Articles | Volume 14, issue 5
https://doi.org/10.5194/amt-14-3657-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-3657-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A field intercomparison of three passive air samplers for gaseous mercury in ambient air
Attilio Naccarato
CORRESPONDING AUTHOR
CNR-Institute of Atmospheric Pollution Research, Division of Rende, UNICAL-Polifunzionale, 87036 Arcavacata di Rende, CS, Italy
Antonella Tassone
CNR-Institute of Atmospheric Pollution Research, Division of Rende, UNICAL-Polifunzionale, 87036 Arcavacata di Rende, CS, Italy
Maria Martino
CNR-Institute of Atmospheric Pollution Research, Division of Rende, UNICAL-Polifunzionale, 87036 Arcavacata di Rende, CS, Italy
Sacha Moretti
CNR-Institute of Atmospheric Pollution Research, Division of Rende, UNICAL-Polifunzionale, 87036 Arcavacata di Rende, CS, Italy
Antonella Macagnano
CNR-Institute of Atmospheric Pollution Research, Research Area of Rome 1, Via Salaria km 29,300, 00016 Monterotondo, Italy
Emiliano Zampetti
CNR-Institute of Atmospheric Pollution Research, Research Area of Rome 1, Via Salaria km 29,300, 00016 Monterotondo, Italy
Paolo Papa
CNR-Institute of Atmospheric Pollution Research, Research Area of Rome 1, Via Salaria km 29,300, 00016 Monterotondo, Italy
Joshua Avossa
CNR-Institute of Atmospheric Pollution Research, Research Area of Rome 1, Via Salaria km 29,300, 00016 Monterotondo, Italy
Nicola Pirrone
CNR-Institute of Atmospheric Pollution Research, Division of Rende, UNICAL-Polifunzionale, 87036 Arcavacata di Rende, CS, Italy
Michelle Nerentorp
IVL Swedish Environmental Research Institute, Gothenburg 41133, Sweden
John Munthe
IVL Swedish Environmental Research Institute, Gothenburg 41133, Sweden
Ingvar Wängberg
IVL Swedish Environmental Research Institute, Gothenburg 41133, Sweden
Geoff W. Stupple
Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, M3H 5T4, Canada
Carl P. J. Mitchell
Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, M1C 1A4, Canada
Adam R. Martin
Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, M1C 1A4, Canada
Alexandra Steffen
Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, M3H 5T4, Canada
Diana Babi
Tekran Instruments Corporation, 330 Nantucket Boulevard, Toronto, Ontario, M1P 2P4, Canada
Eric M. Prestbo
Tekran Instruments Corporation, 330 Nantucket Boulevard, Toronto, Ontario, M1P 2P4, Canada
Francesca Sprovieri
CNR-Institute of Atmospheric Pollution Research, Division of Rende, UNICAL-Polifunzionale, 87036 Arcavacata di Rende, CS, Italy
Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, M1C 1A4, Canada
Related authors
No articles found.
Julien Lamour, Shawn P. Serbin, Alistair Rogers, Kelvin T. Acebron, Elizabeth Ainsworth, Loren P. Albert, Michael Alonzo, Jeremiah Anderson, Owen K. Atkin, Nicolas Barbier, Mallory L. Barnes, Carl J. Bernacchi, Ninon Besson, Angela C. Burnett, Joshua S. Caplan, Jérôme Chave, Alexander W. Cheesman, Ilona Clocher, Onoriode Coast, Sabrina Coste, Holly Croft, Boya Cui, Clément Dauvissat, Kenneth J. Davidson, Christopher Doughty, Kim S. Ely, Jean-Baptiste Féret, Iolanda Filella, Claire Fortunel, Peng Fu, Maquelle Garcia, Bruno O. Gimenez, Kaiyu Guan, Zhengfei Guo, David Heckmann, Patrick Heuret, Marney Isaac, Shan Kothari, Etsushi Kumagai, Thu Ya Kyaw, Liangyun Liu, Lingli Liu, Shuwen Liu, Joan Llusià, Troy Magney, Isabelle Maréchaux, Adam R. Martin, Katherine Meacham-Hensold, Christopher M. Montes, Romà Ogaya, Joy Ojo, Regison Oliveira, Alain Paquette, Josep Peñuelas, Antonia Debora Placido, Juan M. Posada, Xiaojin Qian, Heidi J. Renninger, Milagros Rodriguez-Caton, Andrés Rojas-González, Urte Schlüter, Giacomo Sellan, Courtney M. Siegert, Guangqin Song, Charles D. Southwick, Daisy C. Souza, Clément Stahl, Yanjun Su, Leeladarshini Sujeeun, To-Chia Ting, Vicente Vasquez, Amrutha Vijayakumar, Marcelo Vilas-Boas, Diane R. Wang, Sheng Wang, Han Wang, Jing Wang, Xin Wang, Andreas P. M. Weber, Christopher Y. S. Wong, Jin Wu, Fengqi Wu, Shengbiao Wu, Zhengbing Yan, Dedi Yang, and Yingyi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-213, https://doi.org/10.5194/essd-2025-213, 2025
Preprint under review for ESSD
Short summary
Short summary
We present the Global Spectra-Trait Initiative (GSTI), a collaborative repository of paired leaf hyperspectral and gas exchange measurements from diverse ecosystems. This repository provides a unique source of information for creating hyperspectral models for predicting photosynthetic traits and associated leaf traits in terrestrial plants.
