Articles | Volume 14, issue 6
https://doi.org/10.5194/amt-14-4707-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-4707-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A method for liquid spectrophotometric measurement of total and water-soluble iron and copper in ambient aerosols
Yuhan Yang
Earth and Atmospheric Sciences, Georgia Institute of Technology,
Atlanta, GA 30332, USA
Dong Gao
Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT 06510, USA
Rodney J. Weber
CORRESPONDING AUTHOR
Earth and Atmospheric Sciences, Georgia Institute of Technology,
Atlanta, GA 30332, USA
Related authors
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Katerina Seitanidi, Pourya Shahpoury, Eduardo J. d. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech., 18, 177–195, https://doi.org/10.5194/amt-18-177-2025, https://doi.org/10.5194/amt-18-177-2025, 2025
Short summary
Short summary
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP dithiothreitol assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardisation in OP procedures.
Mingshuai Zhang, Chun Zhao, Yuhan Yang, Qiuyan Du, Yonglin Shen, Shengfu Lin, Dasa Gu, Wenjing Su, and Cheng Liu
Geosci. Model Dev., 14, 6155–6175, https://doi.org/10.5194/gmd-14-6155-2021, https://doi.org/10.5194/gmd-14-6155-2021, 2021
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) can influence atmospheric chemistry and secondary pollutant formation. This study examines the performance of different versions of the Model of Emissions of Gases and Aerosols from Nature (MEGAN) in modeling BVOCs and ozone and their sensitivities to vegetation distributions over eastern China. The results suggest more accurate vegetation distribution and measurements of BVOC emission fluxes are needed to reduce the uncertainties.
Amna Ijaz, Brice Temime-Roussel, Benjamin Chazeau, Sarah Albertin, Stephen R. Arnold, Brice Barret, Slimane Bekki, Natalie Brett, Meeta Cesler-Maloney, Elsa Dieudonne, Kayane K. Dingilian, Javier G. Fochesatto, Jingqiu Mao, Allison Moon, Joel Savarino, William Simpson, Rodney J. Weber, Kathy S. Law, and Barbara D'Anna
Atmos. Chem. Phys., 25, 11789–11811, https://doi.org/10.5194/acp-25-11789-2025, https://doi.org/10.5194/acp-25-11789-2025, 2025
Short summary
Short summary
Fairbanks is among the most polluted cities, with the highest particulate matter (PM) levels in the US during winters. Highly time-resolved measurements of the submicron PM found residential heating with wood and oil and hydrocarbon-like organics from traffic, as well as sulfur-containing aerosol, to be the key pollution sources. Remarkable differences existed between complementary instruments, warranting the deployment of multiple tools at sites, with wide-ranging influences.
Wendell W. Walters, Masayuki Takeuchi, Danielle E. Blum, Gamze Eris, David Tanner, Weiqi Xu, Jean Rivera-Rios, Fobang Liu, Tianchang Xu, Greg Huey, Justin B. Min, Rodney Weber, Nga L. Ng, and Meredith G. Hastings
Atmos. Chem. Phys., 25, 10707–10730, https://doi.org/10.5194/acp-25-10707-2025, https://doi.org/10.5194/acp-25-10707-2025, 2025
Short summary
Short summary
We studied how chemicals released from plants and pollution interact in the atmosphere, affecting air quality and climate. By combining laboratory experiments and chemistry models, we tracked unique chemical fingerprints to understand how nitrogen compounds transform to form particles in the air. Our findings help explain the role of these reactions in pollution and provide tools to improve predictions for cleaner air and better climate policies.
Jan-Lukas Tirpitz, Santo Fedele Colosimo, Nathaniel Brockway, Robert Spurr, Matt Christi, Samuel Hall, Kirk Ullmann, Johnathan Hair, Taylor Shingler, Rodney Weber, Jack Dibb, Richard Moore, Elizabeth Wiggins, Vijay Natraj, Nicolas Theys, and Jochen Stutz
Atmos. Chem. Phys., 25, 1989–2015, https://doi.org/10.5194/acp-25-1989-2025, https://doi.org/10.5194/acp-25-1989-2025, 2025
Short summary
Short summary
We combine plume composition data from the 2019 NASA FIREX-AQ campaign with state-of-the-art radiative transfer modeling techniques to calculate distributions of actinic flux and photolysis frequencies in a wildfire plume. Excellent agreement of the model and observations demonstrates the applicability of this approach to constrain photochemistry in such plumes. We identify limiting factors for the modeling accuracy and discuss spatial and spectral features of the distributions.
