Articles | Volume 14, issue 12
https://doi.org/10.5194/amt-14-7475-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-7475-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Use of thermal signal for the investigation of near-surface turbulence
Atmospheric Environmental Research Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
Related authors
William Morrison, Dana Looschelders, Jonnathan Céspedes, Bernie Claxton, Marc-Antoine Drouin, Jean-Charles Dupont, Aurélien Faucheux, Martial Haeffelin, Christopher C. Holst, Simone Kotthaus, Valéry Masson, James McGregor, Jeremy Price, Matthias Zeeman, Sue Grimmond, and Andreas Christen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-167, https://doi.org/10.5194/essd-2025-167, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We conducted research using sophisticated wind sensors to better understand wind patterns in Paris. By installing these sensors across the city, we gathered detailed data on wind speeds and directions from 2022 to 2024. This information helps improve weather and climate models, making them more accurate for city environments. Our findings offer valuable insights for scientists studying urban air and weather, improving predictions and understanding of city-scale atmospheric processes.
Matthias Zeeman, Andreas Christen, Sue Grimmond, Daniel Fenner, William Morrison, Gregor Feigel, Markus Sulzer, and Nektarios Chrysoulakis
Geosci. Instrum. Method. Data Syst., 13, 393–424, https://doi.org/10.5194/gi-13-393-2024, https://doi.org/10.5194/gi-13-393-2024, 2024
Short summary
Short summary
This study presents an overview of a data system for documenting, processing, managing, and publishing data streams from research networks of atmospheric and environmental sensors of varying complexity in urban environments. Our solutions aim to deliver resilient, near-time data using freely available software.
Benjamin Schumacher, Marwan Katurji, Jiawei Zhang, Peyman Zawar-Reza, Benjamin Adams, and Matthias Zeeman
Atmos. Meas. Tech., 15, 5681–5700, https://doi.org/10.5194/amt-15-5681-2022, https://doi.org/10.5194/amt-15-5681-2022, 2022
Short summary
Short summary
This investigation presents adaptive thermal image velocimetry (A-TIV), a newly developed algorithm to spatially measure near-surface atmospheric velocities using an infrared camera mounted on uncrewed aerial vehicles. A validation and accuracy assessment of the retrieved velocity fields shows the successful application of the algorithm over short-cut grass and turf surfaces in dry conditions. This provides new opportunities for atmospheric scientists to study surface–atmosphere interactions.
Martina Botter, Matthias Zeeman, Paolo Burlando, and Simone Fatichi
Biogeosciences, 18, 1917–1939, https://doi.org/10.5194/bg-18-1917-2021, https://doi.org/10.5194/bg-18-1917-2021, 2021
William Morrison, Dana Looschelders, Jonnathan Céspedes, Bernie Claxton, Marc-Antoine Drouin, Jean-Charles Dupont, Aurélien Faucheux, Martial Haeffelin, Christopher C. Holst, Simone Kotthaus, Valéry Masson, James McGregor, Jeremy Price, Matthias Zeeman, Sue Grimmond, and Andreas Christen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-167, https://doi.org/10.5194/essd-2025-167, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We conducted research using sophisticated wind sensors to better understand wind patterns in Paris. By installing these sensors across the city, we gathered detailed data on wind speeds and directions from 2022 to 2024. This information helps improve weather and climate models, making them more accurate for city environments. Our findings offer valuable insights for scientists studying urban air and weather, improving predictions and understanding of city-scale atmospheric processes.
Matthias Zeeman, Andreas Christen, Sue Grimmond, Daniel Fenner, William Morrison, Gregor Feigel, Markus Sulzer, and Nektarios Chrysoulakis
Geosci. Instrum. Method. Data Syst., 13, 393–424, https://doi.org/10.5194/gi-13-393-2024, https://doi.org/10.5194/gi-13-393-2024, 2024
Short summary
Short summary
This study presents an overview of a data system for documenting, processing, managing, and publishing data streams from research networks of atmospheric and environmental sensors of varying complexity in urban environments. Our solutions aim to deliver resilient, near-time data using freely available software.
