara L. Farrell, Quazi Z. Rasool, Havala O. T. Pye, Yue Zhang, Ying Li, Yuzhi Chen, Chi-Tsan Wang, Haofei Zhang, Ryan Schmedding, Manabu Shiraiwa, Jaime Greene, Sri H. Budisulistiorini, Jose L. Jimenez, Weiwei Hu, Jason D. Surratt, and William Vizuete
EGUsphere, https://doi.org/10.5194/egusphere-2025-2253, https://doi.org/10.5194/egusphere-2025-2253, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Fine particulate matter (PM2.5) has become increasingly important to regulate and model. In this study, we parameterize non-ideal aerosol mixing and phase state into the Community Multiscale Air Quality (CMAQ) model and analyze its impact on the formation of a globally important source of PM2.5, isoprene epoxydiol (IEPOX)-derived PM2.5. Incorporating these features furthers model bias in IEPOX-derived PM2.5, however, this work provides potential phase state bounds for future PM2.5 modeling work.
Farhan R. Nursanto, Douglas A. Day, Roy Meinen, Rupert Holzinger, Harald Saathoff, Jinglan Fu, Jan Mulder, Ulrike Dusek, and Juliane L. Fry
Atmos. Meas. Tech., 18, 3051–3072, https://doi.org/10.5194/amt-18-3051-2025, https://doi.org/10.5194/amt-18-3051-2025, 2025
Short summary
Short summary
It is of increasing importance to monitor nitrate pollution that can harm ecosystems. However, commonly used aerosol monitoring equipment cannot distinguish inorganic from organic forms of nitrate, which may have different consequences for the environment. We describe a method to differentiate types of nitrates that can be applied to ambient monitoring to improve understanding of its formation and impact.
Dongwook Kim, Pedro Campuzano-Jost, Hongyu Guo, Douglas A. Day, Da Yang, Suresh Dhaniyala, Leah Williams, Philip Croteau, John Jayne, Douglas Worsnop, Rainer Volkamer, and Jose L. Jimenez
Aerosol Research, 3, 371–404, https://doi.org/10.5194/ar-3-371-2025, https://doi.org/10.5194/ar-3-371-2025, 2025
Short summary
Short summary
Quantitative real-time aerosol sampling on board aircraft platforms is challenging, especially at higher altitudes. Herein, we present comprehensive analyses of a new aircraft inlet system and tools for aerosol beam diagnostics for aerosol mass spectrometers (AMSs). The beam focusing of aerodynamic lenses and the thermal decomposition on the vaporizer were investigated. The new inlet system can be operated at higher altitudes while sampling aerosols over a broader size range than previous versions.
Benjamin C. Sapper, Sean Youn, Daven K. Henze, Manjula Canagaratna, Harald Stark, and Jose L. Jimenez
Geosci. Model Dev., 18, 2891–2919, https://doi.org/10.5194/gmd-18-2891-2025, https://doi.org/10.5194/gmd-18-2891-2025, 2025
Short summary
Short summary
Positive matrix factorization (PMF) has been used by atmospheric scientists to extract underlying factors present in large datasets. This paper presents a new technique for error-weighted PMF that drastically reduces the computational costs of previously developed algorithms. We use this technique to deliver interpretable factors and solution diagnostics from an atmospheric chemistry dataset.
Michael Oluwatoyin Sunday, Laura Marie Dahler Heinlein, Junwei He, Allison Moon, Sukriti Kapur, Ting Fang, Kasey C. Edwards, Fangzhou Guo, Jack Dibb, James H. Flynn III, Becky Alexander, Manabu Shiraiwa, and Cort Anastasio
Atmos. Chem. Phys., 25, 5087–5100, https://doi.org/10.5194/acp-25-5087-2025, https://doi.org/10.5194/acp-25-5087-2025, 2025
Short summary
Short summary
Hydrogen peroxide (HOOH) is an important oxidant that forms atmospheric sulfate. We demonstrate that the illumination of brown carbon can rapidly form HOOH within particles, even under the low-sunlight conditions of Fairbanks, Alaska, during winter. This in-particle formation of HOOH is fast enough that it forms sulfate at significant rates. In contrast, the formation of HOOH in the gas phase during the campaign is expected to be negligible because of high NOx levels.
Joseph O. Palmo, Colette L. Heald, Donald R. Blake, Ilann Bourgeois, Matthew Coggon, Jeff Collett, Frank Flocke, Alan Fried, Georgios Gkatzelis, Samuel Hall, Lu Hu, Jose L. Jimenez, Pedro Campuzano-Jost, I-Ting Ku, Benjamin Nault, Brett Palm, Jeff Peischl, Ilana Pollack, Amy Sullivan, Joel Thornton, Carsten Warneke, Armin Wisthaler, and Lu Xu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1969, https://doi.org/10.5194/egusphere-2025-1969, 2025
Short summary
Short summary
This study investigates ozone production within wildfire smoke plumes as they age, using both aircraft observations and models. We find that the chemical environment and resulting ozone production within smoke changes as plumes evolve, with implications for climate and public health.
Xinyue Shao, Yaman Liu, Xinyi Dong, Minghuai Wang, Ruochong Xu, Joel A. Thornton, Duseong S. Jo, Man Yue, Wenxiang Shen, Manish Shrivastava, Stephen R. Arnold, and Ken S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2025-1526, https://doi.org/10.5194/egusphere-2025-1526, 2025
Short summary
Short summary
Highly Oxygenated Organic Molecules (HOMs) are key precursors of secondary organic aerosols (SOA). Incorporating the HOMs chemical mechanism into a global climate model allows for a reasonable reproduction of observed HOM characteristics. HOM-SOA constitutes a significant fraction of global SOA, and its distribution and formation pathways exhibit strong sensitivity to uncertainties in autoxidation processes and peroxy radical branching ratios.
Ioannis Kioutsioukis, Christian Hogrefe, Paul A. Makar, Ummugulsun Alyuz, Jessy O. Bash, Roberto Bellasio, Roberto Bianconi, Tim Buttler, Olivia E. Clifton, Philippe Cheung, Alma Hodzic, Richard Kranenburg, Aurelia Lupascu, Kester Momoh, Juan Luis Perez-Camaño, John Pleim, Young-Hee Ryu, Robero San Jose, Donna Schwede, Ranjeet Sokhi, and Stefano Galmarini
EGUsphere, https://doi.org/10.5194/egusphere-2025-1091, https://doi.org/10.5194/egusphere-2025-1091, 2025
Short summary
Short summary
Deposition is a key in air quality modelling. An evaluation of the AQMEII4 models is performed prior to analysing the different deposition schemes in relation to the LULC used. Such analysis is unprecedented. Among the results, LULC masks have to be harmonised and up-to-date information used in place of outdated and too course masks. Alternatively LULC masks should be evaluated and intercom pared when multiple model results are analysed.
Paul A. Makar, Philip Cheung, Christian Hogrefe, Ayodeji Akingunola, Ummugulsum Alyuz, Jesse O. Bash, Michael D. Bell, Roberto Bellasio, Roberto Bianconi, Tim Butler, Hazel Cathcart, Olivia E. Clifton, Alma Hodzic, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Jason A. Lynch, Kester Momoh, Juan L. Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Thomas Scheuschner, Mark W. Shephard, Ranjeet S. Sokhi, and Stefano Galmarini
Atmos. Chem. Phys., 25, 3049–3107, https://doi.org/10.5194/acp-25-3049-2025, https://doi.org/10.5194/acp-25-3049-2025, 2025
Short summary
Short summary
The large range of sulfur and nitrogen deposition estimates from air quality models results in a large range of predicted impacts. We used models and deposition diagnostics to identify the processes controlling atmospheric sulfur and nitrogen deposition variability. Controlling factors included the uptake of gases and aerosols by hydrometeors, aerosol inorganic chemistry, particle dry deposition, ammonia bidirectional fluxes, gas deposition via plant cuticles and soil, and land use data.
Matthew James Rowlinson, Lucy J. Carpenter, Mat J. Evans, James D. Lee, Simone Andersen, Tomas Sherwen, Anna B. Callaghan, Roberto Sommariva, William Bloss, Siqi Hou, Leigh R. Crilley, Klaus Pfeilsticker, Benjamin Weyland, Thomas B. Ryerson, Patrick R. Veres, Pedro Campuzano-Jost, Hongyu Guo, Benjamin A. Nault, Jose L. Jimenez, and Khanneh Wadinga Fomba
EGUsphere, https://doi.org/10.5194/egusphere-2025-830, https://doi.org/10.5194/egusphere-2025-830, 2025
Short summary
Short summary
HONO is key to tropospheric chemistry. Observations show high HONO concentrations in remote air, possibly explained by nitrate aerosol photolysis. We use observational data to parameterize nitrate photolysis, evaluating simulated HONO against observations from multiple sources. We show improved agreement with observed HONO, but large overestimates in NOx and O3, beyond observational constraints. This implies a large uncertainty in the NOx budget and our understanding of atmospheric chemistry.
Jan-Lukas Tirpitz, Santo Fedele Colosimo, Nathaniel Brockway, Robert Spurr, Matt Christi, Samuel Hall, Kirk Ullmann, Johnathan Hair, Taylor Shingler, Rodney Weber, Jack Dibb, Richard Moore, Elizabeth Wiggins, Vijay Natraj, Nicolas Theys, and Jochen Stutz
Atmos. Chem. Phys., 25, 1989–2015, https://doi.org/10.5194/acp-25-1989-2025, https://doi.org/10.5194/acp-25-1989-2025, 2025
Short summary
Short summary
We combine plume composition data from the 2019 NASA FIREX-AQ campaign with state-of-the-art radiative transfer modeling techniques to calculate distributions of actinic flux and photolysis frequencies in a wildfire plume. Excellent agreement of the model and observations demonstrates the applicability of this approach to constrain photochemistry in such plumes. We identify limiting factors for the modeling accuracy and discuss spatial and spectral features of the distributions.
Noribeth Mariscal, Louisa K. Emmons, Duseong S. Jo, Ying Xiong, Laura M. Judd, Scott J. Janz, Jiajue Chai, and Yaoxian Huang
EGUsphere, https://doi.org/10.5194/egusphere-2025-228, https://doi.org/10.5194/egusphere-2025-228, 2025
Short summary
Short summary
The distribution of ozone (O3) and its precursors (NOx, VOCs) is explored using the chemistry-climate model, MUSICAv0, and evaluated using measurements from the Michigan-Ontario Ozone Source Experiment. A custom grid of ~7 km was created over Michigan. A sector-based diurnal cycle for anthropogenic nitric oxide was included in the model. This work shows that grid resolution played a more important role for O3 precursors, and the diurnal cycle significantly impacted nighttime O3 formation.
Christian Hogrefe, Stefano Galmarini, Paul A. Makar, Ioannis Kioutsioukis, Olivia E. Clifton, Ummugulsum Alyuz, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Tim Butler, Philip Cheung, Alma Hodzic, Richard Kranenburg, Aurelia Lupascu, Kester Momoh, Juan Luis Perez-Camanyo, Jonathan E. Pleim, Young-Hee Ryu, Roberto San Jose, Martijn Schaap, Donna B. Schwede, and Ranjeet Sokhi
EGUsphere, https://doi.org/10.5194/egusphere-2025-225, https://doi.org/10.5194/egusphere-2025-225, 2025
Short summary
Short summary
Performed under the umbrella of the fourth phase of the Air Quality Model Evaluation International Initiative (AQMEII4), this study applies AQMEII4 diagnostic tools to better characterize how dry deposition removes pollutants from the atmosphere in regional-scale models. The results also strongly suggest that improvement and harmonization of the representation of land use in these models would serve the community in their future development efforts.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Stephen R. Arnold, Leighton A. Regayre, Duseong S. Jo, Wenxiang Shen, Hao Wang, Man Yue, Jingyi Wang, Wenxin Zhang, and Ken S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-4135, https://doi.org/10.5194/egusphere-2024-4135, 2025
Short summary
Short summary
This study uses a global chemistry-climate model to investigate how new particle formation (NPF) from highly oxygenated organic molecules (HOMs) contributes to cloud condensation nuclei (CCN) in both preindustrial (PI) and present-day (PD) environments, and its impact on aerosol indirect radiative forcing. The findings highlight the crucial role of biogenic emissions in climate change, providing new insights for carbon-neutral scenarios and enhancing understanding of aerosol-cloud interactions.
Olivia G. Norman, Colette L. Heald, Solomon Bililign, Pedro Campuzano-Jost, Hugh Coe, Marc N. Fiddler, Jaime R. Green, Jose L. Jimenez, Katharina Kaiser, Jin Liao, Ann M. Middlebrook, Benjamin A. Nault, John B. Nowak, Johannes Schneider, and André Welti
Atmos. Chem. Phys., 25, 771–795, https://doi.org/10.5194/acp-25-771-2025, https://doi.org/10.5194/acp-25-771-2025, 2025
Short summary
Short summary
This study finds that one component of secondary inorganic aerosols, nitrate, is greatly overestimated by a global atmospheric chemistry model compared to observations from 11 flight campaigns. None of the loss and production pathways explored can explain the nitrate bias alone. The model’s inability to capture the variability in the observations remains and requires future investigation to avoid biases in policy-related studies (i.e., air quality, health, climate impacts of these aerosols).
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024, https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) play an important role in atmospheric new particle formation (NPF). By semi-explicitly coupling the chemical mechanism of HOMs and a comprehensive nucleation scheme in a global climate model, the updated model shows better agreement with measurements of nucleation rate, growth rate, and NPF event frequency. Our results reveal that HOM-driven NPF leads to a considerable increase in particle and cloud condensation nuclei burden globally.
Kouji Adachi, Jack E. Dibb, Joseph M. Katich, Joshua P. Schwarz, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Jeff Peischl, Christopher D. Holmes, and James Crawford
Atmos. Chem. Phys., 24, 10985–11004, https://doi.org/10.5194/acp-24-10985-2024, https://doi.org/10.5194/acp-24-10985-2024, 2024
Short summary
Short summary
We examined aerosol particles from wildfires and identified tarballs (TBs) from the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign. This study reveals the compositions, abundance, sizes, and mixing states of TBs and shows that TBs formed as the smoke aged for up to 5 h. This study provides measurements of TBs from various biomass-burning events and ages, enhancing our knowledge of TB emissions and our understanding of their climate impact.