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Katerina Seitanidi, Pourya Shahpoury, Eduardo J. d. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech., 18, 177–195, https://doi.org/10.5194/amt-18-177-2025, https://doi.org/10.5194/amt-18-177-2025, 2025
Short summary
Short summary
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP dithiothreitol assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardisation in OP procedures.
Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O'Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber
Atmos. Chem. Phys., 24, 12749–12773, https://doi.org/10.5194/acp-24-12749-2024, https://doi.org/10.5194/acp-24-12749-2024, 2024
Short summary
Short summary
Prescribed burning is an important method for managing ecosystems and preventing wildfires. However, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in 2 different years, we characterize emissions and evolutions of up to 8 h of PM2.5 mass, black carbon (BC), and brown carbon (BrC) in smoke from burning of forested lands in the southeastern USA.
Linghan Zeng, Jack Dibb, Eric Scheuer, Joseph M. Katich, Joshua P. Schwarz, Ilann Bourgeois, Jeff Peischl, Tom Ryerson, Carsten Warneke, Anne E. Perring, Glenn S. Diskin, Joshua P. DiGangi, John B. Nowak, Richard H. Moore, Elizabeth B. Wiggins, Demetrios Pagonis, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Lu Xu, and Rodney J. Weber
Atmos. Chem. Phys., 22, 8009–8036, https://doi.org/10.5194/acp-22-8009-2022, https://doi.org/10.5194/acp-22-8009-2022, 2022
Short summary
Short summary
Wildfires emit aerosol particles containing brown carbon material that affects visibility and global climate and is toxic. Brown carbon is poorly characterized due to measurement limitations, and its evolution in the atmosphere is not well known. We report on aircraft measurements of brown carbon from large wildfires in the western United States. We compare two methods for measuring brown carbon and study the evolution of brown carbon in the smoke as it moved away from the burning regions.
Mingshuai Zhang, Chun Zhao, Yuhan Yang, Qiuyan Du, Yonglin Shen, Shengfu Lin, Dasa Gu, Wenjing Su, and Cheng Liu
Geosci. Model Dev., 14, 6155–6175, https://doi.org/10.5194/gmd-14-6155-2021, https://doi.org/10.5194/gmd-14-6155-2021, 2021
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) can influence atmospheric chemistry and secondary pollutant formation. This study examines the performance of different versions of the Model of Emissions of Gases and Aerosols from Nature (MEGAN) in modeling BVOCs and ozone and their sensitivities to vegetation distributions over eastern China. The results suggest more accurate vegetation distribution and measurements of BVOC emission fluxes are needed to reduce the uncertainties.
Charles A. Brock, Karl D. Froyd, Maximilian Dollner, Christina J. Williamson, Gregory Schill, Daniel M. Murphy, Nicholas J. Wagner, Agnieszka Kupc, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jason C. Schroder, Douglas A. Day, Derek J. Price, Bernadett Weinzierl, Joshua P. Schwarz, Joseph M. Katich, Siyuan Wang, Linghan Zeng, Rodney Weber, Jack Dibb, Eric Scheuer, Glenn S. Diskin, Joshua P. DiGangi, ThaoPaul Bui, Jonathan M. Dean-Day, Chelsea R. Thompson, Jeff Peischl, Thomas B. Ryerson, Ilann Bourgeois, Bruce C. Daube, Róisín Commane, and Steven C. Wofsy
Atmos. Chem. Phys., 21, 15023–15063, https://doi.org/10.5194/acp-21-15023-2021, https://doi.org/10.5194/acp-21-15023-2021, 2021
Short summary
Short summary
The Atmospheric Tomography Mission was an airborne study that mapped the chemical composition of the remote atmosphere. From this, we developed a comprehensive description of aerosol properties that provides a unique, global-scale dataset against which models can be compared. The data show the polluted nature of the remote atmosphere in the Northern Hemisphere and quantify the contributions of sea salt, dust, soot, biomass burning particles, and pollution particles to the haziness of the sky.
