Articles | Volume 14, issue 7
https://doi.org/10.5194/amt-14-4879-2021
https://doi.org/10.5194/amt-14-4879-2021
Research article
 | 
10 Jul 2021
Research article |  | 10 Jul 2021

New correction method for the scattering coefficient measurements of a three-wavelength nephelometer

Jie Qiu, Wangshu Tan, Gang Zhao, Yingli Yu, and Chunsheng Zhao

Related authors

Field Observations Reveal Substantially Higher Scattering Refractive Index in Secondary Versus Primary Organic Aerosols
Junlin Shen, Li Liu, Fengling Yuan, Biao Luo, Hongqing Qiao, Miaomiao Zhai, Gang Zhao, Hanbing Xu, Fei Li, Yu Zou, Tao Deng, Xuejiao Deng, and Ye Kuang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1410,https://doi.org/10.5194/egusphere-2025-1410, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Theoretical framework for measuring cloud effective supersaturation fluctuations with an advanced optical system
Ye Kuang, Jiangchuan Tao, Hanbing Xu, Li Liu, Pengfei Liu, Wanyun Xu, Weiqi Xu, Yele Sun, and Chunsheng Zhao
Atmos. Chem. Phys., 25, 1163–1174, https://doi.org/10.5194/acp-25-1163-2025,https://doi.org/10.5194/acp-25-1163-2025, 2025
Short summary
Insights into the real part of natural sea spray aerosol refractive index in the Pacific Ocean
Chengyi Fan, Bishuo He, Shuqi Guo, Jie Qiu, and Chunsheng Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-3527,https://doi.org/10.5194/egusphere-2024-3527, 2025
Short summary
A Novel Method to Quantify the Uncertainty Contribution of Aerosol-Radiative Interaction Factors
Bishuo He and Chunsheng Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-3441,https://doi.org/10.5194/egusphere-2024-3441, 2024
Short summary
Quality Control of Historical Temperature Data for Pure Rotational Raman Lidar Using Density-Based Clustering
Rongzheng Cao, Siying Chen, Wangshu Tan, Yixuan Xie, He Chen, Pan Guo, Rui Hu, Yinghong Yu, Jie Yu, and Shusen Yao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2650,https://doi.org/10.5194/egusphere-2024-2650, 2024
Preprint archived
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Inversion algorithm of black carbon mixing state based on machine learning
Zeyuan Tian, Jiandong Wang, Jiaping Wang, Chao Liu, Jia Xing, Jinbo Wang, Zhouyang Zhang, Yuzhi Jin, Sunan Shen, Bin Wang, Wei Nie, Xin Huang, and Aijun Ding
Atmos. Meas. Tech., 18, 1149–1162, https://doi.org/10.5194/amt-18-1149-2025,https://doi.org/10.5194/amt-18-1149-2025, 2025
Short summary
Performance evaluation of Atmotube PRO sensors for air quality measurements in an urban location
Aishah I. Shittu, Kirsty J. Pringle, Stephen R. Arnold, Richard J. Pope, Ailish M. Graham, Carly Reddington, Richard Rigby, and James B. McQuaid
Atmos. Meas. Tech., 18, 817–828, https://doi.org/10.5194/amt-18-817-2025,https://doi.org/10.5194/amt-18-817-2025, 2025
Short summary
Development and validation of a NOx+ ratio method for the quantitative separation of inorganic and organic nitrate aerosol using CV-UMR-ToF-ACSM
Farhan R. Nursanto, Douglas A. Day, Roy Meinen, Rupert Holzinger, Harald Saathoff, Jinglan Fu, Jan Mulder, Ulrike Dusek, and Juliane L. Fry
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-191,https://doi.org/10.5194/amt-2024-191, 2025
Revised manuscript accepted for AMT
Short summary
Retrieval of Bulk Hygroscopicity From PurpleAir PM2.5 Sensor Measurements
Jillian Psotka, Emily Tracey, and Robert Sica
EGUsphere, https://doi.org/10.5194/egusphere-2024-3618,https://doi.org/10.5194/egusphere-2024-3618, 2024
Short summary
Spatial analysis of PM2.5 using a concentration similarity index applied to air quality sensor networks
Rósín Byrne, John C. Wenger, and Stig Hellebust
Atmos. Meas. Tech., 17, 5129–5146, https://doi.org/10.5194/amt-17-5129-2024,https://doi.org/10.5194/amt-17-5129-2024, 2024
Short summary

Cited articles

Anderson, T. L. and Ogren, J. A.: Determining aerosol radiative properties using the TSI 3563 integrating nephelometer, Aerosol Sci. Tech., 29, 57–69, https://doi.org/10.1080/02786829808965551, 1998. 
Anderson, T. L., Covert, D. S., Marshall, S. F., Laucks, M. L., Charlson, R. J., Waggoner, A. P., Ogren, J. A., Caldow, R., Holm, R. L., Quant, F. R., Sem, G. J., Wiedensohler, A., Ahlquist, N. A., and Bates, T. S.: Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer, J. Atmos. Ocean. Tech., 13, 967–986, https://doi.org/10.1175/1520-0426(1996)013<0967:PCOAHS>2.0.CO;2, 1996. 
Bond, T. C., Covert, D. S., and Müller, T.: Truncation and angular-scattering corrections for absorbing aerosol in the TSI 3563 nephelometer, Aerosol Sci. Tech., 43, 866–871, https://doi.org/10.1080/02786820902998373, 2009. 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Download
Short summary
Considering nephelometers' major problems of a nonideal Lambertian light source and angle truncation, a new correction method based on a machine learning model is proposed. Our method has the advantage of obtaining data with high accuracy while achieving self-correction, which means that researchers can get more accurate scattering coefficients without the need for additional observation data. This method provides a more precise estimation of the aerosol’s direct radiative forcing.
Share