Annelise Waling, Adam Herrington, Katharine Duderstadt, Jack Dibb, and Elizabeth Burakowski
Weather Clim. Dynam., 5, 1117–1135, https://doi.org/10.5194/wcd-5-1117-2024, https://doi.org/10.5194/wcd-5-1117-2024, 2024
Short summary
Short summary
Atmospheric rivers (ARs) are channel-shaped features within the atmosphere that carry moisture from the mid-latitudes to the poles, bringing warm temperatures and moisture that can cause melt in the Arctic. We used variable-resolution grids to model ARs around the Greenland ice sheet and compared this output to uniform-resolution grids and reanalysis products. We found that the variable-resolution grids produced ARs and precipitation that were more similar to observation-based products.
Benjamin A. Nault, Katherine R. Travis, James H. Crawford, Donald R. Blake, Pedro Campuzano-Jost, Ronald C. Cohen, Joshua P. DiGangi, Glenn S. Diskin, Samuel R. Hall, L. Gregory Huey, Jose L. Jimenez, Kyung-Eun Min, Young Ro Lee, Isobel J. Simpson, Kirk Ullmann, and Armin Wisthaler
Atmos. Chem. Phys., 24, 9573–9595, https://doi.org/10.5194/acp-24-9573-2024, https://doi.org/10.5194/acp-24-9573-2024, 2024
Short summary
Short summary
Ozone (O3) is a pollutant formed from the reactions of gases emitted from various sources. In urban areas, the density of human activities can increase the O3 formation rate (P(O3)), thus impacting air quality and health. Observations collected over Seoul, South Korea, are used to constrain P(O3). A high local P(O3) was found; however, local P(O3) was partly reduced due to compounds typically ignored. These observations also provide constraints for unmeasured compounds that will impact P(O3).
Katherine R. Travis, Benjamin A. Nault, James H. Crawford, Kelvin H. Bates, Donald R. Blake, Ronald C. Cohen, Alan Fried, Samuel R. Hall, L. Gregory Huey, Young Ro Lee, Simone Meinardi, Kyung-Eun Min, Isobel J. Simpson, and Kirk Ullman
Atmos. Chem. Phys., 24, 9555–9572, https://doi.org/10.5194/acp-24-9555-2024, https://doi.org/10.5194/acp-24-9555-2024, 2024
Short summary
Short summary
Human activities result in the emission of volatile organic compounds (VOCs) that contribute to air pollution. Detailed VOC measurements were taken during a field study in South Korea. When compared to VOC inventories, large discrepancies showed underestimates from chemical products, liquefied petroleum gas, and long-range transport. Improved emissions and chemistry of these VOCs better described urban pollution. The new chemical scheme is relevant to urban areas and other VOC sources.
Tianle Pan, Andrew T. Lambe, Weiwei Hu, Yicong He, Minghao Hu, Huaishan Zhou, Xinming Wang, Qingqing Hu, Hui Chen, Yue Zhao, Yuanlong Huang, Doug R. Worsnop, Zhe Peng, Melissa A. Morris, Douglas A. Day, Pedro Campuzano-Jost, Jose-Luis Jimenez, and Shantanu H. Jathar
Atmos. Meas. Tech., 17, 4915–4939, https://doi.org/10.5194/amt-17-4915-2024, https://doi.org/10.5194/amt-17-4915-2024, 2024
Short summary
Short summary
This study systematically characterizes the temperature enhancement in the lamp-enclosed oxidation flow reactor (OFR). The enhancement varied multiple dimensional factors, emphasizing the complexity of temperature inside of OFR. The effects of temperature on the flow field and gas- or particle-phase reaction inside OFR were also evaluated with experiments and model simulations. Finally, multiple mitigation strategies were demonstrated to minimize this temperature increase.
David P. Edwards, Sara Martínez-Alonso, Duseong S. Jo, Ivan Ortega, Louisa K. Emmons, John J. Orlando, Helen M. Worden, Jhoon Kim, Hanlim Lee, Junsung Park, and Hyunkee Hong
Atmos. Chem. Phys., 24, 8943–8961, https://doi.org/10.5194/acp-24-8943-2024, https://doi.org/10.5194/acp-24-8943-2024, 2024
Short summary
Short summary
Until recently, satellite observations of atmospheric pollutants at any location could only be obtained once a day. New geostationary satellites stare at a region of the Earth to make hourly measurements, and the Geostationary Environment Monitoring Spectrometer is the first looking at Asia. These data and model simulations show how the change seen for one important pollutant that determines air quality depends on a combination of pollution emissions, atmospheric chemistry, and meteorology.
Melinda K. Schueneman, Douglas A. Day, Dongwook Kim, Pedro Campuzano-Jost, Seonsik Yun, Marla P. DeVault, Anna C. Ziola, Paul J. Ziemann, and Jose L. Jimenez
Aerosol Research, 2, 59–76, https://doi.org/10.5194/ar-2-59-2024, https://doi.org/10.5194/ar-2-59-2024, 2024
Short summary
Short summary
Our study presents a novel method for quantifying mass spectrometer responses to molecular species in organic aerosols. Traditional calibrations often fail for complex mixtures like secondary organic aerosol. We combined chromatography with statistical component analysis to improve separation and quantification, achieving promising agreement with direct calibration. Our findings offer a new approach to assess aerosol composition, especially beneficial for complex mixtures.
Melissa A. Morris, Demetrios Pagonis, Douglas A. Day, Joost A. de Gouw, Paul J. Ziemann, and Jose L. Jimenez
Atmos. Meas. Tech., 17, 1545–1559, https://doi.org/10.5194/amt-17-1545-2024, https://doi.org/10.5194/amt-17-1545-2024, 2024
Short summary
Short summary
Polymer absorption of volatile organic compounds (VOCs) is important to characterize for atmospheric sampling setups (as interactions cause sampling delays) and indoor air quality. Here we test different polymer materials and quantify their absorptive capacities through modeling. We found the main polymers in carpets to be highly absorptive, acting as large reservoirs for indoor pollution. We also demonstrated how polymer tubes can be used as a low-cost gas separation technique.
Huisheng Bian, Mian Chin, Peter R. Colarco, Eric C. Apel, Donald R. Blake, Karl Froyd, Rebecca S. Hornbrook, Jose Jimenez, Pedro Campuzano Jost, Michael Lawler, Mingxu Liu, Marianne Tronstad Lund, Hitoshi Matsui, Benjamin A. Nault, Joyce E. Penner, Andrew W. Rollins, Gregory Schill, Ragnhild B. Skeie, Hailong Wang, Lu Xu, Kai Zhang, and Jialei Zhu
Atmos. Chem. Phys., 24, 1717–1741, https://doi.org/10.5194/acp-24-1717-2024, https://doi.org/10.5194/acp-24-1717-2024, 2024
Short summary
Short summary
This work studies sulfur in the remote troposphere at global and seasonal scales using aircraft measurements and multi-model simulations. The goal is to understand the sulfur cycle over remote oceans, spread of model simulations, and observation–model discrepancies. Such an understanding and comparison with real observations are crucial to narrow down the uncertainties in model sulfur simulations and improve understanding of the sulfur cycle in atmospheric air quality, climate, and ecosystems.
Georgios I. Gkatzelis, Matthew M. Coggon, Chelsea E. Stockwell, Rebecca S. Hornbrook, Hannah Allen, Eric C. Apel, Megan M. Bela, Donald R. Blake, Ilann Bourgeois, Steven S. Brown, Pedro Campuzano-Jost, Jason M. St. Clair, James H. Crawford, John D. Crounse, Douglas A. Day, Joshua P. DiGangi, Glenn S. Diskin, Alan Fried, Jessica B. Gilman, Hongyu Guo, Johnathan W. Hair, Hannah S. Halliday, Thomas F. Hanisco, Reem Hannun, Alan Hills, L. Gregory Huey, Jose L. Jimenez, Joseph M. Katich, Aaron Lamplugh, Young Ro Lee, Jin Liao, Jakob Lindaas, Stuart A. McKeen, Tomas Mikoviny, Benjamin A. Nault, J. Andrew Neuman, John B. Nowak, Demetrios Pagonis, Jeff Peischl, Anne E. Perring, Felix Piel, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Thomas B. Ryerson, Melinda K. Schueneman, Rebecca H. Schwantes, Joshua P. Schwarz, Kanako Sekimoto, Vanessa Selimovic, Taylor Shingler, David J. Tanner, Laura Tomsche, Krystal T. Vasquez, Patrick R. Veres, Rebecca Washenfelder, Petter Weibring, Paul O. Wennberg, Armin Wisthaler, Glenn M. Wolfe, Caroline C. Womack, Lu Xu, Katherine Ball, Robert J. Yokelson, and Carsten Warneke
Atmos. Chem. Phys., 24, 929–956, https://doi.org/10.5194/acp-24-929-2024, https://doi.org/10.5194/acp-24-929-2024, 2024
Short summary
Short summary
This study reports emissions of gases and particles from wildfires. These emissions are related to chemical proxies that can be measured by satellite and incorporated into models to improve predictions of wildfire impacts on air quality and climate.
Sohyeon Jeon, Michael J. Walker, Donna T. Sueper, Douglas A. Day, Anne V. Handschy, Jose L. Jimenez, and Brent J. Williams
Atmos. Meas. Tech., 16, 6075–6095, https://doi.org/10.5194/amt-16-6075-2023, https://doi.org/10.5194/amt-16-6075-2023, 2023
Short summary
Short summary
A searchable database tool for the Aerosol Mass Spectrometer (AMS) and Aerosol Chemical Speciation Monitor (ACSM) mass spectral datasets was built to improve the efficiency of data analysis using Igor Pro. The tool incorporates the published mass spectra (MS) and sample information uploaded on the website. The tool allows users to compare their own mass spectrum with the reference MS in the database.
Kevin J. Nihill, Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Bin Yuan, Jordan E. Krechmer, Kanako Sekimoto, Jose L. Jimenez, Joost de Gouw, Christopher D. Cappa, Colette L. Heald, Carsten Warneke, and Jesse H. Kroll
Atmos. Chem. Phys., 23, 7887–7899, https://doi.org/10.5194/acp-23-7887-2023, https://doi.org/10.5194/acp-23-7887-2023, 2023
Short summary
Short summary
In this work, we collect emissions from controlled burns of biomass fuels that can be found in the western United States into an environmental chamber in order to simulate their oxidation as they pass through the atmosphere. These findings provide a detailed characterization of the composition of the atmosphere downwind of wildfires. In turn, this will help to explore the effects of these changing emissions on downwind populations and will also directly inform atmospheric and climate models.
Duseong S. Jo, Simone Tilmes, Louisa K. Emmons, Siyuan Wang, and Francis Vitt
Geosci. Model Dev., 16, 3893–3906, https://doi.org/10.5194/gmd-16-3893-2023, https://doi.org/10.5194/gmd-16-3893-2023, 2023
Short summary
Short summary
A new simple secondary organic aerosol (SOA) scheme has been developed for the Community Atmosphere Model (CAM) based on the complex SOA scheme in CAM with detailed chemistry (CAM-chem). The CAM with the new SOA scheme shows better agreements with CAM-chem in terms of aerosol concentrations and radiative fluxes, which ensures more consistent results between different compsets in the Community Earth System Model. The new SOA scheme also has technical advantages for future developments.
Haihui Zhu, Randall V. Martin, Betty Croft, Shixian Zhai, Chi Li, Liam Bindle, Jeffrey R. Pierce, Rachel Y.-W. Chang, Bruce E. Anderson, Luke D. Ziemba, Johnathan W. Hair, Richard A. Ferrare, Chris A. Hostetler, Inderjeet Singh, Deepangsu Chatterjee, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jack E. Dibb, Joshua S. Schwarz, and Andrew Weinheimer
Atmos. Chem. Phys., 23, 5023–5042, https://doi.org/10.5194/acp-23-5023-2023, https://doi.org/10.5194/acp-23-5023-2023, 2023
Short summary
Short summary
Particle size of atmospheric aerosol is important for estimating its climate and health effects, but simulating atmospheric aerosol size is computationally demanding. This study derives a simple parameterization of the size of organic and secondary inorganic ambient aerosol that can be applied to atmospheric models. Applying this parameterization allows a better representation of the global spatial pattern of aerosol size, as verified by ground and airborne measurements.
Shixian Zhai, Daniel J. Jacob, Drew C. Pendergrass, Nadia K. Colombi, Viral Shah, Laura Hyesung Yang, Qiang Zhang, Shuxiao Wang, Hwajin Kim, Yele Sun, Jin-Soo Choi, Jin-Soo Park, Gan Luo, Fangqun Yu, Jung-Hun Woo, Younha Kim, Jack E. Dibb, Taehyoung Lee, Jin-Seok Han, Bruce E. Anderson, Ke Li, and Hong Liao
Atmos. Chem. Phys., 23, 4271–4281, https://doi.org/10.5194/acp-23-4271-2023, https://doi.org/10.5194/acp-23-4271-2023, 2023
Short summary
Short summary
Anthropogenic fugitive dust in East Asia not only causes severe coarse particulate matter air pollution problems, but also affects fine particulate nitrate. Due to emission control efforts, coarse PM decreased steadily. We find that the decrease of coarse PM is a major driver for a lack of decrease of fine particulate nitrate, as it allows more nitric acid to form fine particulate nitrate. The continuing decrease of coarse PM requires more stringent ammonia and nitrogen oxides emission controls.
Laura Tomsche, Felix Piel, Tomas Mikoviny, Claus J. Nielsen, Hongyu Guo, Pedro Campuzano-Jost, Benjamin A. Nault, Melinda K. Schueneman, Jose L. Jimenez, Hannah Halliday, Glenn Diskin, Joshua P. DiGangi, John B. Nowak, Elizabeth B. Wiggins, Emily Gargulinski, Amber J. Soja, and Armin Wisthaler
Atmos. Chem. Phys., 23, 2331–2343, https://doi.org/10.5194/acp-23-2331-2023, https://doi.org/10.5194/acp-23-2331-2023, 2023
Short summary
Short summary
Ammonia (NH3) is an important trace gas in the atmosphere and fires are among the poorly investigated sources. During the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) aircraft campaign, we measured gaseous NH3 and particulate ammonium (NH4+) in smoke plumes emitted from 6 wildfires in the Western US and 66 small agricultural fires in the Southeastern US. We herein present a comprehensive set of emission factors of NH3 and NHx, where NHx = NH3 + NH4+.