Linghan Zeng, Amy P. Sullivan, Rebecca A. Washenfelder, Jack Dibb, Eric Scheuer, Teresa L. Campos, Joseph M. Katich, Ezra Levin, Michael A. Robinson, and Rodney J. Weber
Atmos. Meas. Tech., 14, 6357–6378, https://doi.org/10.5194/amt-14-6357-2021, https://doi.org/10.5194/amt-14-6357-2021, 2021
Short summary
Short summary
Three online systems for measuring water-soluble brown carbon are compared. A mist chamber and two different particle-into-liquid samplers were deployed on separate research aircraft targeting wildfires and followed a similar detection method using a long-path liquid waveguide with a spectrometer to measure the light absorption from 300 to 700 nm. Detection limits, signal hysteresis and other sampling issues are compared, and further improvements of these liquid-based systems are provided.
Yang Wang, Guangjie Zheng, Michael P. Jensen, Daniel A. Knopf, Alexander Laskin, Alyssa A. Matthews, David Mechem, Fan Mei, Ryan Moffet, Arthur J. Sedlacek, John E. Shilling, Stephen Springston, Amy Sullivan, Jason Tomlinson, Daniel Veghte, Rodney Weber, Robert Wood, Maria A. Zawadowicz, and Jian Wang
Atmos. Chem. Phys., 21, 11079–11098, https://doi.org/10.5194/acp-21-11079-2021, https://doi.org/10.5194/acp-21-11079-2021, 2021
Short summary
Short summary
This paper reports the vertical profiles of trace gas and aerosol properties over the eastern North Atlantic, a region of persistent but diverse subtropical marine boundary layer (MBL) clouds. We examined the key processes that drive the cloud condensation nuclei (CCN) population and how it varies with season and synoptic conditions. This study helps improve the model representation of the aerosol processes in the remote MBL, reducing the simulated aerosol indirect effects.
Athanasios Nenes, Spyros N. Pandis, Maria Kanakidou, Armistead G. Russell, Shaojie Song, Petros Vasilakos, and Rodney J. Weber
Atmos. Chem. Phys., 21, 6023–6033, https://doi.org/10.5194/acp-21-6023-2021, https://doi.org/10.5194/acp-21-6023-2021, 2021
Short summary
Short summary
Ecosystems and air quality are affected by the dry deposition of inorganic reactive nitrogen (Nr, the sum of ammonium and nitrate). Its large variability is driven by the large difference in deposition velocity of N when in the gas or particle phase. Here we show that aerosol liquid water and acidity, by affecting gas–particle partitioning, modulate the dry deposition velocity of NH3, HNO3, and Nr worldwide. These effects explain the rapid accumulation of nitrate aerosol during haze events.
Cited articles
Adachi, K. and Tainosho, Y.: Characterization of heavy metal particles
embedded in tire dust, Environ. Int., 30, 1009–1017, 2004.
Aller, R. C., Mackin, J. E., and Cox Jr., R. T.: Diagenesis of Fe and S in
Amazon inner shelf muds: apparent dominance of Fe reduction and implications
for the genesis of ironstones, Cont. Shelf Res., 6, 263–289, 1986.
Alves, D. D., Riegel, R. P., Klauck, C. R., Ceratti, A. M., Hansen, J.,
Cansi, L. M., Pozza, S. A., de Quevedo, D. M., and Osório, D. M. M.:
Source apportionment of metallic elements in urban atmospheric particulate
matter and assessment of its water-soluble fraction toxicity, Environ.
Sci. Pollut. Res., 27, 12202–12214, 2020.
Ammann, A. A.: Inductively coupled plasma mass spectrometry (ICP MS): a
versatile tool, J. Mass Spectrom., 42, 419–427, 2007.
Bengtsson, G., Fronæus, S., and Bengtsson-Kloo, L.: The kinetics and
mechanism of oxidation of hydroxylamine by iron (III), Dalton T., 2002, 2548–2552, 2002.
Bongaerts, E., Nawrot, T. S., Van Pee, T., Ameloot, M., and Bové, H.:
Translocation of (ultra) fine particles and nanoparticles across the
placenta; a systematic review on the evidence of in vitro, ex vivo, and in
vivo studies, Part. Fibre Toxicol., 17, 1–26, 2020.
Brewer, G. J.: Iron and copper toxicity in diseases of aging, particularly
atherosclerosis and Alzheimer's disease, Exp. Biol. Med., 232, 323–335, 2007.