Yuening Li, Faqiang Zhan, Chubashini Shunthirasingham, Ying Duan Lei, Jenny Oh, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Hayley Hung, and Frank Wania
Atmos. Chem. Phys., 25, 459–472, https://doi.org/10.5194/acp-25-459-2025, https://doi.org/10.5194/acp-25-459-2025, 2025
Short summary
Short summary
Organophosphate esters are important humanmade trace contaminants. Measuring them in the atmospheric gas phase, particles, precipitation, and surface water in Canada, we explore seasonal concentration variability, gas–particle partitioning, precipitation scavenging, and the air–water equilibrium. Whereas higher summer concentrations and efficient precipitation scavenging conform with expectations, the lack of a relationship between compound volatility and gas–particle partitioning is puzzling.
Yuening Li, Faqiang Zhan, Yushan Su, Ying Duan Lei, Chubashini Shunthirasingham, Zilin Zhou, Jonathan P. D. Abbatt, Hayley Hung, and Frank Wania
Atmos. Meas. Tech., 17, 715–729, https://doi.org/10.5194/amt-17-715-2024, https://doi.org/10.5194/amt-17-715-2024, 2024
Short summary
Short summary
A simple device for sampling gases from the atmosphere without the help of pumps was calibrated for an important group of hazardous air pollutants called polycyclic aromatic compounds (PACs). While the sampler appeared to perform well when used for relatively short periods of up to several months, some PACs were lost from the sampler during longer deployments. Sampling rates that can be used to quantitatively interpret the quantities of PACs taken up in the device have been derived.
Jenny Oh, Chubashini Shunthirasingham, Ying Duan Lei, Faqiang Zhan, Yuening Li, Abigaëlle Dalpé Castilloux, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Sabine Eckhardt, Nick Alexandrou, Hayley Hung, and Frank Wania
Atmos. Chem. Phys., 23, 10191–10205, https://doi.org/10.5194/acp-23-10191-2023, https://doi.org/10.5194/acp-23-10191-2023, 2023
Short summary
Short summary
An emerging brominated flame retardant (BFR) called TBECH (1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane) has never been produced or imported for use in Canada yet is found to be one of the most abundant gaseous BFRs in the Canadian atmosphere. The recorded spatial and temporal variability of TBECH suggest that the release from imported consumer products containing TBECH is the most likely explanation for its environmental occurrence in Canada.
A. Mei, V. Baiocchi, S. Mattei, E. Zampetti, H.-J. Pai, P. Tratzi, A. V. Ragazzo, A. Cuzzucoli, A. Mancuso, A. Bearzotti, G. Fontinovo, M. Grosso, C.-Y. Chu, and D. Bianconi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W1-2023, 287–293, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-287-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-287-2023, 2023
Håkan Pleijel, Jenny Klingberg, Michelle Nerentorp, Malin C. Broberg, Brigitte Nyirambangutse, John Munthe, and Göran Wallin
Biogeosciences, 18, 6313–6328, https://doi.org/10.5194/bg-18-6313-2021, https://doi.org/10.5194/bg-18-6313-2021, 2021
Short summary
Short summary
Mercury is a problematic metal in the environment. It is crucial to understand the Hg circulation in ecosystems. We explored the mercury concentration in foliage from a diverse set of plants, locations and sampling periods to study the accumulation of Hg in leaves–needles over time. Mercury was always higher in older tissue: in broadleaved trees, conifers and wheat. Specific leaf area, the leaf area per unit leaf mass, turned out to be critical for Hg accumulation in leaves–needles.