Viral Shah, Daniel J. Jacob, Ruijun Dang, Lok N. Lamsal, Sarah A. Strode, Stephen D. Steenrod, K. Folkert Boersma, Sebastian D. Eastham, Thibaud M. Fritz, Chelsea Thompson, Jeff Peischl, Ilann Bourgeois, Ilana B. Pollack, Benjamin A. Nault, Ronald C. Cohen, Pedro Campuzano-Jost, Jose L. Jimenez, Simone T. Andersen, Lucy J. Carpenter, Tomás Sherwen, and Mat J. Evans
Atmos. Chem. Phys., 23, 1227–1257, https://doi.org/10.5194/acp-23-1227-2023, https://doi.org/10.5194/acp-23-1227-2023, 2023
Short summary
Short summary
NOx in the free troposphere (above 2 km) affects global tropospheric chemistry and the retrieval and interpretation of satellite NO2 measurements. We evaluate free tropospheric NOx in global atmospheric chemistry models and find that recycling NOx from its reservoirs over the oceans is faster than that simulated in the models, resulting in increases in simulated tropospheric ozone and OH. Over the U.S., free tropospheric NO2 contributes the majority of the tropospheric NO2 column in summer.
Pamela S. Rickly, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Glenn M. Wolfe, Ryan Bennett, Ilann Bourgeois, John D. Crounse, Jack E. Dibb, Joshua P. DiGangi, Glenn S. Diskin, Maximilian Dollner, Emily M. Gargulinski, Samuel R. Hall, Hannah S. Halliday, Thomas F. Hanisco, Reem A. Hannun, Jin Liao, Richard Moore, Benjamin A. Nault, John B. Nowak, Jeff Peischl, Claire E. Robinson, Thomas Ryerson, Kevin J. Sanchez, Manuel Schöberl, Amber J. Soja, Jason M. St. Clair, Kenneth L. Thornhill, Kirk Ullmann, Paul O. Wennberg, Bernadett Weinzierl, Elizabeth B. Wiggins, Edward L. Winstead, and Andrew W. Rollins
Atmos. Chem. Phys., 22, 15603–15620, https://doi.org/10.5194/acp-22-15603-2022, https://doi.org/10.5194/acp-22-15603-2022, 2022
Short summary
Short summary
Biomass burning sulfur dioxide (SO2) emission factors range from 0.27–1.1 g kg-1 C. Biomass burning SO2 can quickly form sulfate and organosulfur, but these pathways are dependent on liquid water content and pH. Hydroxymethanesulfonate (HMS) appears to be directly emitted from some fire sources but is not the sole contributor to the organosulfur signal. It is shown that HMS and organosulfur chemistry may be an important S(IV) reservoir with the fate dependent on the surrounding conditions.
Youhua Tang, Patrick C. Campbell, Pius Lee, Rick Saylor, Fanglin Yang, Barry Baker, Daniel Tong, Ariel Stein, Jianping Huang, Ho-Chun Huang, Li Pan, Jeff McQueen, Ivanka Stajner, Jose Tirado-Delgado, Youngsun Jung, Melissa Yang, Ilann Bourgeois, Jeff Peischl, Tom Ryerson, Donald Blake, Joshua Schwarz, Jose-Luis Jimenez, James Crawford, Glenn Diskin, Richard Moore, Johnathan Hair, Greg Huey, Andrew Rollins, Jack Dibb, and Xiaoyang Zhang
Geosci. Model Dev., 15, 7977–7999, https://doi.org/10.5194/gmd-15-7977-2022, https://doi.org/10.5194/gmd-15-7977-2022, 2022
Short summary
Short summary
This paper compares two meteorological datasets for driving a regional air quality model: a regional meteorological model using WRF (WRF-CMAQ) and direct interpolation from an operational global model (GFS-CMAQ). In the comparison with surface measurements and aircraft data in summer 2019, these two methods show mixed performance depending on the corresponding meteorological settings. Direct interpolation is found to be a viable method to drive air quality models.
Nicole A. June, Anna L. Hodshire, Elizabeth B. Wiggins, Edward L. Winstead, Claire E. Robinson, K. Lee Thornhill, Kevin J. Sanchez, Richard H. Moore, Demetrios Pagonis, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Matthew M. Coggon, Jonathan M. Dean-Day, T. Paul Bui, Jeff Peischl, Robert J. Yokelson, Matthew J. Alvarado, Sonia M. Kreidenweis, Shantanu H. Jathar, and Jeffrey R. Pierce
Atmos. Chem. Phys., 22, 12803–12825, https://doi.org/10.5194/acp-22-12803-2022, https://doi.org/10.5194/acp-22-12803-2022, 2022
Short summary
Short summary
The evolution of organic aerosol composition and size is uncertain due to variability within and between smoke plumes. We examine the impact of plume concentration on smoke evolution from smoke plumes sampled by the NASA DC-8 during FIREX-AQ. We find that observed organic aerosol and size distribution changes are correlated to plume aerosol mass concentrations. Additionally, coagulation explains the majority of the observed growth.
Ilann Bourgeois, Jeff Peischl, J. Andrew Neuman, Steven S. Brown, Hannah M. Allen, Pedro Campuzano-Jost, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Jessica B. Gilman, Georgios I. Gkatzelis, Hongyu Guo, Hannah A. Halliday, Thomas F. Hanisco, Christopher D. Holmes, L. Gregory Huey, Jose L. Jimenez, Aaron D. Lamplugh, Young Ro Lee, Jakob Lindaas, Richard H. Moore, Benjamin A. Nault, John B. Nowak, Demetrios Pagonis, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Vanessa Selimovic, Jason M. St. Clair, David Tanner, Krystal T. Vasquez, Patrick R. Veres, Carsten Warneke, Paul O. Wennberg, Rebecca A. Washenfelder, Elizabeth B. Wiggins, Caroline C. Womack, Lu Xu, Kyle J. Zarzana, and Thomas B. Ryerson
Atmos. Meas. Tech., 15, 4901–4930, https://doi.org/10.5194/amt-15-4901-2022, https://doi.org/10.5194/amt-15-4901-2022, 2022
Short summary
Short summary
Understanding fire emission impacts on the atmosphere is key to effective air quality management and requires accurate measurements. We present a comparison of airborne measurements of key atmospheric species in ambient air and in fire smoke. We show that most instruments performed within instrument uncertainties. In some cases, further work is needed to fully characterize instrument performance. Comparing independent measurements using different techniques is important to assess their accuracy.
Aditya Kumar, R. Bradley Pierce, Ravan Ahmadov, Gabriel Pereira, Saulo Freitas, Georg Grell, Chris Schmidt, Allen Lenzen, Joshua P. Schwarz, Anne E. Perring, Joseph M. Katich, John Hair, Jose L. Jimenez, Pedro Campuzano-Jost, and Hongyu Guo
Atmos. Chem. Phys., 22, 10195–10219, https://doi.org/10.5194/acp-22-10195-2022, https://doi.org/10.5194/acp-22-10195-2022, 2022
Short summary
Short summary
We use the WRF-Chem model with new implementations of GOES-16 wildfire emissions and plume rise based on fire radiative power (FRP) to interpret aerosol observations during the 2019 NASA–NOAA FIREX-AQ field campaign and perform model evaluations. The model shows significant improvements in simulating the variety of aerosol loading environments sampled during FIREX-AQ. Our results also highlight the importance of accurate wildfire diurnal cycle and aerosol chemical mechanisms in models.
Jean-Pierre Chaboureau, Laurent Labbouz, Cyrille Flamant, and Alma Hodzic
Atmos. Chem. Phys., 22, 8639–8658, https://doi.org/10.5194/acp-22-8639-2022, https://doi.org/10.5194/acp-22-8639-2022, 2022
Short summary
Short summary
Ground-based, spaceborne and rare airborne observations of biomass burning aerosols (BBAs) during the AEROCLO-sA field campaign in 2017 are complemented with convection-permitting simulations with online trajectories. The results show that the radiative effect of the BBA accelerates the southern African easterly jet and generates upward motions that transport the BBAs to higher altitudes and farther southwest.
Linghan Zeng, Jack Dibb, Eric Scheuer, Joseph M. Katich, Joshua P. Schwarz, Ilann Bourgeois, Jeff Peischl, Tom Ryerson, Carsten Warneke, Anne E. Perring, Glenn S. Diskin, Joshua P. DiGangi, John B. Nowak, Richard H. Moore, Elizabeth B. Wiggins, Demetrios Pagonis, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Lu Xu, and Rodney J. Weber
Atmos. Chem. Phys., 22, 8009–8036, https://doi.org/10.5194/acp-22-8009-2022, https://doi.org/10.5194/acp-22-8009-2022, 2022
Short summary
Short summary
Wildfires emit aerosol particles containing brown carbon material that affects visibility and global climate and is toxic. Brown carbon is poorly characterized due to measurement limitations, and its evolution in the atmosphere is not well known. We report on aircraft measurements of brown carbon from large wildfires in the western United States. We compare two methods for measuring brown carbon and study the evolution of brown carbon in the smoke as it moved away from the burning regions.
Katherine R. Travis, James H. Crawford, Gao Chen, Carolyn E. Jordan, Benjamin A. Nault, Hwajin Kim, Jose L. Jimenez, Pedro Campuzano-Jost, Jack E. Dibb, Jung-Hun Woo, Younha Kim, Shixian Zhai, Xuan Wang, Erin E. McDuffie, Gan Luo, Fangqun Yu, Saewung Kim, Isobel J. Simpson, Donald R. Blake, Limseok Chang, and Michelle J. Kim
Atmos. Chem. Phys., 22, 7933–7958, https://doi.org/10.5194/acp-22-7933-2022, https://doi.org/10.5194/acp-22-7933-2022, 2022
Short summary
Short summary
The 2016 Korea–United States Air Quality (KORUS-AQ) field campaign provided a unique set of observations to improve our understanding of PM2.5 pollution in South Korea. Models typically have errors in simulating PM2.5 in this region, which is of concern for the development of control measures. We use KORUS-AQ observations to improve our understanding of the mechanisms driving PM2.5 and the implications of model errors for determining PM2.5 that is attributable to local or foreign sources.
Glenn M. Wolfe, Thomas F. Hanisco, Heather L. Arkinson, Donald R. Blake, Armin Wisthaler, Tomas Mikoviny, Thomas B. Ryerson, Ilana Pollack, Jeff Peischl, Paul O. Wennberg, John D. Crounse, Jason M. St. Clair, Alex Teng, L. Gregory Huey, Xiaoxi Liu, Alan Fried, Petter Weibring, Dirk Richter, James Walega, Samuel R. Hall, Kirk Ullmann, Jose L. Jimenez, Pedro Campuzano-Jost, T. Paul Bui, Glenn Diskin, James R. Podolske, Glen Sachse, and Ronald C. Cohen
Atmos. Chem. Phys., 22, 4253–4275, https://doi.org/10.5194/acp-22-4253-2022, https://doi.org/10.5194/acp-22-4253-2022, 2022
Short summary
Short summary
Smoke plumes are chemically complex. This work combines airborne observations of smoke plume composition with a photochemical model to probe the production of ozone and the fate of reactive gases in the outflow of a large wildfire. Model–measurement comparisons illustrate how uncertain emissions and chemical processes propagate into simulated chemical evolution. Results provide insight into how this system responds to perturbations, which can help guide future observation and modeling efforts.
Haiyan Li, Thomas Golin Almeida, Yuanyuan Luo, Jian Zhao, Brett B. Palm, Christopher D. Daub, Wei Huang, Claudia Mohr, Jordan E. Krechmer, Theo Kurtén, and Mikael Ehn
Atmos. Meas. Tech., 15, 1811–1827, https://doi.org/10.5194/amt-15-1811-2022, https://doi.org/10.5194/amt-15-1811-2022, 2022
Short summary
Short summary
This work evaluated the potential for PTR-based mass spectrometers to detect ROOR and ROOH peroxides both experimentally and through computations. Laboratory experiments using a Vocus PTR observed only noisy signals of potential dimers during α-pinene ozonolysis and a few small signals of dimeric compounds during cyclohexene ozonolysis. Quantum chemical calculations for model ROOR and ROOH systems showed that most of these peroxides should fragment partially following protonation.
Meloë S. F. Kacenelenbogen, Qian Tan, Sharon P. Burton, Otto P. Hasekamp, Karl D. Froyd, Yohei Shinozuka, Andreas J. Beyersdorf, Luke Ziemba, Kenneth L. Thornhill, Jack E. Dibb, Taylor Shingler, Armin Sorooshian, Reed W. Espinosa, Vanderlei Martins, Jose L. Jimenez, Pedro Campuzano-Jost, Joshua P. Schwarz, Matthew S. Johnson, Jens Redemann, and Gregory L. Schuster
Atmos. Chem. Phys., 22, 3713–3742, https://doi.org/10.5194/acp-22-3713-2022, https://doi.org/10.5194/acp-22-3713-2022, 2022
Short summary
Short summary
The impact of aerosols on Earth's radiation budget and human health is important and strongly depends on their composition. One desire of our scientific community is to derive the composition of the aerosol from satellite sensors. However, satellites observe aerosol optical properties (and not aerosol composition) based on remote sensing instrumentation. This study assesses how much aerosol optical properties can tell us about aerosol composition.
Ka Ming Fung, Colette L. Heald, Jesse H. Kroll, Siyuan Wang, Duseong S. Jo, Andrew Gettelman, Zheng Lu, Xiaohong Liu, Rahul A. Zaveri, Eric C. Apel, Donald R. Blake, Jose-Luis Jimenez, Pedro Campuzano-Jost, Patrick R. Veres, Timothy S. Bates, John E. Shilling, and Maria Zawadowicz
Atmos. Chem. Phys., 22, 1549–1573, https://doi.org/10.5194/acp-22-1549-2022, https://doi.org/10.5194/acp-22-1549-2022, 2022
Short summary
Short summary
Understanding the natural aerosol burden in the preindustrial era is crucial for us to assess how atmospheric aerosols affect the Earth's radiative budgets. Our study explores how a detailed description of dimethyl sulfide (DMS) oxidation (implemented in the Community Atmospheric Model version 6 with chemistry, CAM6-chem) could help us better estimate the present-day and preindustrial concentrations of sulfate and other relevant chemicals, as well as the resulting aerosol radiative impacts.