Brook, R. D., Rajagopalan, S., Pope 3rd C. A., Brook, J. R., Bhatnagar,
A., Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M.
A., Peters, A., Siscovick, D., Smith Jr., S. C., Whitsel, L., and Kaufman,
J. D.: Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association,
Circulation, 121, 2331–2378, 2010.
Calderón-Garcidueñas, L., González-Maciel, A., Mukherjee, P. S.,
Reynoso-Robles, R., Pérez-Guillé, B., Gayosso-Chávez, C.,
Torres-Jardón, R., Cross, J. V., Ahmed, I. A. M., and Karloukovski, V.
V.: Combustion-and friction-derived magnetic air pollution nanoparticles in
human hearts, Environ. Res., 176, 108567, https://doi.org/10.1016/j.envres.2019.108567, 2019.
Canepari, S., Astolfi, M. L., Farao, C., Maretto, M., Frasca, D., Marcoccia,
M., and Perrino, C.: Seasonal variations in the chemical composition of
particulate matter: a case study in the Po Valley. Part II: concentration
and solubility of micro- and trace-elements, Environ. Sci. Pollut. Res., 21, 4010–4022, 2014.
Chen, Y., Luo, X.-S., Zhao, Z., Chen, Q., Wu, D., Sun, X., Wu, L., and Jin,
L.: Summer–winter differences of PM2.5 toxicity to human alveolar
epithelial cells (A549) and the roles of transition metals, Ecotox. Environ. Safe., 165, 505–509, 2018.
Chow, J. C.: Measurement methods to determine compliance with ambient air
quality standards for suspended particles, J. Air Waste Manage., 45, 320–382, 1995.
Costa, D. L. and Dreher, K. L.: Bioavailable transition metals in
particulate matter mediate cardiopulmonary injury in healthy and compromised
animal models, Environ. Health Persp., 105, 1053–1060, 1997.
Danadurai, K. S. K., Chellam, S., Lee, C.-T., and Fraser, M. P.: Trace
elemental analysis of airborne particulate matter using dynamic reaction
cell inductively coupled plasma–mass spectrometry: Application to
monitoring episodic industrial emission events, Anal. Chim. Acta, 686,
40–49, 2011.
Donaldson, K., Stone, V., Seaton, A., and MacNee, W.: Ambient particle
inhalation and the cardiovascular system: potential mechanisms,
Environ. Health Persp., 109, 523–527, 2001.
Dreher, K. L., Jaskot, R. H., Lehmann, J. R., Richards, J. H., Ghio, J. K.
M. A. J., and Costa, D. L.: Soluble transition metals mediate residual oil
fly ash induced acute lung injury, J. Toxicol. Env. Heal. A, 50, 285–305, 1997.
Erickson, H. P.: Size and shape of protein molecules at the nanometer level
determined by sedimentation, gel filtration, and electron microscopy,
Biol. Proced. Online, 11, 32–51, 2009.
Fang, T., Guo, H., Verma, V., Peltier, R. E., and Weber, R. J.: PM2.5 water-soluble elements in the southeastern United States: automated analytical method development, spatiotemporal distributions, source apportionment, and implications for heath studies, Atmos. Chem. Phys., 15, 11667–11682, https://doi.org/10.5194/acp-15-11667-2015, 2015.
Frampton, M. W., Ghio, A. J., Samet, J. M., Carson, J. L., Carter, J. D.,
and Devlin, R. B.: Effects of aqueous extracts of PM10 filters from the Utah Valley on human airway epithelial cells, Am. J. Physiol.-Lung C., 277, L960–L967, 1999.
Galon-Negru, A. G., Olariu, R. I., and Arsene, C.: Size-resolved
measurements of PM2.5 water-soluble elements in Iasi, north-eastern
Romania: Seasonality, source apportionment and potential implications for
human health, Sci. Total Environ., 695, 133839, https://doi.org/10.1016/j.scitotenv.2019.133839, 2019.
Gao, D., Godri Pollitt, K. J., Mulholland, J. A., Russell, A. G., and Weber, R. J.: Characterization and comparison of PM2.5 oxidative potential assessed by two acellular assays, Atmos. Chem. Phys., 20, 5197–5210, https://doi.org/10.5194/acp-20-5197-2020, 2020a.
