Articles | Volume 14, issue 4
Atmos. Meas. Tech., 14, 2957–2979, 2021
https://doi.org/10.5194/amt-14-2957-2021
Atmos. Meas. Tech., 14, 2957–2979, 2021
https://doi.org/10.5194/amt-14-2957-2021
Research article
20 Apr 2021
Research article | 20 Apr 2021

Can machine learning correct microwave humidity radiances for the influence of clouds?

Inderpreet Kaur et al.

Related authors

An improved near real-time precipitation retrieval for Brazil
Simon Pfreundschuh, Ingrid Ingemarsson, Patrick Eriksson, Daniel Alejandro Vila, and Alan James P. Calheiros
EGUsphere, https://doi.org/10.5194/egusphere-2022-78,https://doi.org/10.5194/egusphere-2022-78, 2022
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
GPROF-NN: A neural network based implementation of the Goddard Profiling Algorithm
Simon Pfreundschuh, Paula J. Brown, Christian D. Kummerow, Patrick Eriksson, and Teodor Norrestad
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-15,https://doi.org/10.5194/amt-2022-15, 2022
Preprint under review for AMT
Short summary
Synergistic radar and sub-millimeter radiometer retrievals of ice hydrometeors in mid-latitude frontal cloud systems
Simon Pfreundschuh, Stuart Fox, Patrick Eriksson, David Duncan, Stefan A. Buehler, Manfred Brath, Richard Cotton, and Florian Ewald
Atmos. Meas. Tech., 15, 677–699, https://doi.org/10.5194/amt-15-677-2022,https://doi.org/10.5194/amt-15-677-2022, 2022
Short summary
Bulk hydrometeor optical properties for microwave and sub-millimetre radiative transfer in RTTOV-SCATT v13.0
Alan J. Geer, Peter Bauer, Katrin Lonitz, Vasileios Barlakas, Patrick Eriksson, Jana Mendrok, Amy Doherty, James Hocking, and Philippe Chambon
Geosci. Model Dev., 14, 7497–7526, https://doi.org/10.5194/gmd-14-7497-2021,https://doi.org/10.5194/gmd-14-7497-2021, 2021
Short summary
The first global 883 GHz cloud ice survey: IceCube Level 1 data calibration, processing and analysis
Jie Gong, Dong L. Wu, and Patrick Eriksson
Earth Syst. Sci. Data, 13, 5369–5387, https://doi.org/10.5194/essd-13-5369-2021,https://doi.org/10.5194/essd-13-5369-2021, 2021
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Instruments and Platforms
VELOX – a new thermal infrared imager for airborne remote sensing of cloud and surface properties
Michael Schäfer, Kevin Wolf, André Ehrlich, Christoph Hallbauer, Evelyn Jäkel, Friedhelm Jansen, Anna Elizabeth Luebke, Joshua Müller, Jakob Thoböll, Timo Röschenthaler, Bjorn Stevens, and Manfred Wendisch
Atmos. Meas. Tech., 15, 1491–1509, https://doi.org/10.5194/amt-15-1491-2022,https://doi.org/10.5194/amt-15-1491-2022, 2022
Short summary
Above-aircraft cirrus cloud and aerosol optical depth from hyperspectral irradiances measured by a total-diffuse radiometer
Matthew S. Norgren, John Wood, K. Sebastian Schmidt, Bastiaan van Diedenhoven, Snorre A. Stamnes, Luke D. Ziemba, Ewan C. Crosbie, Michael A. Shook, A. Scott Kittelman, Samuel E. LeBlanc, Stephen Broccardo, Steffen Freitag, and Jeffrey S. Reid
Atmos. Meas. Tech., 15, 1373–1394, https://doi.org/10.5194/amt-15-1373-2022,https://doi.org/10.5194/amt-15-1373-2022, 2022
Short summary
Impact of second-trip echoes for space-borne high-pulse-repetition-frequency nadir-looking W-band cloud radars
Alessandro Battaglia
Atmos. Meas. Tech., 14, 7809–7820, https://doi.org/10.5194/amt-14-7809-2021,https://doi.org/10.5194/amt-14-7809-2021, 2021
Short summary
Spaceborne differential absorption radar water vapor retrieval capabilities in tropical and subtropical boundary layer cloud regimes
Richard J. Roy, Matthew Lebsock, and Marcin J. Kurowski
Atmos. Meas. Tech., 14, 6443–6468, https://doi.org/10.5194/amt-14-6443-2021,https://doi.org/10.5194/amt-14-6443-2021, 2021
Short summary
Multifrequency radar observations of clouds and precipitation including the G-band
Katia Lamer, Mariko Oue, Alessandro Battaglia, Richard J. Roy, Ken B. Cooper, Ranvir Dhillon, and Pavlos Kollias
Atmos. Meas. Tech., 14, 3615–3629, https://doi.org/10.5194/amt-14-3615-2021,https://doi.org/10.5194/amt-14-3615-2021, 2021
Short summary

Cited articles

Abel, S. and Boutle, I.: An improved representation of the raindrop size distribution for single-moment microphysics schemes, Q. J. R. Meteorol. Soc., 138, 2151–2162, 2012. a
Aires, F., Prigent, C., Bernardo, F., Jiménez, C., Saunders, R., and Brunel, P.: A Tool to Estimate Land-Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction, Q. J. R. Meteorol. Soc., 137, 690–699, 2011. a
Barlakas, V. and Eriksson, P.: Three dimensional radiative effects in passive millimeter/sub-millimeter all-sky observations, Remote Sensing, 12, 531, https://doi.org/10.3390/rs12030531, 2020. a
Bennartz, R. and Bauer, P.: Sensitivity of microwave radiances at 85–183 GHz to precipitating ice particles, Radio Sci., 38, 8075, https://doi.org/10.1029/2002RS002626, 2003. a
Berg, W., Bilanow, S., Chen, R., Datta, S., Draper, D., Ebrahimi, H., Farrar, S., Jones, W. L., Kroodsma, R., McKague, D., Payne, V., Wang, J., Wilheit, T., and Yang, J. X.: Intercalibration of the GPM microwave radiometer constellation, J. Atmos. Ocean. Tech., 33, 2639–2654, 2016. a
Download
Short summary
Currently, cloud contamination in microwave humidity channels is addressed using filtering schemes. We present an approach to correct the cloud-affected microwave humidity radiances using a Bayesian machine learning technique. The technique combines orthogonal information from microwave channels to obtain a probabilistic prediction of the clear-sky radiances. With this approach, we are able to predict bias-free clear-sky radiances with well-represented case-specific uncertainty estimates.