Douglas A. Day, Pedro Campuzano-Jost, Benjamin A. Nault, Brett B. Palm, Weiwei Hu, Hongyu Guo, Paul J. Wooldridge, Ronald C. Cohen, Kenneth S. Docherty, J. Alex Huffman, Suzane S. de Sá, Scot T. Martin, and Jose L. Jimenez
Atmos. Meas. Tech., 15, 459–483, https://doi.org/10.5194/amt-15-459-2022, https://doi.org/10.5194/amt-15-459-2022, 2022
Short summary
Short summary
Particle-phase nitrates are an important component of atmospheric aerosols and chemistry. In this paper, we systematically explore the application of aerosol mass spectrometry (AMS) to quantify the organic and inorganic nitrate fractions of aerosols in the atmosphere. While AMS has been used for a decade to quantify nitrates, methods are not standardized. We make recommendations for a more universal approach based on this analysis of a large range of field and laboratory observations.
Dongwook Kim, Changmin Cho, Seokhan Jeong, Soojin Lee, Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Jason C. Schroder, Jose L. Jimenez, Rainer Volkamer, Donald R. Blake, Armin Wisthaler, Alan Fried, Joshua P. DiGangi, Glenn S. Diskin, Sally E. Pusede, Samuel R. Hall, Kirk Ullmann, L. Gregory Huey, David J. Tanner, Jack Dibb, Christoph J. Knote, and Kyung-Eun Min
Atmos. Chem. Phys., 22, 805–821, https://doi.org/10.5194/acp-22-805-2022, https://doi.org/10.5194/acp-22-805-2022, 2022
Short summary
Short summary
CHOCHO was simulated using a 0-D box model constrained by measurements during the KORUS-AQ mission. CHOCHO concentration was high in large cities, aromatics being the most important precursors. Loss path to aerosol was the highest sink, contributing to ~ 20 % of secondary organic aerosol formation. Our work highlights that simple CHOCHO surface uptake approach is valid only for low aerosol conditions and more work is required to understand CHOCHO solubility in high-aerosol conditions.
Shixian Zhai, Daniel J. Jacob, Jared F. Brewer, Ke Li, Jonathan M. Moch, Jhoon Kim, Seoyoung Lee, Hyunkwang Lim, Hyun Chul Lee, Su Keun Kuk, Rokjin J. Park, Jaein I. Jeong, Xuan Wang, Pengfei Liu, Gan Luo, Fangqun Yu, Jun Meng, Randall V. Martin, Katherine R. Travis, Johnathan W. Hair, Bruce E. Anderson, Jack E. Dibb, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jung-Hun Woo, Younha Kim, Qiang Zhang, and Hong Liao
Atmos. Chem. Phys., 21, 16775–16791, https://doi.org/10.5194/acp-21-16775-2021, https://doi.org/10.5194/acp-21-16775-2021, 2021
Short summary
Short summary
Geostationary satellite aerosol optical depth (AOD) has tremendous potential for monitoring surface fine particulate matter (PM2.5). Our study explored the physical relationship between AOD and PM2.5 by integrating data from surface networks, aircraft, and satellites with the GEOS-Chem chemical transport model. We quantitatively showed that accurate simulation of aerosol size distributions, boundary layer depths, relative humidity, coarse particles, and diurnal variations in PM2.5 are essential.
Zachary C. J. Decker, Michael A. Robinson, Kelley C. Barsanti, Ilann Bourgeois, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Frank M. Flocke, Alessandro Franchin, Carley D. Fredrickson, Georgios I. Gkatzelis, Samuel R. Hall, Hannah Halliday, Christopher D. Holmes, L. Gregory Huey, Young Ro Lee, Jakob Lindaas, Ann M. Middlebrook, Denise D. Montzka, Richard Moore, J. Andrew Neuman, John B. Nowak, Brett B. Palm, Jeff Peischl, Felix Piel, Pamela S. Rickly, Andrew W. Rollins, Thomas B. Ryerson, Rebecca H. Schwantes, Kanako Sekimoto, Lee Thornhill, Joel A. Thornton, Geoffrey S. Tyndall, Kirk Ullmann, Paul Van Rooy, Patrick R. Veres, Carsten Warneke, Rebecca A. Washenfelder, Andrew J. Weinheimer, Elizabeth Wiggins, Edward Winstead, Armin Wisthaler, Caroline Womack, and Steven S. Brown
Atmos. Chem. Phys., 21, 16293–16317, https://doi.org/10.5194/acp-21-16293-2021, https://doi.org/10.5194/acp-21-16293-2021, 2021
Short summary
Short summary
To understand air quality impacts from wildfires, we need an accurate picture of how wildfire smoke changes chemically both day and night as sunlight changes the chemistry of smoke. We present a chemical analysis of wildfire smoke as it changes from midday through the night. We use aircraft observations from the FIREX-AQ field campaign with a chemical box model. We find that even under sunlight typical
nighttimechemistry thrives and controls the fate of key smoke plume chemical processes.
Stefano Galmarini, Paul Makar, Olivia E. Clifton, Christian Hogrefe, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Tim Butler, Jason Ducker, Johannes Flemming, Alma Hodzic, Christopher D. Holmes, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Juan Luis Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Sam Silva, and Ralf Wolke
Atmos. Chem. Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021, https://doi.org/10.5194/acp-21-15663-2021, 2021
Short summary
Short summary
This technical note presents the research protocols for phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This initiative has three goals: (i) to define the state of wet and dry deposition in regional models, (ii) to evaluate how dry deposition influences air concentration and flux predictions, and (iii) to identify the causes for prediction differences. The evaluation compares LULC-specific dry deposition and effective conductances and fluxes.
Charles A. Brock, Karl D. Froyd, Maximilian Dollner, Christina J. Williamson, Gregory Schill, Daniel M. Murphy, Nicholas J. Wagner, Agnieszka Kupc, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jason C. Schroder, Douglas A. Day, Derek J. Price, Bernadett Weinzierl, Joshua P. Schwarz, Joseph M. Katich, Siyuan Wang, Linghan Zeng, Rodney Weber, Jack Dibb, Eric Scheuer, Glenn S. Diskin, Joshua P. DiGangi, ThaoPaul Bui, Jonathan M. Dean-Day, Chelsea R. Thompson, Jeff Peischl, Thomas B. Ryerson, Ilann Bourgeois, Bruce C. Daube, Róisín Commane, and Steven C. Wofsy
Atmos. Chem. Phys., 21, 15023–15063, https://doi.org/10.5194/acp-21-15023-2021, https://doi.org/10.5194/acp-21-15023-2021, 2021
Short summary
Short summary
The Atmospheric Tomography Mission was an airborne study that mapped the chemical composition of the remote atmosphere. From this, we developed a comprehensive description of aerosol properties that provides a unique, global-scale dataset against which models can be compared. The data show the polluted nature of the remote atmosphere in the Northern Hemisphere and quantify the contributions of sea salt, dust, soot, biomass burning particles, and pollution particles to the haziness of the sky.
Zhe Peng, Julia Lee-Taylor, Harald Stark, John J. Orlando, Bernard Aumont, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 14649–14669, https://doi.org/10.5194/acp-21-14649-2021, https://doi.org/10.5194/acp-21-14649-2021, 2021
Short summary
Short summary
We use the fully explicit GECKO-A model to study the OH reactivity (OHR) evolution in the NO-free photooxidation of several volatile organic compounds. Oxidation progressively produces more saturated and functionalized species, then breaks them into small species. OHR per C atom evolution is similar for different precursors once saturated multifunctional species are formed. We also find that partitioning of these species to chamber walls leads to large deviations in chambers from the atmosphere.
Linghan Zeng, Amy P. Sullivan, Rebecca A. Washenfelder, Jack Dibb, Eric Scheuer, Teresa L. Campos, Joseph M. Katich, Ezra Levin, Michael A. Robinson, and Rodney J. Weber
Atmos. Meas. Tech., 14, 6357–6378, https://doi.org/10.5194/amt-14-6357-2021, https://doi.org/10.5194/amt-14-6357-2021, 2021
Short summary
Short summary
Three online systems for measuring water-soluble brown carbon are compared. A mist chamber and two different particle-into-liquid samplers were deployed on separate research aircraft targeting wildfires and followed a similar detection method using a long-path liquid waveguide with a spectrometer to measure the light absorption from 300 to 700 nm. Detection limits, signal hysteresis and other sampling issues are compared, and further improvements of these liquid-based systems are provided.
Jiajue Chai, Jack E. Dibb, Bruce E. Anderson, Claire Bekker, Danielle E. Blum, Eric Heim, Carolyn E. Jordan, Emily E. Joyce, Jackson H. Kaspari, Hannah Munro, Wendell W. Walters, and Meredith G. Hastings
Atmos. Chem. Phys., 21, 13077–13098, https://doi.org/10.5194/acp-21-13077-2021, https://doi.org/10.5194/acp-21-13077-2021, 2021
Short summary
Short summary
Nitrous acid (HONO) derived from wildfire emissions plays a key role in controlling atmospheric oxidation chemistry. However, the HONO budget remains poorly constrained. By combining the field-observed concentrations and novel isotopic composition (N and O) of HONO and nitrogen oxides (NOx), we quantitatively constrained the relative contribution of each pathway to secondary HONO production and the relative importance of major atmospheric oxidants (ozone versus peroxy) in aged wildfire smoke.
Benjamin A. Nault, Duseong S. Jo, Brian C. McDonald, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Jason C. Schroder, James Allan, Donald R. Blake, Manjula R. Canagaratna, Hugh Coe, Matthew M. Coggon, Peter F. DeCarlo, Glenn S. Diskin, Rachel Dunmore, Frank Flocke, Alan Fried, Jessica B. Gilman, Georgios Gkatzelis, Jacqui F. Hamilton, Thomas F. Hanisco, Patrick L. Hayes, Daven K. Henze, Alma Hodzic, James Hopkins, Min Hu, L. Greggory Huey, B. Thomas Jobson, William C. Kuster, Alastair Lewis, Meng Li, Jin Liao, M. Omar Nawaz, Ilana B. Pollack, Jeffrey Peischl, Bernhard Rappenglück, Claire E. Reeves, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Min Shao, Jacob M. Sommers, James Walega, Carsten Warneke, Petter Weibring, Glenn M. Wolfe, Dominique E. Young, Bin Yuan, Qiang Zhang, Joost A. de Gouw, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 11201–11224, https://doi.org/10.5194/acp-21-11201-2021, https://doi.org/10.5194/acp-21-11201-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is an important aspect of poor air quality for urban regions around the world, where a large fraction of the population lives. However, there is still large uncertainty in predicting SOA in urban regions. Here, we used data from 11 urban campaigns and show that the variability in SOA production in these regions is predictable and is explained by key emissions. These results are used to estimate the premature mortality associated with SOA in urban regions.
Yenny Gonzalez, Róisín Commane, Ethan Manninen, Bruce C. Daube, Luke D. Schiferl, J. Barry McManus, Kathryn McKain, Eric J. Hintsa, James W. Elkins, Stephen A. Montzka, Colm Sweeney, Fred Moore, Jose L. Jimenez, Pedro Campuzano Jost, Thomas B. Ryerson, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Eric Ray, Paul O. Wennberg, John Crounse, Michelle Kim, Hannah M. Allen, Paul A. Newman, Britton B. Stephens, Eric C. Apel, Rebecca S. Hornbrook, Benjamin A. Nault, Eric Morgan, and Steven C. Wofsy
Atmos. Chem. Phys., 21, 11113–11132, https://doi.org/10.5194/acp-21-11113-2021, https://doi.org/10.5194/acp-21-11113-2021, 2021
Short summary
Short summary
Vertical profiles of N2O and a variety of chemical species and aerosols were collected nearly from pole to pole over the oceans during the NASA Atmospheric Tomography mission. We observed that tropospheric N2O variability is strongly driven by the influence of stratospheric air depleted in N2O, especially at middle and high latitudes. We also traced the origins of biomass burning and industrial emissions and investigated their impact on the variability of tropospheric N2O.
Richard H. Moore, Elizabeth B. Wiggins, Adam T. Ahern, Stephen Zimmerman, Lauren Montgomery, Pedro Campuzano Jost, Claire E. Robinson, Luke D. Ziemba, Edward L. Winstead, Bruce E. Anderson, Charles A. Brock, Matthew D. Brown, Gao Chen, Ewan C. Crosbie, Hongyu Guo, Jose L. Jimenez, Carolyn E. Jordan, Ming Lyu, Benjamin A. Nault, Nicholas E. Rothfuss, Kevin J. Sanchez, Melinda Schueneman, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Nicholas L. Wagner, and Jian Wang
Atmos. Meas. Tech., 14, 4517–4542, https://doi.org/10.5194/amt-14-4517-2021, https://doi.org/10.5194/amt-14-4517-2021, 2021
Short summary
Short summary
Atmospheric particles are everywhere and exist in a range of sizes, from a few nanometers to hundreds of microns. Because particle size determines the behavior of chemical and physical processes, accurately measuring particle sizes is an important and integral part of atmospheric field measurements! Here, we discuss the performance of two commonly used particle sizers and how changes in particle composition and optical properties may result in sizing uncertainties, which we quantify.
Hongyu Guo, Pedro Campuzano-Jost, Benjamin A. Nault, Douglas A. Day, Jason C. Schroder, Dongwook Kim, Jack E. Dibb, Maximilian Dollner, Bernadett Weinzierl, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 3631–3655, https://doi.org/10.5194/amt-14-3631-2021, https://doi.org/10.5194/amt-14-3631-2021, 2021
Short summary
Short summary
We utilize a set of high-quality datasets collected during the NASA Atmospheric Tomography Mission to investigate the impact of differences in observable particle sizes across aerosol instruments in aerosol measurement comparisons. Very good agreement was found between chemically and physically derived submicron aerosol volume. Results support a lack of significant unknown biases in the response of an Aerodyne aerosol mass spectrometer (AMS) when sampling remote aerosols across the globe.