Gao, D., Mulholland, J. A., Russell, A. G., and Weber, R. J.:
Characterization of water-insoluble oxidative potential of PM2.5 using the dithiothreitol assay, Atmos. Environ., 224, 117327, https://doi.org/10.1016/j.atmosenv.2020.117327, 2020b.
Ghio, A. J., Carraway, M. S., and Madden, M. C.: Composition of air
pollution particles and oxidative stress in cells, tissues, and living
systems, J. Toxicol. Env. Heal. B., 15, 1–21, 2012.
Gibbs, C. R.: Characterization and application of ferrozine iron reagent as
a ferrous iron indicator, Anal. Chem., 48, 1197–1201, 1976.
Gonet, T. and Maher, B. A.: Airborne, vehicle-derived Fe-bearing
nanoparticles in the urban environment: A review, Environ. Sci. Technol., 53, 9970–9991, 2019.
Hagler, G. S. W., Bergin, M. H., Salmon, L. G., Yu, J. Z., Wan, E. C. H.,
Zheng, M., Zeng, L. M., Kiang, C. S., Zhang, Y. H., and Schauer, J. J.:
Local and regional anthropogenic influence on PM2.5 elements in Hong Kong, Atmos. Environ., 41, 5994–6004, 2007.
Hansen, D. A., Edgerton, E. S., Hartsell, B. E., Jansen, J. J., Kandasamy, N., Hidy, G. M., and Blanchard, C. L.: The southeastern aerosol research and characterization study: Part 1 – Overview, J. Air Waste Manage., 53, 1460–1471, 2003.
Huang, Y.-C. T., Ghio, A. J., Stonehuerner, J., McGee, J., Carter, J. D.,
Grambow, S. C., and Devlin, R. B.: The role of soluble components in ambient
fine particles-induced changes in human lungs and blood, Inhal.
Toxicol., 15, 327–342, 2003.
Imamura, T. and Fujimoto, M.: Kinetics and Mechanism of the Reaction of
Copper(II) with Hydroxylamine in the Presence of Bathocuproine Disulfonate,
B. Chem. Soc. Jpn., 48, 2971–2972, 1975.
Ito, A., Myriokefalitakis, S., Kanakidou, M., Mahowald, N. M., Scanza, R.
A., Hamilton, D. S., Baker, A. R., Jickells, T., Sarin, M., and Bikkina, S.:
Pyrogenic iron: The missing link to high iron solubility in aerosols,
Science Advances, 5, eaau7671, https://doi.org/10.1126/sciadv.aau7671, 2019.
Johnson, D. K., Stevenson, M. J., Almadidy, Z. A., Jenkins, S. E., Wilcox,
D. E., and Grossoehme, N. E.: Stabilization of Cu(I) for binding and
calorimetric measurements in aqueous solution, Dalton T., 44, 16494–16505, 2015.
Khillare, P. S. and Sarkar, S.: Airborne inhalable metals in residential
areas of Delhi, India: distribution, source apportionment and health risks,
Atmos. Pollut. Res., 3, 46–54, 2012.
Kim, J. S., Peters, T. M., O'Shaughnessy, P. T., Adamcakova-Dodd, A., and
Thorne, P. S.: Validation of an in vitro exposure system for toxicity
assessment of air-delivered nanomaterials, Toxicol. in Vitro, 27, 164–173,
2013.
Kuang, X. M., Gonzalez, D. H., Scott, J. A., Vu, K., Hasson, A.,
Charbouillot, T., Hawkins, L., and Paulson, S. E.: Cloud Water Chemistry
Associated with Urban Aerosols: Rapid Hydroxyl Radical Formation, Soluble
Metals, Fe(II), Fe(III), and Quinones, ACS Earth Space Chem., 4, 67–76, 2019.
Kulshrestha, A., Satsangi, P. G., Masih, J., and Taneja, A.: Metal
concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India, Sci. Total Environ., 407, 6196–6204, 2009.
Lakey, P. S., Berkemeier, T., Tong, H., Arangio, A. M., Lucas, K., Pöschl, U., and Shiraiwa, M.: Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract, Sci. Rep., 6, 32916, https://doi.org/10.1038/srep32916, 2016.
Lee, B.-K. and Hieu, N. T.: Seasonal variation and sources of heavy metals
in atmospheric aerosols in a residential area of Ulsan, Korea, Aerosol Air Qual. Res., 11, 679–688, 2011.