Benjamin Schumacher, Marwan Katurji, Jiawei Zhang, Peyman Zawar-Reza, Benjamin Adams, and Matthias Zeeman
Atmos. Meas. Tech., 15, 5681–5700, https://doi.org/10.5194/amt-15-5681-2022, https://doi.org/10.5194/amt-15-5681-2022, 2022
Short summary
Short summary
This investigation presents adaptive thermal image velocimetry (A-TIV), a newly developed algorithm to spatially measure near-surface atmospheric velocities using an infrared camera mounted on uncrewed aerial vehicles. A validation and accuracy assessment of the retrieved velocity fields shows the successful application of the algorithm over short-cut grass and turf surfaces in dry conditions. This provides new opportunities for atmospheric scientists to study surface–atmosphere interactions.
Martina Botter, Matthias Zeeman, Paolo Burlando, and Simone Fatichi
Biogeosciences, 18, 1917–1939, https://doi.org/10.5194/bg-18-1917-2021, https://doi.org/10.5194/bg-18-1917-2021, 2021
Cited articles
Abram, C., Fond, B., Heyes, A. L., and Beyrau, F.: High-speed planar thermometry and velocimetry using thermographic phosphor particles, Appl. Phys. B, 111, 155–160, https://doi.org/10.1007/s00340-013-5411-8, 2013. a
Anaconda: Anaconda Software Distribution, Version 4–4.8.3,
available at: https://anaconda.com (last access: 14 April 2021), 2020. a
Antonia, R. A., Chambers, A. J., Friehe, C. A., and Atta, C. W. V.: Temperature Ramps in the Atmospheric Surface Layer,
J. Atmos. Sci., 36, 99–108, https://doi.org/10.1175/1520-0469(1979)036<0099:tritas>2.0.co;2, 1979. a
Aubinet, M., Vesala, T., and Papale, D. (Eds.): Eddy Covariance: A Practical
Guide to Measurement and Data Analysis, Springer,
https://doi.org/10.1007/978-94-007-2351-1, 2012. a
Bou-Zeid, E., Anderson, W., Katul, G. G., and Mahrt, L.: The Persistent
Challenge of Surface Heterogeneity in Boundary-Layer Meteorology: A Review,
Bound.-Lay. Meteorol., 177, 227–245, https://doi.org/10.1007/s10546-020-00551-8, 2020. a
Brenner, C., Zeeman, M., Bernhardt, M., and Schulz, K.: Estimation of
evapotranspiration of temperate grassland based on high-resolution thermal
and visible range imagery from unmanned aerial systems, Int. J. Remote Sens., 39, 5141–5174, https://doi.org/10.1080/01431161.2018.1471550, 2018. a
Brosy, C., Krampf, K., Zeeman, M., Wolf, B., Junkermann, W., Schäfer, K., Emeis, S., and Kunstmann, H.: Simultaneous multicopter-based air sampling and sensing of meteorological variables, Atmos. Meas. Tech., 10, 2773–2784, https://doi.org/10.5194/amt-10-2773-2017, 2017. a
Brutsaert, W.: Land-surface water vapor and sensible heat flux: Spatial
variability, homogeneity, and measurement scales, Water Resour. Res.,
34, 2433–2442, https://doi.org/10.1029/98WR01340, 1998. a
Burns, P. and Chemel, C.: Evolution of Cold-Air-Pooling Processes in Complex
Terrain, Bound.-Lay. Meteorol., 150, 423–447,
https://doi.org/10.1007/s10546-013-9885-z, 2014. a
Christen, A., Meier, F., and Scherer, D.: High-frequency fluctuations of
surface temperatures in an urban environment, Theor. Appl.