Duseong S. Jo, Alma Hodzic, Louisa K. Emmons, Simone Tilmes, Rebecca H. Schwantes, Michael J. Mills, Pedro Campuzano-Jost, Weiwei Hu, Rahul A. Zaveri, Richard C. Easter, Balwinder Singh, Zheng Lu, Christiane Schulz, Johannes Schneider, John E. Shilling, Armin Wisthaler, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 3395–3425, https://doi.org/10.5194/acp-21-3395-2021, https://doi.org/10.5194/acp-21-3395-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is a major component of submicron particulate matter, but there are a lot of uncertainties in the future prediction of SOA. We used CESM 2.1 to investigate future IEPOX SOA concentration changes. The explicit chemistry predicted substantial changes in IEPOX SOA depending on the future scenario, but the parameterization predicted weak changes due to simplified chemistry, which shows the importance of correct physicochemical dependencies in future SOA prediction.
Demetrios Pagonis, Pedro Campuzano-Jost, Hongyu Guo, Douglas A. Day, Melinda K. Schueneman, Wyatt L. Brown, Benjamin A. Nault, Harald Stark, Kyla Siemens, Alex Laskin, Felix Piel, Laura Tomsche, Armin Wisthaler, Matthew M. Coggon, Georgios I. Gkatzelis, Hannah S. Halliday, Jordan E. Krechmer, Richard H. Moore, David S. Thomson, Carsten Warneke, Elizabeth B. Wiggins, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 1545–1559, https://doi.org/10.5194/amt-14-1545-2021, https://doi.org/10.5194/amt-14-1545-2021, 2021
Short summary
Short summary
We describe the airborne deployment of an extractive electrospray time-of-flight mass spectrometer (EESI-MS). The instrument provides a quantitative 1 Hz measurement of the chemical composition of organic aerosol up to altitudes of
7 km, with single-compound detection limits as low as 50 ng per standard cubic meter.
Megan S. Claflin, Demetrios Pagonis, Zachary Finewax, Anne V. Handschy, Douglas A. Day, Wyatt L. Brown, John T. Jayne, Douglas R. Worsnop, Jose L. Jimenez, Paul J. Ziemann, Joost de Gouw, and Brian M. Lerner
Atmos. Meas. Tech., 14, 133–152, https://doi.org/10.5194/amt-14-133-2021, https://doi.org/10.5194/amt-14-133-2021, 2021
Short summary
Short summary
We have developed a field-deployable gas chromatograph with thermal desorption preconcentration and detector switching between two high-resolution mass spectrometers for in situ measurements of volatile organic compounds (VOCs). This system combines chromatography with both proton transfer and electron ionization to offer fast time response and continuous molecular speciation. This technique was applied during the 2018 ATHLETIC campaign to characterize VOC emissions in an indoor environment.
Natalie I. Keehan, Bellamy Brownwood, Andrey Marsavin, Douglas A. Day, and Juliane L. Fry
Atmos. Meas. Tech., 13, 6255–6269, https://doi.org/10.5194/amt-13-6255-2020, https://doi.org/10.5194/amt-13-6255-2020, 2020
Short summary
Short summary
This paper describes a new instrument (a thermal-dissociation–cavity ring-down spectrometer, TD-CRDS) for the measurement of key atmospheric gaseous and particle-phase molecules containing the nitrate functional group. Several operational considerations affecting the measurements are described, as well as several characterization experiments comparing the TD-CRDS measurements to analogous measurements from other instruments. Examples are given using a TD-CRDS for ambient and laboratory studies.
Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Hongyu Guo, Duseong S. Jo, Anne V. Handschy, Demetrios Pagonis, Jason C. Schroder, Melinda K. Schueneman, Michael J. Cubison, Jack E. Dibb, Alma Hodzic, Weiwei Hu, Brett B. Palm, and Jose L. Jimenez
Atmos. Meas. Tech., 13, 6193–6213, https://doi.org/10.5194/amt-13-6193-2020, https://doi.org/10.5194/amt-13-6193-2020, 2020
Short summary
Short summary
Collecting particulate matter, or aerosols, onto filters to be analyzed offline is a widely used method to investigate the mass concentration and chemical composition of the aerosol, especially the inorganic portion. Here, we show that acidic aerosol (sulfuric acid) collected onto filters and then exposed to high ammonia mixing ratios (from human emissions) will lead to biases in the ammonium collected onto filters, and the uptake of ammonia is rapid (< 10 s), which impacts the filter data.
Yiqi Zheng, Joel A. Thornton, Nga Lee Ng, Hansen Cao, Daven K. Henze, Erin E. McDuffie, Weiwei Hu, Jose L. Jimenez, Eloise A. Marais, Eric Edgerton, and Jingqiu Mao
Atmos. Chem. Phys., 20, 13091–13107, https://doi.org/10.5194/acp-20-13091-2020, https://doi.org/10.5194/acp-20-13091-2020, 2020
Short summary
Short summary
This study aims to address a challenge in biosphere–atmosphere interactions: to what extent can biogenic organic aerosol (OA) be modified through human activities? From three surface network observations, we show OA is weakly dependent on sulfate and aerosol acidity in the summer southeast US, on both long-term trends and monthly variability. The results are in strong contrast to a global model, GEOS-Chem, suggesting the need to revisit the representation of aqueous-phase secondary OA formation.
Cited articles
Ackendorf, J. M., Ippolito, M. G., and Galloway, M. M.: pH Dependence of the
Imidazole-2-carboxaldehyde Hydration Equilibrium: Implications for
Atmospheric Light Absorbance, Environ. Sci. Technol. Lett., 4, 551–555,
https://doi.org/10.1021/acs.estlett.7b00486, 2017.
Alfarra, M. R., Coe, H., Allan, J. D., Bower, K. N., Boudries, H.,
Canagaratna, M. R., Jimenez, J. L., Jayne, J. T., Garforth, A. A., Li, S.-M.,
and Worsnop, D. R.: Characterization of urban and rural organic particulate
in the Lower Fraser Valley using two Aerodyne Aerosol Mass Spectrometers,
Atmos. Environ., 38, 5745–5758, https://doi.org/10.1016/j.atmosenv.2004.01.054,
2004.
Allan, J. D., Delia, A. E., Coe, H., Bower, K. N., Alfarra, M. R., Jimenez,
J. L., Middlebrook, A. M., Drewnick, F., Onasch, T. B., Canagaratna, M. R.,
Jayne, J. T., and Worsnop, D. R.: A generalised method for the extraction of
chemically resolved mass spectra from Aerodyne aerosol mass spectrometer
data, J. Aerosol Sci., 35, 909–922, https://doi.org/10.1016/j.jaerosci.2004.02.007,
2004.
Anon: Atmospheric chemistry and physics: from air pollution to climate
change, Choice Reviews Online, 44, 4512–4512,
https://doi.org/10.5860/CHOICE.44-4512, 2007.
Bahreini, R., Dunlea, E. J., Matthew, B. M., Simons, C., Docherty, K. S.,
DeCarlo, P. F., Jimenez, J. L., Brock, C. A., and Middlebrook, A. M.: Design
and Operation of a Pressure-Controlled Inlet for Airborne Sampling with an
Aerodynamic Aerosol Lens, Aerosol Sci. Technol., 42, 465–471,
https://doi.org/10.1080/02786820802178514, 2008.
Bahreini, R., Ervens, B., Middlebrook, A. M., Warneke, C., de Gouw, J. A.,
DeCarlo, P. F., Jimenez, J. L., Brock, C. A., Neuman, J. A., Ryerson, T. B.,
Stark, H., Atlas, E., Brioude, J., Fried, A., Holloway, J. S., Peischl, J.,
Richter, D., Walega, J., Weibring, P., Wollny, A. G., and Fehsenfeld, F. C.:
Organic aerosol formation in urban and industrial plumes near Houston and
Dallas, Texas, J. Geophys. Res., 114, 1185, https://doi.org/10.1029/2008JD011493, 2009.
Barth, M. C., Cantrell, C. A., Brune, W. H., Rutledge, S. A., Crawford, J.
H., Huntrieser, H., Carey, L. D., MacGorman, D., Weisman, M., Pickering, K.
E., Bruning, E., Anderson, B., Apel, E., Biggerstaff, M., Campos, T.,
Campuzano-Jost, P., Cohen, R., Crounse, J., Day, D. A., Diskin, G., Flocke,
F., Fried, A., Garland, C., Heikes, B., Honomichl, S., Hornbrook, R., Huey,
L. G., Jimenez, J. L., Lang, T., Lichtenstern, M., Mikoviny, T., Nault, B.,
O'Sullivan, D., Pan, L. L., Peischl, J., Pollack, I., Richter, D., Riemer,
D., Ryerson, T., Schlager, H., St. Clair, J., Walega, J., Weibring, P.,
Weinheimer, A., Wennberg, P., Wisthaler, A., Wooldridge, P. J., and Ziegler,
C.: The Deep Convective Clouds and Chemistry (DC3) Field Campaign, B. Am.
Meteorol. Soc., 96, 1281–1309, https://doi.org/10.1175/BAMS-D-13-00290.1, 2015.
Bertram, T. H. and Thornton, J. A.: Toward a general parameterization of N2O5 reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride, Atmos. Chem. Phys., 9, 8351–8363, https://doi.org/10.5194/acp-9-8351-2009, 2009.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore,
A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global
modeling of tropospheric chemistry with assimilated meteorology: Model
description and evaluation, J. Geophys. Res., 106, 23073–23095,
https://doi.org/10.1029/2001JD000807, 2001.
Brock, C.: Interactive comment on “Aerosol sizedistributions during the Atmospheric Tomography(ATom) mission: methods, uncertainties, and dataproducts”, Atmos. Meas. Tech. Discuss.,
https://doi.org/10.5194/amt-2019-44-ac1, 2019.
Brüggemann, M., Riva, M., Perrier, S., Poulain, L., George,
C., and Herrmann, H.: Overestimation of Monoterpene
Organosulfate Abundance in Aerosol Particles by Sampling
in the Presence of SO2, Environ. Sci. Technol. Lett., 8, 206–211,
https://doi.org/10.1021/acs.estlett.0c00814, 2021.
Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M.
R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia,
A., Williams, L. R., Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb,
C. E., Davidovits, P., and Worsnop, D. R.: Chemical and microphysical
characterization of ambient aerosols with the aerodyne aerosol mass
spectrometer, Mass Spectrom. Rev., 26, 185–222, https://doi.org/10.1002/mas.20115,
2007.
Carlton, A. G., de Gouw, J., Jimenez, J. L., Ambrose, J. L., Attwood, A. R.,
Brown, S., Baker, K. R., Brock, C., Cohen, R. C., Edgerton, S., Farkas, C.
M., Farmer, D., Goldstein, A. H., Gratz, L., Guenther, A., Hunt, S.,
Jaeglé, L., Jaffe, D. A., Mak, J., McClure, C., Nenes, A., Nguyen, T.
K., Pierce, J. R., de Sa, S., Selin, N. E., Shah, V., Shaw, S., Shepson, P.
B., Song, S., Stutz, J., Surratt, J. D., Turpin, B. J., Warneke, C.,
Washenfelder, R. A., Wennberg, P. O., and Zhou, X.: Synthesis of the
Southeast Atmosphere Studies: Investigating Fundamental Atmospheric
Chemistry Questions, B. Am. Meteorol. Soc., 99, 547–567,
https://doi.org/10.1175/BAMS-D-16-0048.1, 2018.
Chen, Y., Xu, L., Humphry, T., Hettiyadura, A. P. S., Ovadnevaite, J.,
Huang, S., Poulain, L., Schroder, J. C., Campuzano-Jost, P., Jimenez, J. L.,
Herrmann, H., O'Dowd, C., Stone, E. A., and Ng, N. L.: Response of the
Aerodyne Aerosol Mass Spectrometer to Inorganic Sulfates and Organosulfur
Compounds: Applications in Field and Laboratory Measurements, Environ. Sci.
Technol., 53, 5176–5186, https://doi.org/10.1021/acs.est.9b00884, 2019.
Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic Model of the
System H+-NH -SO -NO -H2O at Tropospheric Temperatures, J. Phys. Chem. A, 102, 2137–2154, https://doi.org/10.1021/jp973042r, 1998.
Clegg, S. L., Seinfeld, J. H., and Edney, E. O.: Thermodynamic modelling of
aqueous aerosols containing electrolytes and dissolved organic compounds.
II. An extended Zdanovskii–Stokes–Robinson approach, J. Aerosol Sci.,
34, 667–690, https://doi.org/10.1016/S0021-8502(03)00019-3, 2003.
Computational and Information Systems Laboratory: Cheyenne: HPE/SGI ICE XA System (University Community Computing), Boulder, CO: National Center for Atmospheric Research, https://doi.org/10.5065/D6RX99HX, 2019.
Craig, R. L., Peterson, P. K., Nandy, L., Lei, Z., Hossain, M. A., Camarena,
S., Dodson, R. A., Cook, R. D., Dutcher, C. S., and Ault, A. P.: Direct
Determination of Aerosol pH: Size-Resolved Measurements of Submicrometer and
Supermicrometer Aqueous Particles, Anal. Chem., 90, 11232–11239,
https://doi.org/10.1021/acs.analchem.8b00586, 2018.
Crounse, J. D., McKinney, K. A., Kwan, A. J., and Wennberg, P. O.:
Measurement of gas-phase hydroperoxides by chemical ionization mass
spectrometry, Anal. Chem., 78, 6726–6732, https://doi.org/10.1021/ac0604235, 2006.
Cubison, M. J., Ortega, A. M., Hayes, P. L., Farmer, D. K., Day, D., Lechner, M. J., Brune, W. H., Apel, E., Diskin, G. S., Fisher, J. A., Fuelberg, H. E., Hecobian, A., Knapp, D. J., Mikoviny, T., Riemer, D., Sachse, G. W., Sessions, W., Weber, R. J., Weinheimer, A. J., Wisthaler, A., and Jimenez, J. L.: Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies, Atmos. Chem. Phys., 11, 12049–12064, https://doi.org/10.5194/acp-11-12049-2011, 2011.
DC3 Science Team: DC3 data, NASA, https://doi.org/10.5067/Aircraft/DC3/DC8/Aerosol-TraceGas, 2012.
DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T.,
Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop,
D. R., and Jimenez, J. L.: Field-deployable, high-resolution, time-of-flight
aerosol mass spectrometer, Anal. Chem., 78, 8281–8289,
https://doi.org/10.1021/ac061249n, 2006.