Lee, Y., Chun, H.-S., Moon, J.-Y., Choi, J. S., Park, D., and Lee, Y.-C.:
Correlation of -Fe2O3 nanoparticles with the toxicity of particulate matter originating from subway tunnels in Seoul stations, Korea, J. Hazard. Mater., 382, 121175, https://doi.org/10.1016/j.jhazmat.2019.121175, 2020.
Lin, T.-L. and Luo, C.-S.: Matrix effects in PIXE analysis on liquid samples
with an external beam, Nucl. Instrum. Methods, 159, 387–393, 1979.
Majestic, B. J., Schauer, J. J., Shafer, M. M., Turner, J. R., Fine, P. M.,
Singh, M., and Sioutas, C.: Development of a wet-chemical method for the
speciation of iron in atmospheric aerosols, Environ. Sci. Technol., 40, 2346–2351, 2006.
Manousakas, M., Papaefthymiou, H., Eleftheriadis, K., and Katsanou, K.:
Determination of water-soluble and insoluble elements in PM2.5 by ICP-MS, Sci. Total Environ., 493, 694–700, 2014.
Marcazzan, G. M., Ceriani, M., Valli, G., and Vecchi, R.: Source
apportionment of PM10 and PM2.5 in Milan (Italy) using receptor modelling, Sci. Total Environ., 317, 137–147, 2003.
Meskhidze, N., Chameides, W. L., and Nenes, A.: Dust and pollution: A recipe
for enhanced ocean fertilization?, J. Geophys. Res., 110, D03301, https://doi.org/10.1029/2004JD005082, 2005.
Moffett, J. W., Zika, R. G., and Petasne, R. G.: Evaluation of bathocuproine
for the spectrophotometric determination of the copper(I) in copper redox
studies with applications in studies of natural waters, Anal. Chim. Acta, 175, 171–179, 1985.
Moreno-Ríos, A. L., Tejeda-Benítez, L., and Bustillo-Lecompte, C.:
Sources, characteristics, toxicity, and control of ultrafine particles: An
overview, Geosci. Front., 101147, https://doi.org/10.1016/j.gsf.2021.101147, in press, 2021.
Nel, A.: Air pollution-related illness: effects of particles, Science, 308,
804–806, 2005.
Oakes, M., Rastogi, N., Majestic, B. J., Shafer, M., Schauer, J. J.,
Edgerton, E. S., and Weber, R. J.: Characterization of soluble iron in urban
aerosols using near-real time data, J. Geophys. Res., 115, D15302, https://doi.org/10.1029/2009JD012532, 2010.
Olson, D. A., Turlington, J., Duvall, R. M., McDow, S. R., Stevens, C. D.,
and Williams, R.: Indoor and outdoor concentrations of organic and inorganic
molecular markers: Source apportionment of PM2.5 using low-volume samples, Atmos. Environ., 42, 1742–1751, 2008.
Poulton, S. W. and Canfield, D. E.: Development of a sequential extraction
procedure for iron: implications for iron partitioning in continentally
derived particulates, Chem. Geol., 214, 209–221, 2005.
Rastogi, N., Oakes, M. M., Schauer, J. J., Shafer, M. M., Majestic, B. J.,
and Weber, R. J.: New technique for online measurement of water-soluble Fe(II) in atmospheric aerosols, Environ. Sci. Technol., 43, 2425–2430, 2009.
Rozan, T. F., Taillefert, M., Trouwborst, R. E., Glazer, B. T., Ma, S.,
Herszage, J., Valdes, L. M., Price, K. S., and Luther Iii, G. W.:
Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay:
Implications for sediment nutrient release and benthic macroalgal blooms,
Limnol. Oceanogr., 47, 1346–1354, 2002.
Schrand, A. M., Rahman, M. F., Hussain, S. M., Schlager, J. J., Smith, D.
A., and Syed, A. F.: Metal-based nanoparticles and their toxicity
assessment, WIREs Nanomed. Nanobiotechnol., 2, 544–568, 2010.
See, S. W., Wang, Y. H., and Balasubramanian, R.: Contrasting reactive
oxygen species and transition metal concentrations in combustion aerosols,
Environ. Res., 103, 317–324, 2007.
