Articles | Volume 14, issue 4
Research article
20 Apr 2021
Research article |  | 20 Apr 2021

Can machine learning correct microwave humidity radiances for the influence of clouds?

Inderpreet Kaur, Patrick Eriksson, Simon Pfreundschuh, and David Ian Duncan

Related authors

The SPARC water vapour assessment II: Biases and drifts of water vapour satellite data records with respect to frost point hygrometer records
Michael Kiefer, Dale F. Hurst, Gabriele P. Stiller, Stefan Lossow, Holger Vömel, John Anderson, Faiza Azam, Jean-Loup Bertaux, Laurent Blanot, Klaus Bramstedt, John P. Burrows, Robert Damadeo, Bianca Maria Dinelli, Patrick Eriksson, Maya García-Comas, John C. Gille, Mark Hervig, Yasuko Kasai, Farahnaz Khosrawi, Donal Murtagh, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Takafumi Sugita, Thomas von Clarmann, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech. Discuss.,,, 2023
Preprint under review for AMT
Short summary
An improved near-real-time precipitation retrieval for Brazil
Simon Pfreundschuh, Ingrid Ingemarsson, Patrick Eriksson, Daniel A. Vila, and Alan J. P. Calheiros
Atmos. Meas. Tech., 15, 6907–6933,,, 2022
Short summary
Ice water path retrievals from Meteosat-9 using quantile regression neural networks
Adrià Amell, Patrick Eriksson, and Simon Pfreundschuh
Atmos. Meas. Tech., 15, 5701–5717,,, 2022
Short summary
GPROF-NN: a neural-network-based implementation of the Goddard Profiling Algorithm
Simon Pfreundschuh, Paula J. Brown, Christian D. Kummerow, Patrick Eriksson, and Teodor Norrestad​​​​​​​
Atmos. Meas. Tech., 15, 5033–5060,,, 2022
Short summary
The SPARC Water Vapor Assessment II: assessment of satellite measurements of upper tropospheric humidity
William G. Read, Gabriele Stiller, Stefan Lossow, Michael Kiefer, Farahnaz Khosrawi, Dale Hurst, Holger Vömel, Karen Rosenlof, Bianca M. Dinelli, Piera Raspollini, Gerald E. Nedoluha, John C. Gille, Yasuko Kasai, Patrick Eriksson, Christopher E. Sioris, Kaley A. Walker, Katja Weigel, John P. Burrows, and Alexei Rozanov
Atmos. Meas. Tech., 15, 3377–3400,,, 2022
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Instruments and Platforms
Processing reflectivity and Doppler velocity from EarthCARE's cloud-profiling radar: the C-FMR, C-CD and C-APC products
Pavlos Kollias, Bernat Puidgomènech Treserras, Alessandro Battaglia, Paloma C. Borque, and Aleksandra Tatarevic
Atmos. Meas. Tech., 16, 1901–1914,,, 2023
Short summary
3D cloud envelope and cloud development velocity from simulated CLOUD (C3IEL) stereo images
Paolo Dandini, Céline Cornet, Renaud Binet, Laetitia Fenouil, Vadim Holodovsky, Yoav Y. Schechner, Didier Ricard, and Daniel Rosenfeld
Atmos. Meas. Tech., 15, 6221–6242,,, 2022
Short summary
Passive ground-based remote sensing of radiation fog
Heather Guy, David D. Turner, Von P. Walden, Ian M. Brooks, and Ryan R. Neely
Atmos. Meas. Tech., 15, 5095–5115,,, 2022
Short summary
Locations for the best lidar view of mid-level and high clouds
Matthias Tesche and Vincent Noel
Atmos. Meas. Tech., 15, 4225–4240,,, 2022
Short summary
VELOX – a new thermal infrared imager for airborne remote sensing of cloud and surface properties
Michael Schäfer, Kevin Wolf, André Ehrlich, Christoph Hallbauer, Evelyn Jäkel, Friedhelm Jansen, Anna Elizabeth Luebke, Joshua Müller, Jakob Thoböll, Timo Röschenthaler, Bjorn Stevens, and Manfred Wendisch
Atmos. Meas. Tech., 15, 1491–1509,,, 2022
Short summary

Cited articles

Abel, S. and Boutle, I.: An improved representation of the raindrop size distribution for single-moment microphysics schemes, Q. J. R. Meteorol. Soc., 138, 2151–2162, 2012. a
Aires, F., Prigent, C., Bernardo, F., Jiménez, C., Saunders, R., and Brunel, P.: A Tool to Estimate Land-Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction, Q. J. R. Meteorol. Soc., 137, 690–699, 2011. a
Barlakas, V. and Eriksson, P.: Three dimensional radiative effects in passive millimeter/sub-millimeter all-sky observations, Remote Sensing, 12, 531,, 2020. a
Bennartz, R. and Bauer, P.: Sensitivity of microwave radiances at 85–183 GHz to precipitating ice particles, Radio Sci., 38, 8075,, 2003. a
Berg, W., Bilanow, S., Chen, R., Datta, S., Draper, D., Ebrahimi, H., Farrar, S., Jones, W. L., Kroodsma, R., McKague, D., Payne, V., Wang, J., Wilheit, T., and Yang, J. X.: Intercalibration of the GPM microwave radiometer constellation, J. Atmos. Ocean. Tech., 33, 2639–2654, 2016. a
Short summary
Currently, cloud contamination in microwave humidity channels is addressed using filtering schemes. We present an approach to correct the cloud-affected microwave humidity radiances using a Bayesian machine learning technique. The technique combines orthogonal information from microwave channels to obtain a probabilistic prediction of the clear-sky radiances. With this approach, we are able to predict bias-free clear-sky radiances with well-represented case-specific uncertainty estimates.