Articles | Volume 14, issue 11
https://doi.org/10.5194/amt-14-7369-2021
https://doi.org/10.5194/amt-14-7369-2021
Research article
 | 
25 Nov 2021
Research article |  | 25 Nov 2021

Evaluation methods for low-cost particulate matter sensors

Jeffrey K. Bean

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Instruments and Platforms
Simulations of the collection of mesospheric dust particles with a rocket instrument
Adrien Pineau, Henriette Trollvik, Herman Greaker, Sveinung Olsen, Yngve Eilertsen, and Ingrid Mann
Atmos. Meas. Tech., 17, 3843–3861, https://doi.org/10.5194/amt-17-3843-2024,https://doi.org/10.5194/amt-17-3843-2024, 2024
Short summary
Characterisation of particle single-scattering albedo with a modified airborne dual-wavelength CAPS monitor
Chenjie Yu, Edouard Pangui, Kevin Tu, Mathieu Cazaunau, Maxime Feingesicht, Landsheere Xavier, Thierry Bourrianne, Vincent Michoud, Christopher Cantrell, Timothy B. Onasch, Andrew Freedman, and Paola Formenti
Atmos. Meas. Tech., 17, 3419–3437, https://doi.org/10.5194/amt-17-3419-2024,https://doi.org/10.5194/amt-17-3419-2024, 2024
Short summary
Use of an uncrewed aerial system to investigate aerosol direct and indirect radiative forcing effects in the marine atmosphere
Patricia K. Quinn, Timothy S. Bates, Derek J. Coffman, James E. Johnson, and Lucia M. Upchurch
Atmos. Meas. Tech., 17, 3157–3170, https://doi.org/10.5194/amt-17-3157-2024,https://doi.org/10.5194/amt-17-3157-2024, 2024
Short summary
Characterization of the airborne aerosol inlet and transport system used during the A-LIFE aircraft field experiment
Manuel Schöberl, Maximilian Dollner, Josef Gasteiger, Petra Seibert, Anne Tipka, and Bernadett Weinzierl
Atmos. Meas. Tech., 17, 2761–2776, https://doi.org/10.5194/amt-17-2761-2024,https://doi.org/10.5194/amt-17-2761-2024, 2024
Short summary
Large-scale automated emission measurement of individual vehicles with point sampling
Markus Knoll, Martin Penz, Hannes Juchem, Christina Schmidt, Denis Pöhler, and Alexander Bergmann
Atmos. Meas. Tech., 17, 2481–2505, https://doi.org/10.5194/amt-17-2481-2024,https://doi.org/10.5194/amt-17-2481-2024, 2024
Short summary

Cited articles

Ahangar, F. E., Freedman, F. R., and Venkatram, A.: Using Low-Cost Air Quality Sensor Networks to Improve the Spatial and Temporal Resolution of Concentration Maps, Int. J. Env. Res. Pub. He., 16, 1252, https://doi.org/10.3390/ijerph16071252, 2019. 
Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstetter, T. W., Lunden, M. M., Marshall, J. D., Portier, C. J., Vermeulen, R. C. H., and Hamburg, S. P.: High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data, Environ. Sci. Technol., 51, 6999–7008, https://doi.org/10.1021/acs.est.7b00891, 2017. 2017. 
Barkjohn, K. K., Gantt, B., and Clements, A. L.: Development and application of a United States-wide correction for PM2.5 data collected with the PurpleAir sensor, Atmos. Meas. Tech., 14, 4617–4637, https://doi.org/10.5194/amt-14-4617-2021, 2021. 
Bauerová, P., Šindelářová, A., Rychlík, Š., Novák, Z., and Keder, J.: Low-Cost Air Quality Sensors: One-Year Field Comparative Measurement of Different Gas Sensors and Particle Counters with Reference Monitors at Tušimice Observatory, Atmosphere, 11, 492, https://doi.org/10.3390/atmos11050492, 2020. 
Bi, J., Stowell, J., Seto, E. Y. W., English, P. B., Al-Hamdan, M. Z., Kinney, P. L., Freedman, F. R., and Liu, Y.: Contribution of low-cost sensor measurements to the prediction of PM2.5 levels: A case study in Imperial County, California, USA, Environ. Res., 180, 108810, https://doi.org/10.1016/j.envres.2019.108810, 2020. 
Download
Short summary
Understanding and improving the quality of data generated from low-cost air quality sensors are crucial steps in using these sensors. This work investigates how averaging time, choice of reference instrument, and the observation of higher pollutant concentrations can impact the perceived performance of low-cost sensors in an evaluation. The influence of these factors should be considered when comparing one sensor to another or determining if a sensor can produce data that fit a specific need.