Shi, Z., Bonneville, S., Krom, M. D., Carslaw, K. S., Jickells, T. D., Baker, A. R., and Benning, L. G.: Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing, Atmos. Chem. Phys., 11, 995–1007, https://doi.org/10.5194/acp-11-995-2011, 2011.
Smith, G. F. and Wilkins, D. H.: New Colorimetric Reagent Specific for
Cooper, Anal. Chem., 25, 510–511, 1953.
Stookey, L. L.: Ferrozin-a new spectrophotometric reagent for iron, Anal.
Chem., 42, 779–781, 1970.
Sutto, T. E.: Magnetite fine particle and nanoparticle environmental
contamination from industrial uses of coal, Environ. Pollut., 243, 528–533, 2018.
Tomaszewski, R.: ABUNDANCE OF ELEMENTS IN THE EARTH'S CRUST AND IN THE SEA,
CRC Handbook of Chemistry and Physics and The Merck Index, Scientometrics,
112, 14–17, 2017.
Tomat, R. and Rigo, A.: Kinetic study of the reduction of hydroxylamine by
Cu(I), Journal of Electroanalytical Chemistry and Interfacial
Electrochemistry, 59, 191–194, 1975.
Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N., and Van
Cappellen, P.: The ferrozine method revisited: Fe(II)/Fe(III)
determination in natural waters, Appl. Geochem., 15, 785–790, 2000.
Wang, B., Feng, W. Y., Wang, M., Shi, J. W., Zhang, F., Ouyang, H., Zhao, Y.
L., Chai, Z. F., Huang, Y. Y., and Xie, Y. N.: Transport of intranasally
instilled fine Fe2O3 particles into the brain: micro-distribution,
chemical states, and histopathological observation, Biol. Trace Elem. Res., 118, 233–243, 2007.
Wang, Y., Jia, C., Tao, J., Zhang, L., Liang, X., Ma, J., Gao, H., Huang,
T., and Zhang, K.: Chemical characterization and source apportionment of
PM2.5 in a semi-arid and petrochemical-industrialized city, Northwest
China, Sci. Total Environ., 573, 1031–1040, 2016.
Wong, J. P. S., Yang, Y., Fang, T., Mulholland, J. A., Russell, A., Sarnat,
S. E., Nenes, A., and Weber, R. J.: Fine Particle Iron in Soils and Road
Dust is Modulated by Coal-Fired Power Plant Sulfur, Environ. Sci. Technol., 54, 7088–7096, 2020.
Wu, C. and Yu, J. Z.: Evaluation of linear regression techniques for atmospheric applications: the importance of appropriate weighting, Atmos. Meas. Tech., 11, 1233–1250, https://doi.org/10.5194/amt-11-1233-2018, 2018.
Ye, D., Klein, M., Mulholland, J. A., Russell, A. G., Weber, R., Edgerton,
E. S., Chang, H. H., Sarnat, J. A., Tolbert, P. E., and Ebelt Sarnat, S.:
Estimating Acute Cardiovascular Effects of Ambient PM2.5 Metals, Environ. Health. Persp., 126, 027007, https://doi.org/10.1289/EHP2182, 2018.
yhyang611: yhyang611/A-Method-for-Liquid-Spectrophotometric-Measurement-of-Various-Forms-of-Iron-and-Copper-in-Ambient-Ae:, (Version v1.0.0), Zenodo [data set], https://doi.org/10.5281/zenodo.4927503, 2021.
Zhu, X. R., Prospero, J. M., and Millero, F. J.: Diel variability of soluble
Fe (II) and soluble total Fe in North African dust in the trade winds at
Barbados, J. Geophys. Res.-Atmos., 102, 21297–21305, 1997.
Zhuang, G., Yi, Z., Duce, R. A., and Brown, P. R.: Link between iron and
sulphur cycles suggested by detection of Fe(n) in remote marine aerosols,
Nature, 355, 537–539, 1992.
Short summary
Iron and copper are commonly found in ambient aerosols and have been linked to adverse health effects. We describe a relatively simple benchtop instrument that can be used to quantify these metals in aqueous solutions and verify the method by comparison with inductively coupled plasma mass spectrometry. The approach is based on forming light-absorbing metal–ligand complexes that can be measured with high sensitivity utilizing a long-path liquid waveguide capillary cell.
Iron and copper are commonly found in ambient aerosols and have been linked to adverse health...