DeCarlo, P. F., Dunlea, E. J., Kimmel, J. R., Aiken, A. C., Sueper, D., Crounse, J., Wennberg, P. O., Emmons, L., Shinozuka, Y., Clarke, A., Zhou, J., Tomlinson, J., Collins, D. R., Knapp, D., Weinheimer, A. J., Montzka, D. D., Campos, T., and Jimenez, J. L.: Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign, Atmos. Chem. Phys., 8, 4027–4048, https://doi.org/10.5194/acp-8-4027-2008, 2008.
Dentener, F. J. and Crutzen, P. J.: A three-dimensional model of the global
ammonia cycle, J. Atmos. Chem., 19, 331–369, https://doi.org/10.1007/BF00694492,
1994.
Docherty, K. S., Lewandowski, M., and Jimenez, J. L.: Effect of Vaporizer
Temperature on Ambient Non-Refractory Submicron Aerosol Composition and Mass
Spectra Measured by the Aerosol Mass Spectrometer, Aerosol Sci. Technol.,
49, 485–494, https://doi.org/10.1080/02786826.2015.1042100, 2015.
Dockery, D. W., Cunningham, J., Damokosh, A. I., Neas, L. M., Spengler, J.
D., Koutrakis, P., Ware, J. H., Raizenne, M., and Speizer, F. E.: Health
effects of acid aerosols on North American children: respiratory symptoms,
Environ, Health Perspect., 104, 500–505, https://doi.org/10.1289/ehp.96104500, 1996.
Dovrou, E., Lim, C. Y., Canagaratna, M. R., Kroll, J. H., Worsnop, D. R., and Keutsch, F. N.: Measurement techniques for identifying and quantifying hydroxymethanesulfonate (HMS) in an aqueous matrix and particulate matter using aerosol mass spectrometry and ion chromatography, Atmos. Meas. Tech., 12, 5303–5315, https://doi.org/10.5194/amt-12-5303-2019, 2019.
Drewnick, F., Hings, S. S., Alfarra, M. R., Prevot, A. S. H., and Borrmann, S.: Aerosol quantification with the Aerodyne Aerosol Mass Spectrometer: detection limits and ionizer background effects, Atmos. Meas. Tech., 2, 33–46, https://doi.org/10.5194/amt-2-33-2009, 2009.
Dunlea, E. J., DeCarlo, P. F., Aiken, A. C., Kimmel, J. R., Peltier, R. E., Weber, R. J., Tomlinson, J., Collins, D. R., Shinozuka, Y., McNaughton, C. S., Howell, S. G., Clarke, A. D., Emmons, L. K., Apel, E. C., Pfister, G. G., van Donkelaar, A., Martin, R. V., Millet, D. B., Heald, C. L., and Jimenez, J. L.: Evolution of Asian aerosols during transpacific transport in INTEX-B, Atmos. Chem. Phys., 9, 7257–7287, https://doi.org/10.5194/acp-9-7257-2009, 2009.
Facchini, M. C., Decesari, S., Rinaldi, M., Carbone, C., Finessi, E.,
Mircea, M., Fuzzi, S., Moretti, F., Tagliavini, E., Ceburnis, D., and O'Dowd,
C. D.: Important source of marine secondary organic aerosol from biogenic
amines, Environ. Sci. Technol., 42, 9116–9121, https://doi.org/10.1021/es8018385,
2008.
Farmer, D. K., Matsunaga, A., Docherty, K. S., Surratt, J. D., Seinfeld, J.
H., Ziemann, P. J., and Jimenez, J. L.: Response of an aerosol mass
spectrometer to organonitrates and organosulfates and implications for
atmospheric chemistry, P. Natl. Acad. Sci. USA, 107, 6670–6675,
https://doi.org/10.1073/pnas.0912340107, 2010.
Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH –Na+–SO –NO –Cl−–H2O aerosols, Atmos. Chem. Phys., 7, 4639–4659, https://doi.org/10.5194/acp-7-4639-2007, 2007.
Friese, E. and Ebel, A.: Temperature Dependent Thermodynamic Model of the
System H-NH4-Na-SO42–NO3–Cl–H2O, J. Phys. Chem. A,
114, 11595–11631, https://doi.org/10.1021/jp101041j, 2010.
Frossard, A. A., Russell, L. M., Burrows, S. M., Elliott, S.
M., Bates, T. S. and Quinn, P. K.: Sources and Composition
of Submicron Organic Mass in Marine Aerosol Particles, J.
Geophys. Res.-Atmos., 119, 977–13, 003, https://doi.org/10.1002/2014JD021913,
2014.
Froyd, K. D., Murphy, D. M., Sanford, T. J., Thomson, D. S., Wilson, J. C., Pfister, L., and Lait, L.: Aerosol composition of the tropical upper troposphere, Atmos. Chem. Phys., 9, 4363–4385, https://doi.org/10.5194/acp-9-4363-2009, 2009.
Froyd, K. D., Murphy, D. M., Brock, C. A., Campuzano-Jost, P., Dibb, J. E., Jimenez, J.-L., Kupc, A., Middlebrook, A. M., Schill, G. P., Thornhill, K. L., Williamson, C. J., Wilson, J. C., and Ziemba, L. D.: A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry, Atmos. Meas. Tech., 12, 6209–6239, https://doi.org/10.5194/amt-12-6209-2019, 2019.
Fry, J. L., Draper, D. C., Zarzana, K. J., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., Brown, S. S., Cohen, R. C., Kaser, L., Hansel, A., Cappellin, L., Karl, T., Hodzic Roux, A., Turnipseed, A., Cantrell, C., Lefer, B. L., and Grossberg, N.: Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011, Atmos. Chem. Phys., 13, 8585–8605, https://doi.org/10.5194/acp-13-8585-2013, 2013.
Gaston, C. J., Riedel, T. P., Zhang, Z., Gold, A., Surratt, J. D., and
Thornton, J. A.: Reactive Uptake of an Isoprene-Derived Epoxydiol to
Submicron Aerosol Particles, Environ. Sci. Technol., 48, 11178–11186, https://doi.org/10.1021/es5034266, 2014.
Ge, X., Shaw, S. L., and Zhang, Q.: Toward Understanding Amines and Their
Degradation Products from Postcombustion CO2 Capture Processes with Aerosol Mass Spectrometry, Environ. Sci. Technol., 48, 5066–5075, https://doi.org/10.1021/es4056966, 2014.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gibb, S. W., Mantoura, R. F. C., and Liss, P. S.: Ocean-atmosphere exchange
and atmospheric speciation of ammonia and methylamines in the region of the
NW Arabian Sea, Global Biogeochem. Cy., 13, 161–178,
https://doi.org/10.1029/98gb00743, 1999.
Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of daily,
monthly, and annual burned area using the fourth-generation global fire
emissions database (GFED4), J. Geophys. Res.-Biogeosci.,
118, 317–328, 2013.
Guo, H., Xu, L., Bougiatioti, A., Cerully, K. M., Capps, S. L., Hite Jr., J. R., Carlton, A. G., Lee, S.-H., Bergin, M. H., Ng, N. L., Nenes, A., and Weber, R. J.: Fine-particle water and pH in the southeastern United States, Atmos. Chem. Phys., 15, 5211–5228, https://doi.org/10.5194/acp-15-5211-2015, 2015.
Guo, H., Sullivan, A. P., Campuzano-Jost, P., Schroder, J. C.,
Lopez-Hilfiker, F. D., Dibb, J. E., Jimenez, J. L., Thornton, J. A., Brown,
S. S., Nenes, A. and Others: Fine particle pH and the partitioning of nitric
acid during winter in the northeastern United States, J. Geophys. Res.-Atmos., 121, 10355–10376, 2016.
Guo, H., Liu, J., Froyd, K. D., Roberts, J. M., Veres, P. R., Hayes, P. L., Jimenez, J. L., Nenes, A., and Weber, R. J.: Fine particle pH and gas–particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign, Atmos. Chem. Phys., 17, 5703–5719, https://doi.org/10.5194/acp-17-5703-2017, 2017.
Guo, H., Campuzano-Jost, P., Nault, B. A., Day, D. A., Schroder, J. C., Dibb, J. E., Dollner, M., Weinzierl, B., and Jimenez, J. L.: The Importance of Size Ranges in Aerosol Instrument Intercomparisons: A Case Study for the ATom Mission, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2020-224, in review, 2020.
Hall, F. G., Huemmrich, K. F., Strebel, D. E., Goetz, S. J., Nickeson, J. E., and Woods, K. D.: NWS Daily Climatology Data: 1972 (SNF), ORNL DAAC, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/158, 1996.
Hennigan, C. J., Sullivan, A. P., Fountoukis, C. I., Nenes, A., Hecobian, A., Vargas, O., Peltier, R. E., Case Hanks, A. T., Huey, L. G., Lefer, B. L., Russell, A. G., and Weber, R. J.: On the volatility and production mechanisms of newly formed nitrate and water soluble organic aerosol in Mexico City, Atmos. Chem. Phys., 8, 3761–3768, https://doi.org/10.5194/acp-8-3761-2008, 2008.
Hennigan, C. J., Izumi, J., Sullivan, A. P., Weber, R. J., and Nenes, A.: A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles, Atmos. Chem. Phys., 15, 2775–2790, https://doi.org/10.5194/acp-15-2775-2015, 2015.
Hodshire, A. L., Campuzano-Jost, P., Kodros, J. K., Croft, B., Nault, B. A., Schroder, J. C., Jimenez, J. L., and Pierce, J. R.: The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings, Atmos. Chem. Phys., 19, 3137–3160, https://doi.org/10.5194/acp-19-3137-2019, 2019.
Hodzic, A., Campuzano-Jost, P., Bian, H., Chin, M., Colarco, P. R., Day, D. A., Froyd, K. D., Heinold, B., Jo, D. S., Katich, J. M., Kodros, J. K., Nault, B. A., Pierce, J. R., Ray, E., Schacht, J., Schill, G. P., Schroder, J. C., Schwarz, J. P., Sueper, D. T., Tegen, I., Tilmes, S., Tsigaridis, K., Yu, P., and Jimenez, J. L.: Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models, Atmos. Chem. Phys., 20, 4607–4635, https://doi.org/10.5194/acp-20-4607-2020, 2020.
Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018.
Hu, W., Campuzano-Jost, P., Day, D. A., Croteau, P., Canagaratna, M. R.,
Jayne, J. T., Worsnop, D. R., and Jimenez, J. L.: Evaluation of the new
capture vaporizer for aerosol mass spectrometers (AMS) through field studies
of inorganic species, Aerosol Sci. Technol., 51, 735–754,
https://doi.org/10.1080/02786826.2017.1296104, 2017a.
Hu, W., Campuzano-Jost, P., Day, D. A., Croteau, P., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., and Jimenez, J. L.: Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS) through laboratory studies of inorganic species, Atmos. Meas. Tech., 10, 2897–2921, https://doi.org/10.5194/amt-10-2897-2017, 2017b.
Hu, W., Campuzano-Jost, P., Day, D. A., Nault, B., Park, T., Lee, T.,
Pajunoja, A., Virtanen, A., Croteau, P. L., Canagaratna, M. R., Jayne, J.
T., Worsnop, D. R., and Jimenez, J. L.: Ambient quantification and size
distributions for organic aerosol (OA) in aerosol mass spectrometer (AMS)
instruments with the new capture vaporizer (CV), ACS Earth Space
Chem., 4, 676–689, https://doi.org/10.1021/acsearthspacechem.9b00310, 2020.
Hu, W. W., Campuzano-Jost, P., Palm, B. B., Day, D. A., Ortega, A. M., Hayes, P. L., Krechmer, J. E., Chen, Q., Kuwata, M., Liu, Y. J., de Sá, S. S., McKinney, K., Martin, S. T., Hu, M., Budisulistiorini, S. H., Riva, M., Surratt, J. D., St. Clair, J. M., Isaacman-Van Wertz, G., Yee, L. D., Goldstein, A. H., Carbone, S., Brito, J., Artaxo, P., de Gouw, J. A., Koss, A., Wisthaler, A., Mikoviny, T., Karl, T., Kaser, L., Jud, W., Hansel, A., Docherty, K. S., Alexander, M. L., Robinson, N. H., Coe, H., Allan, J. D., Canagaratna, M. R., Paulot, F., and Jimenez, J. L.: Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements, Atmos. Chem. Phys., 15, 11807–11833, https://doi.org/10.5194/acp-15-11807-2015, 2015.
Huang, S., Poulain, L., van Pinxteren, D., van Pinxteren, M., Wu, Z.,
Herrmann, H., and Wiedensohler, A.: Latitudinal and Seasonal Distribution of
Particulate MSA over the Atlantic using a Validated Quantification Method
with HR-ToF-AMS, Environ. Sci. Technol., 51, 418–426,
https://doi.org/10.1021/acs.est.6b03186, 2017.
Huffman, J. A., Jayne, J. T., Drewnick, F., Aiken, A. C., Onasch, T.,
Worsnop, D. R., and Jimenez, J. L.: Design, Modeling, Optimization, and
Experimental Tests of a Particle Beam Width Probe for the Aerodyne Aerosol
Mass Spectrometer, Aerosol Sci. Technol., 39, 1143–1163,
https://doi.org/10.1080/02786820500423782, 2005.
IPCC: IPCC 2013: Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Jaeglé, L., Shah, V., Thornton, J. A., Lopez-Hilfiker, F. D., Lee, B.
H., McDuffie, E. E., Fibiger, D., Brown, S. S., Veres, P., Sparks, T.,
Ebben, C., Wooldridge, P. J., Kenagy, H. S., Cohen, R. C., Weinheimer, A.
J., Campos, T. L., Montzka, D. D., Digangi, J. P., Wolfe, G. M., Hanisco,
T., Schroder, J. C., Campuzano-Jost, P., Day, D. A., Jimenez, J. L.,
Sullivan, A. P., Guo, H., and Weber, R. J.: Nitrogen Oxides Emissions,
Chemistry, Deposition, and Export Over the Northeast United States During
the WINTER Aircraft Campaign, J. Geophys. Res.-Atmos., 123, 12368–12393,
https://doi.org/10.1029/2018JD029133, 2018.
Jang, M., Czoschke, N. M., Lee, S., and Kamens, R. M.: Heterogeneous
atmospheric aerosol production by acid-catalyzed particle-phase reactions,
Science, 298, 814–817, https://doi.org/10.1126/science.1075798, 2002.