Ashu Dastoor, Andrei Ryjkov, Gregor Kos, Junhua Zhang, Jane Kirk, Matthew Parsons, and Alexandra Steffen
Atmos. Chem. Phys., 21, 12783–12807, https://doi.org/10.5194/acp-21-12783-2021, https://doi.org/10.5194/acp-21-12783-2021, 2021
Short summary
Short summary
An assessment of mercury levels in air and deposition in the Athabasca oil sands region (AOSR) in Northern Alberta, Canada, was conducted to investigate the contribution of Hg emitted from oil sands activities to the surrounding landscape using a 3D process-based Hg model in 2012–2015. Oil sands Hg emissions are found to be important sources of Hg contamination to the local landscape in proximity to the processing activities, particularly in wintertime.
David S. McLagan, Geoff W. Stupple, Andrea Darlington, Katherine Hayden, and Alexandra Steffen
Atmos. Chem. Phys., 21, 5635–5653, https://doi.org/10.5194/acp-21-5635-2021, https://doi.org/10.5194/acp-21-5635-2021, 2021
Short summary
Short summary
An assessment of mercury emissions from a burning boreal forest was made by flying an aircraft through its plume to collect in situ gas and particulate measurements. Direct data show that in-plume gaseous elemental mercury concentrations reach up to 2.4× background for this fire and up to 5.6× when using a correlation with CO data. These unique data are applied to a series of known empirical emissions estimates and used to highlight current uncertainties in the literature.
Cited articles
Arctic Council: Arctic Monitoring and Assessment Programme (AMAP), Arctic Council, Tromsø, Norway, available at: https://www.amap.no/ (last access: 5 August 2020), 1991.
Aspmo, K., Gauchard, P. A., Steffen, A., Temme, C., Berg, T., Bahlmann, E.,
Banic, C., Dommergue, A., Ebinghaus, R., Ferrari, C., Pirrone, N.,
Sprovieri, F., and Wibetoe, G.: Measurements of atmospheric mercury species
during an international study of mercury depletion events at Ny-Ålesund,
Svalbard, spring 2003. How reproducible are our present methods?,
Atmos. Environ., 39, 7607–7619, 2005.
Brown, R. J. C., Pirrone, N., Van Hoek, C., Sprovieri, F., Fernandez, R., and
Toté, K.: Standardisation of a European measurement method for the
determination of total gaseous mercury: Results of the field trial campaign
and determination of a measurement uncertainty and working range, J.
Environ. Monit., 12, 689–695, https://doi.org/10.1039/b924955a, 2010.
D'Amore, F., Bencardino, M., Cinnirella, S., Sprovieri, F., and Pirrone, N.:
Data quality through a web-based QA/QC system: Implementation for
atmospheric mercury data from the global mercury observation system,
Environ. Sci.: Processes Impacts, 17, 1482–1491, https://doi.org/10.1039/c5em00205b,
2015.
Dinoi, A., Cesari, D., Marinoni, A., Bonasoni, P., Riccio, A., Chianese, E.,
Tirimberio, G., Naccarato, A., Sprovieri, F., Andreoli, V., Moretti, S.,
Gullì, D., Calidonna, C. R., Ammoscato, I., and Contini, D.:
Inter-comparison of carbon content in PM2.5 and PM10 collected at five measurement sites in Southern Italy, Atmosphere, 8, 243,
https://doi.org/10.3390/atmos8120243, 2017.
Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., and Pirrone, N.:
Mercury as a global pollutant: Sources, pathways, and effects, Environ. Sci.
Technol., 47, 4967–4983, https://doi.org/10.1021/es305071v, 2013.
Ebinghaus, R., Jennings, S. G., Kock, H. H., Derwent, R. G., Manning, A. J.,
and Spain, T. G.: Decreasing trends in total gaseous mercury observations in
baseline air at Mace Head, Ireland from 1996 to 2009, Atmos. Environ.,
45, 3475–3480, https://doi.org/10.1016/j.atmosenv.2011.01.033, 2011.
Huang, J., Lyman, S. N., Hartman, J. S., and Gustin, M. S.: A review of
passive sampling systems for ambient air mercury measurements, Environ. Sci.:
Processes Impacts, 16, 374–392, https://doi.org/10.1039/c3em00501a, 2014.
Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B.: lmerTest
Package: Tests in Linear Mixed Effects Models, J. Stat. Softw., 82, 1–26, https://doi.org/10.18637/jss.v082.i13, 2017.
Landis, M. S., Stevens, R. K., Schaedlich, F., and Prestbo, E. M.:
Development and characterization of an annular denuder methodology for the
measurement of divalent inorganic reactive gaseous mercury in ambient air,
Environ. Sci. Technol., 36, 3000–3009, https://doi.org/10.1021/es015887t, 2002.
