Articles | Volume 14, issue 11
https://doi.org/10.5194/amt-14-7369-2021
© Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.
Evaluation methods for low-cost particulate matter sensors
Cited articles
Ahangar, F. E., Freedman, F. R., and Venkatram, A.: Using Low-Cost Air
Quality Sensor Networks to Improve the Spatial and Temporal Resolution of
Concentration Maps, Int. J. Env. Res. Pub. He., 16, 1252, https://doi.org/10.3390/ijerph16071252, 2019.
Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstetter, T. W.,
Lunden, M. M., Marshall, J. D., Portier, C. J., Vermeulen, R. C. H., and
Hamburg, S. P.: High-Resolution Air Pollution Mapping with Google Street
View Cars: Exploiting Big Data, Environ. Sci. Technol., 51, 6999–7008, https://doi.org/10.1021/acs.est.7b00891, 2017. 2017.
Barkjohn, K. K., Gantt, B., and Clements, A. L.: Development and application of a United States-wide correction for PM2.5 data collected with the PurpleAir sensor, Atmos. Meas. Tech., 14, 4617–4637, https://doi.org/10.5194/amt-14-4617-2021, 2021.
Bauerová, P., Šindelářová, A., Rychlík, Š.,
Novák, Z., and Keder, J.: Low-Cost Air Quality Sensors: One-Year Field
Comparative Measurement of Different Gas Sensors and Particle Counters with
Reference Monitors at Tušimice Observatory, Atmosphere, 11, 492, https://doi.org/10.3390/atmos11050492, 2020.
Bi, J., Stowell, J., Seto, E. Y. W., English, P. B., Al-Hamdan, M. Z.,
Kinney, P. L., Freedman, F. R., and Liu, Y.: Contribution of low-cost sensor
measurements to the prediction of PM2.5 levels: A case study in Imperial
County, California, USA, Environ. Res., 180, 108810, https://doi.org/10.1016/j.envres.2019.108810, 2020.