Jayne, J. T., Leard, D. C., Zhang, X., Davidovits, P., Smith, K. A., Kolb,
C. E., and Worsnop, D. R.: Development of an Aerosol Mass Spectrometer for
Size and Composition Analysis of Submicron Particles, Aerosol Sci. Technol.,
33, 49–70, https://doi.org/10.1080/027868200410840, 2000.
Jimenez, J. L., Jayne, J. T., Shi, Q., Kolb, C. E., Worsnop, D. R.,
Yourshaw, I., Seinfeld, J. H., Flagan, R. C., Zhang, X. F., Smith, K. A.,
Morris, J. W., and Davidovits, P.: Ambient aerosol sampling using the
Aerodyne Aerosol Mass Spectrometer, J. Geophys. Res., 108, 8425–8425,
https://doi.org/10.1029/2001JD001213, 2003.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P.
I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer,
S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A.,
Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina,
K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A.
M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E.,
Baltensperger, U., and Worsnop, D. R.: Evolution of organic aerosols in the
atmosphere, Science, 326, 1525–1529, https://doi.org/10.1126/science.1180353,
2009.
Jo, D. S., Hodzic, A., Emmons, L. K., Marais, E. A., Peng, Z., Nault, B. A., Hu, W., Campuzano-Jost, P., and Jimenez, J. L.: A simplified parameterization of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) for global chemistry and climate models: a case study with GEOS-Chem v11-02-rc, Geosci. Model Dev., 12, 2983–3000, https://doi.org/10.5194/gmd-12-2983-2019, 2019.
Johnson, K. S., Laskin, A., Jimenez, J. L., Shutthanandan, V., Molina, L.
T., Salcedo, D., Dzepina, K., and Molina, M. J.: Comparative analysis of
urban atmospheric aerosol by particle-induced X-ray emission (PIXE), proton
elastic scattering analysis (PESA), and aerosol mass spectrometry (AMS),
Environ. Sci. Technol., 42, 6619–6624, https://doi.org/10.1021/es800393e, 2008.
Kang, H., Day, D. A., Krechmer, J. E., Ayres, B. R., Keehan, N. I.,
Thompson, S. L., Hu, W., Campuzano-Jost, P., Schroder, J. C., Stark, H.,
Ranney, A., Ziemann, P., Zarzana, K. J., Wild, R. J., Dubé, W., Brown,
S. S., Fry, J., and Jimenez, J. L.: A33E-0280: Secondary organic aerosol mass
yields from the dark NO3 oxidation of α-pinene and-carene: effect of
RO2 radical fate, American Geophysical Union Fall Meeting, 12–16 December 2016, San Francisco, CA, USA, 2016.
Keene, W. C.: Variation of marine aerosol acidity
with particle size, Geophys. Res. Lett., 29, 5-1–5-4,
https://doi.org/10.1029/2001GL013881, 2002.
KORUS-AQ Science Team: KORUS-AQ data, NASA, https://doi.org/10.5067/Suborbital/KORUSAQ/DATA01, 2016.
Kuwata, M., Zorn, S. R., and Martin, S. T.: Using elemental ratios to predict the density of organic material composed of carbon, hydrogen, and oxygen, Environ. Sci. Technol., 46, 787–794, https://doi.org/10.1021/es202525q, 2012.
Lambert, J. B., Gronert, S., Shurvell, H. F., and Lightner, D. A.: Organic structural spectroscopy, 2nd Edn., edited by: Lambert, J. B., Pearson College Division, New York City, NY, USA, 1998.
Lee, B. H., Lopez-Hilfiker, F. D., Mohr, C., Kurtén, T., Worsnop, D. R.,
and Thornton, J. A.: An iodide-adduct high-resolution time-of-flight
chemical-ionization mass spectrometer: application to atmospheric inorganic
and organic compounds, Environ. Sci. Technol., 48, 6309–6317,
https://doi.org/10.1021/es500362a, 2014.
Lee, B. H., Lopez-Hilfiker, F. D., Veres, P. R., McDuffie, E. E., Fibiger,
D. L., Sparks, T. L., Ebben, C. J., Green, J. R., Schroder, J. C.,
Campuzano-Jost, P., and Others: Flight deployment of a high-resolution
time-of-flight chemical ionization mass spectrometer: Observations of
reactive halogen and nitrogen oxide species, J. Geophys. Res.-Atmos.,
123, 7670–7686, 2018.
Lee, T., Sullivan, A. P., Mack, L., Jimenez, J. L., Kreidenweis, S. M.,
Onasch, T. B., Worsnop, D. R., Malm, W., Wold, C. E., Hao, W. M., and
Collett, J. L.: Chemical Smoke Marker Emissions During Flaming and
Smoldering Phases of Laboratory Open Burning of Wildland Fuels, Aerosol Sci.
Technol., 44, i–v, https://doi.org/10.1080/02786826.2010.499884, 2010.
Li, G., Bei, N., Cao, J., Huang, R., Wu, J., Feng, T., Wang, Y., Liu, S., Zhang, Q., Tie, X., and Molina, L. T.: A possible pathway for rapid growth of sulfate during haze days in China, Atmos. Chem. Phys., 17, 3301–3316, https://doi.org/10.5194/acp-17-3301-2017, 2017.
Liao, J., Froyd, K. D., Murphy, D. M., Keutsch, F. N., Yu, G., Wennberg, P. O., St. Clair, J. M., Crounse, J. D., Wisthaler, A., Mikoviny, T., Jimenez, J. L., Campuzano‐Jost, P., Day, D. A., Hu, W., Ryerson, T. B., Pollack, I. B., Peischl, J., Anderson, B. E., Ziemba, L. D., Blake, D. R., Meinardi, S., and Diskin, G.: Airborne measurements of organosulfates over the continental US, J. Geophys. Res.-Atmos.,
120, 2990–3005, 2015
Lighty, J. S., Veranth, J. M., and Sarofim, A. F.: Combustion aerosols:
factors governing their size and composition and implications to human
health, JAPCA J. Air Waste Ma., 50, 1565–618, 2000.
Liu, P., Ziemann, P. J., Kittelson, D. B., and McMurry, P. H.: Generating
Particle Beams of Controlled Dimensions and Divergence: II. Experimental
Evaluation of Particle Motion in Aerodynamic Lenses and Nozzle Expansions,
Aerosol Sci. Technol., 22, 314–324, https://doi.org/10.1080/02786829408959749, 1995.
Liu, X., Day, D. A., Krechmer, J. E., Brown, W., Peng, Z., Ziemann, P. J.,
and Jimenez, J. L.: Direct measurements of semi-volatile organic compound
dynamics show near-unity mass accommodation coefficients for diverse
aerosols, Commun. Chem., 2, 98,
https://doi.org/10.1038/s42004-019-0200-x, 2019.
Lohmann, U., Broekhuizen, K., Leaitch, R., Shantz, N., and Abbatt, J.: How
efficient is cloud droplet formation of organic aerosols?, Geophys. Res.
Lett., 31, L05108, https://doi.org/10.1029/2003GL018999, 2004.
Losey, D. J., Ott, E.-J. E., and Freedman, M. A.: Effects of High Acidity on
Phase Transitions of an Organic Aerosol, J. Phys. Chem. A, 122,
3819–3828, https://doi.org/10.1021/acs.jpca.8b00399, 2018.
Massucci, M., Clegg, S. L., and Brimblecombe, P.: Equilibrium Partial
Pressures, Thermodynamic Properties of Aqueous and Solid Phases, and Cl2
Production from Aqueous HCl and HNO3 and Their Mixtures, J. Phys. Chem. A,
103, 4209–4226, https://doi.org/10.1021/jp9847179, 1999.
Matthew, B. M., Middlebrook, A. M., and Onasch, T. B.: Collection
Efficiencies in an Aerodyne Aerosol Mass Spectrometer as a Function of
Particle Phase for Laboratory Generated Aerosols, Aerosol Sci. Technol.,
42, 884–898, https://doi.org/10.1080/02786820802356797, 2008.
Meskhidze, N., Chameides, W. L., Nenes, A., and Chen, G.: Iron mobilization
in mineral dust: Can anthropogenic SO2 emissions affect ocean productivity?,
Geophys. Res. Lett., 30, 2085, https://doi.org/10.1029/2003GL018035, 2003.
Middlebrook, A. M., Bahreini, R., Jimenez, J. L., and Canagaratna, M. R.:
Evaluation of Composition-Dependent Collection Efficiencies for the Aerodyne
Aerosol Mass Spectrometer using Field Data, Aerosol Sci. Technol., 46,
258–271, https://doi.org/10.1080/02786826.2011.620041, 2012.
Müller, C., Iinuma, Y., Karstensen, J., van Pinxteren, D., Lehmann, S., Gnauk, T., and Herrmann, H.: Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde islands, Atmos. Chem. Phys., 9, 9587–9597, https://doi.org/10.5194/acp-9-9587-2009, 2009.
Murphy, D. M. and Koop, T.: Review of the vapour pressures of ice and supercooled water for atmospheric applications, Quart. J. Roy. Meteor. Soc., 131), 1539–1565, https://doi.org/10.1256/qj.04.94, 2005.
Murphy, S. M., Sorooshian, A., Kroll, J. H., Ng, N. L., Chhabra, P., Tong, C., Surratt, J. D., Knipping, E., Flagan, R. C., and Seinfeld, J. H.: Secondary aerosol formation from atmospheric reactions of aliphatic amines, Atmos. Chem. Phys., 7, 2313–2337, https://doi.org/10.5194/acp-7-2313-2007, 2007.
Nault, B. A., Campuzano-Jost, P., Day, D. A., Schroder, J. C., Anderson, B., Beyersdorf, A. J., Blake, D. R., Brune, W. H., Choi, Y., Corr, C. A., de Gouw, J. A., Dibb, J., DiGangi, J. P., Diskin, G. S., Fried, A., Huey, L. G., Kim, M. J., Knote, C. J., Lamb, K. D., Lee, T., Park, T., Pusede, S. E., Scheuer, E., Thornhill, K. L., Woo, J.-H., and Jimenez, J. L.: Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ, Atmos. Chem. Phys., 18, 17769–17800, https://doi.org/10.5194/acp-18-17769-2018, 2018.
Nault, B. A., Campuzano-Jost, P., Jo, D., Day, D., Bahreini, R., Bian, H., Chin, M., Clegg, S., Colarco, P., Kodros, J., Lopez-Hilfiker, F., Marais, E., Middlebrook, A., Neuman, A., Nowak, J., Pierce, J., Thornton, J., Tsigaridis, K., and Jimenez, J. and the ATom Science Team: Global Survey of Aerosol Acidity from Polluted to Remote Locations: Measurements and Comparisons with Global Models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11366, https://doi.org/10.5194/egusphere-egu2020-11366, 2020.
Nault, B. A., Campuzano-Jost, P., Day, D. A., Jo, D. S., Schroder, J. S.,
Allen, H. M., Bahreini, R., Bian, H., Blake, D. R., Chin, M., Clegg, S. L.,
Colarco, P. R., Crounse, J. D., Cubison, M. J., DeCarlo, P. F., Dibb, J. E.,
Diskin, G. S., Hodzic, A., Hu, W., Katich, J., Kim, M. J., Kodros, J. K.,
Kupc, A., Lopez-Hilfiker, F. D., Marais, E. A., Middlebrook, A. M., Neuman,
J. A., Nowak, J. B., Palm, B. B., Paulot, F., Pierce, J. R., Schill, G. P.,
Scheuer, E., Thornton, J. A., Tsigaridis, K., Wennberg, P. O., Williamson,
C. J., and Jimenez, J. L.: Models underestimate the increase of acidity with
remoteness biasing radiative impact calculations, Commun. Earth Environ. submitted, 2021.
Nenes, A., Pandis, S. N., and Pilinis, C.: Continued development and testing
of a new thermodynamic aerosol module for urban and regional air quality
models, Atmos. Environ., 33, 1553–1560, https://doi.org/10.1016/S1352-2310(98)00352-5, 1999.
Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L.,
Onasch, T. B., Sueper, D., Worsnop, D. R., Zhang, Q., Sun, Y. L., and Jayne,
J. T.: An Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring
of the Composition and Mass Concentrations of Ambient Aerosol, Aerosol Sci.
Technol., 45, 780–794, https://doi.org/10.1080/02786826.2011.560211, 2011a.
Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Chhabra, P. S., Seinfeld, J. H., and Worsnop, D. R.: Changes in organic aerosol composition with aging inferred from aerosol mass spectra, Atmos. Chem. Phys., 11, 6465–6474, https://doi.org/10.5194/acp-11-6465-2011, 2011b.
Ovadnevaite, J., Ceburnis, D., Canagaratna, M., Berresheim, H., Bialek, J.,
Martucci, G., Worsnop, D. R. and O'Dowd, C.: On the effect of wind speed on
submicron sea salt mass concentrations and source fluxes, J. Geophys. Res.-Atmos., 117, D16201, https://doi.org/10.1029/2011JD017379, 2012.
Paulot, F., Jacob, D. J., Johnson, M. T., Bell, T. G., Baker, A. R., Keene,
W. C., Lima, I. D., Doney, S. C., and Stock, C. A.: Global oceanic emission
of ammonia: Constraints from seawater and atmospheric observations, Global
Biogeochem. Cy., 29, 1165–1178, https://doi.org/10.1002/2015GB005106, 2015.
Phinney, L., Richard Leaitch, W., Lohmann, U., Boudries, H., Worsnop, D. R.,
Jayne, J. T., Toom-Sauntry, D., Wadleigh, M., Sharma, S., and Shantz, N.:
Characterization of the aerosol over the sub-arctic north east Pacific
Ocean, Deep Sea Res. Pt. 2, 53, 2410–2433,
https://doi.org/10.1016/j.dsr2.2006.05.044, 2006.
Pye, H. O. T., Nenes, A., Alexander, B., Ault, A. P., Barth, M. C., Clegg, S. L., Collett Jr., J. L., Fahey, K. M., Hennigan, C. J., Herrmann, H., Kanakidou, M., Kelly, J. T., Ku, I.-T., McNeill, V. F., Riemer, N., Schaefer, T., Shi, G., Tilgner, A., Walker, J. T., Wang, T., Weber, R., Xing, J., Zaveri, R. A., and Zuend, A.: The acidity of atmospheric particles and clouds, Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, 2020.