Macagnano, A., Papa, P., Avossa, J., Perri, V., Marelli, M., Sprovieri, F.,
Zampetti, E., De Cesare, F., Bearzotti, A., and Pirrone, N.: Passive Sampling
of Gaseous Elemental Mercury Based on a Composite TiO2NP/AuNP Layer,
Nanomaterials, 8, 798, https://doi.org/10.3390/nano8100798, 2018.
Massman, W. J.: Molecular diffusivities of Hg vapor in air, O2 and N2 near STP and the kinematic viscosity and thermal diffusivity of air near STP,
Atmos. Environ., 33, 453–457, https://doi.org/10.1016/S1352-2310(98)00204-0, 1999.
McLagan, D. S., Mitchell, C. P. J., Huang, H., Lei, Y. D., Cole, A. S.,
Steffen, A., Hung, H., and Wania, F.: A high-precision passive air sampler
for gaseous mercury, Environ. Sci. Technol. Lett., 3, 24–29,
https://doi.org/10.1021/acs.estlett.5b00319, 2016a.
McLagan, D. S., Mazur, M. E. E., Mitchell, C. P. J., and Wania, F.: Passive air sampling of gaseous elemental mercury: a critical review, Atmos. Chem. Phys., 16, 3061–3076, https://doi.org/10.5194/acp-16-3061-2016, 2016b.
McLagan, D. S., Mitchell, C. P. J., Huang, H., Abdul Hussain, B., Lei, Y. D., and Wania, F.: The effects of meteorological parameters and diffusive barrier reuse on the sampling rate of a passive air sampler for gaseous mercury, Atmos. Meas. Tech., 10, 3651–3660, https://doi.org/10.5194/amt-10-3651-2017, 2017.
McLagan, D. S., Mitchell, C. P. J., Steffen, A., Hung, H., Shin, C., Stupple, G. W., Olson, M. L., Luke, W. T., Kelley, P., Howard, D., Edwards, G. C., Nelson, P. F., Xiao, H., Sheu, G.-R., Dreyer, A., Huang, H., Abdul Hussain, B., Lei, Y. D., Tavshunsky, I., and Wania, F.: Global evaluation and calibration of a passive air sampler for gaseous mercury, Atmos. Chem. Phys., 18, 5905–5919, https://doi.org/10.5194/acp-18-5905-2018, 2018.
Moretti, S., Salmatonidis, A., Querol, X., Tassone, A., Andreoli, V.,
Bencardino, M., Pirrone, N., Sprovieri, F., and Naccarato, A.: Contribution
of volcanic and fumarolic emission to the aerosol in marine atmosphere in
the central mediterranean sea: Results from med-oceanor 2017 cruise
campaign, Atmosphere, 11, 149, https://doi.org/10.3390/atmos11020149, 2020.
Munthe, J., Wängberg, I., Pirrone, N., Iverfeldt, Å., Ferrara, R.,
Ebinghaus, R., Feng, X., Gårdfeldt, K., Keeler, G., Lanzillotta, E.,
Lindberg, S. E., Lu, J., Mamane, Y., Prestbo, E., Schmolke, S., Schroeder,
W. H., Sommar, J., Sprovieri, F., Stevens, R. K., Stratton, W., Tuncel, G.,
and Urba, A.: Intercomparison of methods for sampling and analysis of
atmospheric mercury species, Atmos. Environ., 35, 3007–3017,
https://doi.org/10.1016/S1352-2310(01)00104-2, 2001.
Naccarato, A., Tassone, A., Moretti, S., Elliani, R., Sprovieri, F.,
Pirrone, N., and Tagarelli, A.: A green approach for organophosphate ester
determination in airborne particulate matter: Microwave-assisted extraction
using hydroalcoholic mixture coupled with solid-phase microextraction gas
chromatography-tandem mass spectrometry, Talanta, 189, 657–665,
https://doi.org/10.1016/j.talanta.2018.07.077, 2018.
Naccarato, A., Tassone, A., Cavaliere, F., Elliani, R., Pirrone, N.,
Sprovieri, F., Tagarelli, A., and Giglio, A.: Agrochemical treatments as a
source of heavy metals and rare earth elements in agricultural soils and
bioaccumulation in ground beetles, Sci. Total Environ., 749, 141438,
https://doi.org/10.1016/j.scitotenv.2020.141438, 2020.