Quinn, P. K., Charlson, R. J., and Bates, T. S.: Simultaneous observations of
ammonia in the atmosphere and ocean, Nature, 335, 336–338,
https://doi.org/10.1038/335336a0, 1988.
Quinn, P. K., Bates, T. S., Coffman, D., Onasch, T. B., Worsnop, D.,
Baynard, T., De Gouw, J. A., Goldan, P. D., Kuster, W. C., Williams, E., and
Others: Impacts of sources and aging on submicrometer aerosol properties in
the marine boundary layer across the Gulf of Maine, J. Geophys. Res.-Atmos., 111, D23S36, https://doi.org/10.1029/2006JD007582, 2006.
Raizenne, M., Neas, L. M., Damokosh, A. I., Dockery, D. W., Spengler, J. D.,
Koutrakis, P., Ware, J. H., and Speizer, F. E.: Health effects of acid
aerosols on North American children: pulmonary function, Environ. Health
Perspect., 104, 506–514, https://doi.org/10.1289/ehp.96104506, 1996.
Rindelaub, J. D., Craig, R. L., Nandy, L., Bondy, A. L., Dutcher, C. S.,
Shepson, P. B., and Ault, A. P.: Direct Measurement of pH in Individual
Particles via Raman Microspectroscopy and Variation in Acidity with Relative
Humidity, J. Phys. Chem. A, 120, 911–917, https://doi.org/10.1021/acs.jpca.5b12699,
2016.
Riva, M., Budisulistiorini, S. H., Chen, Y., Zhang, Z., D'Ambro, E. L.,
Zhang, X., Gold, A., Turpin, B. J., Thornton, J. A., Canagaratna, M. R., and
Surratt, J. D.: Chemical Characterization of Secondary Organic Aerosol from
Oxidation of Isoprene Hydroxyhydroperoxides, Environ. Sci. Technol., 50, 9889–9899, https://doi.org/10.1021/acs.est.6b02511, 2016.
Riva, M., Chen, Y., Zhang, Y., Lei, Z., Olson, N. E., Boyer, H. C., Narayan,
S., Yee, L. D., Green, H. S., Cui, T., Zhang, Z., Baumann, K., Fort, M.,
Edgerton, E., Budisulistiorini, S. H., Rose, C. A., Ribeiro, I. O., E
Oliveira, R. L., Dos Santos, E. O., Machado, C. M. D., Szopa, S., Zhao, Y.,
Alves, E. G., de Sá, S. S., Hu, W., Knipping, E. M., Shaw, S. L.,
Duvoisin Junior, S., de Souza, R. A. F., Palm, B. B., Jimenez, J.-L.,
Glasius, M., Goldstein, A. H., Pye, H. O. T., Gold, A., Turpin, B. J.,
Vizuete, W., Martin, S. T., Thornton, J. A., Dutcher, C. S., Ault, A. P., and
Surratt, J. D.: Increasing Isoprene Epoxydiol-to-Inorganic Sulfate Aerosol
Ratio Results in Extensive Conversion of Inorganic Sulfate to Organosulfur
Forms: Implications for Aerosol Physicochemical Properties, Environ. Sci.
Technol., 53, 8682–8694, https://doi.org/10.1021/acs.est.9b01019, 2019.
Salcedo, D., Onasch, T. B., Aiken, A. C., Williams, L. R., de Foy, B., Cubison, M. J., Worsnop, D. R., Molina, L. T., and Jimenez, J. L.: Determination of particulate lead using aerosol mass spectrometry: MILAGRO/MCMA-2006 observations, Atmos. Chem. Phys., 10, 5371–5389, https://doi.org/10.5194/acp-10-5371-2010, 2010.
Schindler, D. W.: Effects of Acid rain on freshwater ecosystems, Science,
239, 149–157, https://doi.org/10.1126/science.239.4836.149, 1988.
Schroder, J. C., Campuzano-Jost, P., Day, D. A., Shah, V., Larson, K.,
Sommers, J. M., Sullivan, A. P., Campos, T., Reeves, J. M., Hills, A.,
Hornbrook, R. S., Blake, N. J., Scheuer, E., Guo, H., Fibiger, D. L.,
McDuffie, E. E., Hayes, P. L., Weber, R. J., Dibb, J. E., Apel, E. C.,
Jaeglé, L., Brown, S. S., Thornton, J. A., and Jimenez, J. L.: Sources
and Secondary Production of Organic Aerosols in the Northeastern United
States during WINTER, J. Geophys. Res.-Atmos., 42, 4478,
https://doi.org/10.1029/2018JD028475, 2018.
SEAC4RS Science Team: SEAC4RS Data, NASA, https://doi.org/10.5067/Aircraft/SEAC4RS/Aerosol-TraceGas-Cloud, 2013.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, 2nd
edn., John Wiley & Sons, Inc., New York, USA, 2006.
Song, S., Gao, M., Xu, W., Shao, J., Shi, G., Wang, S., Wang, Y., Sun, Y., and McElroy, M. B.: Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models, Atmos. Chem. Phys., 18, 7423–7438, https://doi.org/10.5194/acp-18-7423-2018, 2018.
Song, S., Gao, M., Xu, W., Sun, Y., Worsnop, D. R., Jayne, J. T., Zhang, Y., Zhu, L., Li, M., Zhou, Z., Cheng, C., Lv, Y., Wang, Y., Peng, W., Xu, X., Lin, N., Wang, Y., Wang, S., Munger, J. W., Jacob, D. J., and McElroy, M. B.: Possible heterogeneous chemistry of hydroxymethanesulfonate (HMS) in northern China winter haze, Atmos. Chem. Phys., 19, 1357–1371, https://doi.org/10.5194/acp-19-1357-2019, 2019.
Sorooshian, A., Padró, L. T., Nenes, A., Feingold, G., McComiskey, A., Hersey, S. P., Gates, H., Jonsson, H. H., Miller, S. D., Stephens, G. L., Flagan, R. C., and Seinfeld, J. H.: On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California, Global Biogeochem. Cy., 23, GB4007, https://doi.org/10.1029/2009GB003464, 2009.
Sorooshian, A., Crosbie, E., Maudlin, L. C., Youn, J.-S., Wang, Z.,
Shingler, T., Ortega, A. M., Hersey, S.m and Woods, R. K.: Surface and
airborne measurements of organosulfur and methanesulfonate over the western
United States and coastal areas, J. Geophys. Res.-Atmos., 120,
8535–8548, https://doi.org/10.1002/2015JD023822, 2015.
Stith, J. L., Ramanathan, V., Cooper, W. A., Roberts, G. C., DeMott, P. J.,
Carmichael, G., Hatch, C. D., Adhikary, B., Twohy, C. H., Rogers, D. C.,
Baumgardner, D., Prenni, A. J., Campos, T., Gao, R., Anderson, J.m and Feng,
Y.: An overview of aircraft observations from the Pacific Dust Experiment
campaign, J. Geophys. Res., 114, D05207, https://doi.org/10.1029/2008JD010924, 2009.
Sueper, D.: ToF-AMS Data Analysis Software Webpage, available at:
http://cires1.colorado.edu/jimenez-group/wiki/index.php/ToF-AMS_Analysis_Software (last access: 5 May 2018), 2018.
Surratt, J. D., Kroll, J. H., Kleindienst, T. E., Edney, E. O., Claeys, M.,
Sorooshian, A., Ng, N. L., Offenberg, J. H., Lewandowski, M., Jaoui, M.,
Flagan, R. C., and Seinfeld, J. H.: Evidence for organosulfates in secondary
organic aerosol, Environ. Sci. Technol., 41, 517–527,
https://doi.org/10.1021/es062081q, 2007.
Surratt, J. D., Gómez-González, Y., Chan, A. W. H., Vermeylen, R.,
Shahgholi, M., Kleindienst, T. E., Edney, E. O., Offenberg, J. H.,
Lewandowski, M., Jaoui, M., Maenhaut, W., Claeys, M., Flagan, R. C., and
Seinfeld, J. H.: Organosulfate formation in biogenic secondary organic
aerosol, J. Phys. Chem. A, 112, 8345–8378, https://doi.org/10.1021/jp802310p, 2008.
The International GEOS-Chem User Community: geoschem/geos-chem: GEOS-Chem 12.6.1 (Version 12.6.1), Zenodo, https://doi.org/10.5281/zenodo.3520966, 2019.
Thornton, J. A., Jaeglé, L., and McNeill, V. F.: Assessing known pathways
for HO2 loss in aqueous atmospheric aerosols: Regional and global impacts on
tropospheric oxidants, J. Geophys. Res.-Atmos., 113, D05303, https://doi.org/10.1029/2007JD009236, 2008.
Tolocka, M. P. and Turpin, B.: Contribution of organosulfur compounds to
organic aerosol mass, Environ. Sci. Technol., 46, 7978–7983,
https://doi.org/10.1021/es300651v, 2012.
Toon, O. B., Maring, H., Dibb, J., Ferrare, R., Jacob, D. J., Jensen, E. J.,
Luo, Z. J., Mace, G. G., Pan, L. L., Pfister, L. and Others: Planning,
implementation, and scientific goals of the Studies of Emissions and
Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys
(SEAC4RS) field mission, J. Geophys. Res.-Atmos., 121 4967–5009, 2016.
van Pinxteren, M., Fiedler, B., van Pinxteren, D., Iinuma, Y.,
Körtzinger, A., and Herrmann, H.: Chemical characterization of
sub-micrometer aerosol particles in the tropical Atlantic Ocean: marine and
biomass burning influences, J. Atmos. Chem., 72, 105–125,
https://doi.org/10.1007/s10874-015-9307-3, 2015.
Wagner, N. L., Brock, C. A., Angevine, W. M., Beyersdorf, A., Campuzano-Jost, P., Day, D., de Gouw, J. A., Diskin, G. S., Gordon, T. D., Graus, M. G., Holloway, J. S., Huey, G., Jimenez, J. L., Lack, D. A., Liao, J., Liu, X., Markovic, M. Z., Middlebrook, A. M., Mikoviny, T., Peischl, J., Perring, A. E., Richardson, M. S., Ryerson, T. B., Schwarz, J. P., Warneke, C., Welti, A., Wisthaler, A., Ziemba, L. D., and Murphy, D. M.: In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft, Atmos. Chem. Phys., 15, 7085–7102, https://doi.org/10.5194/acp-15-7085-2015, 2015.
Wang, Y., Zhang, Q., Jiang, J., Zhou, W., Wang, B., He, K., Duan, F., Zhang,
Q., Philip, S., and Xie, Y.: Enhanced sulfate formation during China's severe
winter haze episode in January 2013 missing from current models, J. Geophys.
Res.-Atmos., 119, 10425–10440, 2014.
Weber, R. J., Guo, H., Russell, A. G., and Nenes, A.: High aerosol acidity
despite declining atmospheric sulfate concentrations over the past 15 years,
Nat. Geosci., 9, 282, https://doi.org/10.1038/ngeo2665, 2016.
Wexler, A. S. and Clegg, S. L.: Atmospheric aerosol models for systems
including the ions H+, NH4+, Na+, SO42−, NO3−, Cl−, Br−, and H2O, J.
Geophys. Res.-Atmos., 107, ACH 14-1–ACH 14-14, https://doi.org/10.1029/2001JD000451, 2002.
WINTER Science Team: WINTER data, available at: https://data.eol.ucar.edu/master_lists/generated/winter/
(last access: 27 April 2019), 2015.
Youn, J.-S., Crosbie, E., Maudlin, L. C., Wang, Z., and Sorooshian, A.:
Dimethylamine as a major alkyl amine species in particles and cloud water:
Observations in semi-arid and coastal regions, Atmos. Environ., 122,
250–258, https://doi.org/10.1016/j.atmosenv.2015.09.061, 2015.
Zhang, Q., Stanier, C. O., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R.,
Pandis, S. N., and Jimenez, J. L.: Insights into the chemistry of new
particle formation and growth events in Pittsburgh based on aerosol mass
spectrometry, Environ. Sci. Technol., 38, 4797–4809,
https://doi.org/10.1021/es035417u, 2004.
Zhang, Q., Jimenez, J. L., Worsnop, D. R., and Canagaratna, M.: A case study
of urban particle acidity and its influence on secondary organic aerosol,
Environ. Sci. Technol., 41, 3213–3219, https://doi.org/10.1021/Es061812j, 2007a.
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett., 34, L13801, https://doi.org/10.1029/2007gl029979, 2007.
Zhang, X., Smith, K. A., Worsnop, D. R., Jimenez, J. L., Jayne, J. T., Kolb,
C. E., Morris, J., and Davidovits, P.: Numerical Characterization of Particle
Beam Collimation: Part II Integrated Aerodynamic-Lens–Nozzle System,
Aerosol Sci. Technol., 38, 619–638, https://doi.org/10.1080/02786820490479833,
2004.
Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F. K., Ma, Y. L., and Kimoto, T.: Heterogeneous chemistry: a mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China, Atmos. Chem. Phys., 15, 2031–2049, https://doi.org/10.5194/acp-15-2031-2015, 2015.
Zheng, Y., Cheng, X., Liao, K., Li, Y., Li, Y. J., Huang, R.-J., Hu, W., Liu, Y., Zhu, T., Chen, S., Zeng, L., Worsnop, D. R., and Chen, Q.: Characterization of anthropogenic organic aerosols by TOF-ACSM with the new capture vaporizer, Atmos. Meas. Tech., 13, 2457–2472, https://doi.org/10.5194/amt-13-2457-2020, 2020.
Zorn, S. R., Drewnick, F., Schott, M., Hoffmann, T., and Borrmann, S.: Characterization of the South Atlantic marine boundary layer aerosol using an aerodyne aerosol mass spectrometer, Atmos. Chem. Phys., 8, 4711–4728, https://doi.org/10.5194/acp-8-4711-2008, 2008.
Short summary
This work focuses on two important properties of the aerosol, acidity, and sulfate composition, which is important for our understanding of aerosol health and environmental impacts. We explore different methods to understand the composition of the aerosol with measurements from a specific instrument and apply those methods to a large dataset. These measurements are confounded by other factors, making it challenging to predict aerosol sulfate composition; pH estimations, however, show promise.
This work focuses on two important properties of the aerosol, acidity, and sulfate composition,...