Paradis, E., Claude, J., and Strimmer, K.: APE: Analyses of Phylogenetics and
Evolution in R language, Bioinformatics, 20, 289–290,
https://doi.org/10.1093/bioinformatics/btg412, 2004.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team: nlme: Linear and Nonlinear Mixed Effects Models, R package version 3.1-131, available at: https://CRAN.R-project.org/package=nlme (last access: July 2020), 2017.
Pirrone, N., Aas, W., Cinnirella, S., Ebinghaus, R., Hedgecock, I. M.,
Pacyna, J., Sprovieri, F., and Sunderland, E. M.: Toward the next generation
of air quality monitoring: Mercury, Atmos. Environ., 80, 599–611,
https://doi.org/10.1016/j.atmosenv.2013.06.053, 2013.
Restrepo, A. R., Hayward, S. J., Armitage, J. M., and Wania, F.: Evaluating
the PAS-SIM model using a passive air sampler calibration study for
pesticides, Environ. Sci.: Processes Impacts, 17, 1228–1237,
https://doi.org/10.1039/c5em00122f, 2015.
Slemr, F., Angot, H., Dommergue, A., Magand, O., Barret, M., Weigelt, A., Ebinghaus, R., Brunke, E.-G., Pfaffhuber, K. A., Edwards, G., Howard, D., Powell, J., Keywood, M., and Wang, F.: Comparison of mercury concentrations measured at several sites in the Southern Hemisphere, Atmos. Chem. Phys., 15, 3125–3133, https://doi.org/10.5194/acp-15-3125-2015, 2015.
Steffen, A., Scherz, T., Olson, M., Gay, D., and Blanchard, P.: A comparison
of data quality control protocols for atmospheric mercury speciation
measurements, J. Environ. Monit., 14, 752–765, https://doi.org/10.1039/c2em10735j, 2012.
Tassone, A., Moretti, S., Martino, M., Pirrone, N., Sprovieri, F., and
Naccarato, A.: Modification of the EPA method 1631E for the quantification
of total mercury in natural waters, MethodsX, 7, 100987,
https://doi.org/10.1016/j.mex.2020.100987, 2020.
Temme, C., Blanchard, P., Steffen, A., Banic, C., Beauchamp, S., Poissant,
L., Tordon, R., and Wiens, B.: Trend, seasonal and multivariate analysis
study of total gaseous mercury data from the Canadian atmospheric mercury
measurement network (CAMNet), Atmos. Environ., 41, 5423–5441,
https://doi.org/10.1016/j.atmosenv.2007.02.021, 2007.
Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M., Hjellbrekke, A. G., Lund Myhre, C., Solberg, S., and Yttri, K. E.: Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009, Atmos. Chem. Phys., 12, 5447–5481, https://doi.org/10.5194/acp-12-5447-2012, 2012.
UNEP: Minamata Convention on Mercury – Text and Annexes, UNEP, Geneva, Switzerland, 1–59, 2013.
Vermette, S. J., Lindberg, S. E., and Bloom, N. S.: The Mercury Deposition
Network of the National Atmospheric Deposition Program (Nadp/Mdn), in:
Abstracts of Papers of the American Chemical Society, vol. 210, 81 pp., GEOC,
American Chemical Society, Washington, DC, United States, WOS Accession Number: A1995RP25601924, 1995.
Wängberg, I., Munthe, J., Pirrone, N., Iverfeldt, Å., Bahlman, E.,
Costa, P., Ebinghaus, R., Feng, X., Ferrara, R., Gårdfeldt, K., Kock,
H., Lanzillotta, E., Mamane, Y., Mas, F., Melamed, E., Osnat, Y., Prestbo,
E., Sommar, J., Schmolke, S., Spain, G., Sprovieri, F., and Tuncel, G.:
Atmospheric mercury distribution in Northern Europe and in the Mediterranean
region, Atmos. Environ., 35, 3019–3025, https://doi.org/10.1016/S1352-2310(01)00105-4, 2001.
Wängberg, I., Hageström, U., Sommar, J., and Ferm, M.: Development and Testing of a Passive Sampler for Measurement of Gaseous Mercury, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2016-528, 2016.
Short summary
Mercury monitoring in support of the Minamata Convention requires effective and reliable analytical tools. Passive sampling is a promising approach for creating a sustainable long-term network for atmospheric mercury with improved spatial resolution and global coverage. In this study the analytical performance of three passive air samplers (CNR-PAS, IVL-PAS, and MerPAS) was assessed over extended deployment periods and the accuracy of concentrations was judged by comparison with active sampling.
Mercury monitoring in support of the Minamata Convention requires effective and reliable...