Climatol., 108, 301–324, https://doi.org/10.1007/s00704-011-0521-x, 2011. a
Clement, R. J. and Moncrieff, J. B.: A Functional Approach to Vertical
Turbulent Transport of Scalars in the Atmospheric Surface Layer,
Bound.-Lay. Meteorol., 173, 373–408, https://doi.org/10.1007/s10546-019-00474-z,
2019. a
Dakin, J., Pratt, D., Bibby, G., and Ross, J.: Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,
Electron. Lett., 21, 569–570, https://doi.org/10.1049/el:19850402, 1985. a
de Jong, S. A. P., Slingerland, J. D., and van de Giesen, N. C.: Fiber optic distributed temperature sensing for the determination of air temperature, Atmos. Meas. Tech., 8, 335–339, https://doi.org/10.5194/amt-8-335-2015, 2015. a
Dorman, G. E. and Mollo-Christensen, E.: Observation of the Structure on Moving Gust Patterns Over a Water Surface (“Cat's Paws”), J. Phys. Oceanogr., 3, 120–132, https://doi.org/10.1175/1520-0485(1973)003<0120:ootsom>2.0.co;2, 1973. a
Euser, T., Luxemburg, W. M. J., Everson, C. S., Mengistu, M. G., Clulow, A. D., and Bastiaanssen, W. G. M.: A new method to measure Bowen ratios using high-resolution vertical dry and wet bulb temperature profiles, Hydrol. Earth Syst. Sci., 18, 2021–2032, https://doi.org/10.5194/hess-18-2021-2014, 2014. a
Finnigan, J.: Turbulence in Plant Canopies, Annu. Rev. Fluid Mech.,
32, 519–571, https://doi.org/10.1146/annurev.fluid.32.1.519, 2000. a
Finnigan, J. J.: Turbulence In Waving Wheat: I. Mean Statistics And Honami,
Bound.-Lay. Meteorol., 16, 181–211, https://doi.org/10.1007/BF02350511, 1979. a
Foken, T.: 50 Years of the Monin–Obukhov Similarity Theory, Bound.-Lay.
Meteorol., 119, 431–447, https://doi.org/10.1007/s10546-006-9048-6, 2006. a
Garratt, J. R.: Surface influence upon vertical profiles in the atmospheric
near-surface layer, Q. J. Roy. Meteorol. Soc.,
106, 803–819, https://doi.org/10.1002/qj.49710645011, 1980. a, b
Gifford, F. A.: Turbulent diffusion-typing schemes: a review, Nucl. Saf., 17, 68–86, 1976. a
Gryning, S.-E., Batchvarova, E., Brümmer, B., Jørgensen, H., and Larsen,
S.: On the extension of the wind profile over homogeneous terrain beyond the
surface boundary layer, Bound.-Lay. Meteorol., 124, 251–268,
https://doi.org/10.1007/s10546-007-9166-9, 2007. a
Hald, C., Zeeman, M., Laux, P., Mauder, M., and Kunstmann, H.: Large-eddy
simulations of real world episodes in complex terrain based on
ERA-Reanalysis and validated by ground-based remote sensing data, Mon.
Weather Rev., 147, 4325–4343, https://doi.org/10.1175/mwr-d-19-0016.1, 2019. a
Hausner, M. B., Suárez, F., Glander, K. E., Giesen, N. v. d., Selker,
J. S., and Tyler, S. W.: Calibrating Single-Ended Fiber-Optic Raman Spectra
Distributed Temperature Sensing Data, Sensors, 11, 10859–10879,
https://doi.org/10.3390/s111110859, 2011. a, b
Higgins, C. W., Katul, G. G., Froidevaux, M., Simeonov, V., and Parlange,
M. B.: Are atmospheric surface layer flows ergodic?, Geophys. Res.
Lett., 40, 3342–3346, https://doi.org/10.1002/grl.50642, 2013. a
Howell, J. and Mahrt, L.: Multiresolution Flux Decomposition, Bound.-Lay.
Meteorol., 83, 117–137, https://doi.org/10.1023/A:1000210427798, 1997. a
Hoyer, S. and Hamman, J.: xarray: N-D labeled arrays and datasets in
Python, Journal of Open Research Software, 5, p. 10, https://doi.org/10.5334/jors.148, 2017. a
Ibraim, E., Wolf, B., Harris, E., Gasche, R., Wei, J., Yu, L., Kiese, R., Eggleston, S., Butterbach-Bahl, K., Zeeman, M., Tuzson, B., Emmenegger, L., Six, J., Henne, S., and Mohn, J.: Attribution of N2O sources in a grassland soil with laser spectroscopy based isotopocule analysis, Biogeosciences, 16, 3247–3266, https://doi.org/10.5194/bg-16-3247-2019, 2019. a
Inagaki, A., Kanda, M., Onomura, S., and Kumemura, H.: Thermal Image
Velocimetry, Bound.-Lay. Meteorol., 149, 1–18,
https://doi.org/10.1007/s10546-013-9832-z, 2013. a
Jones, H. G.: Use of thermography for quantitative studies of spatial and
temporal variation of stomatal conductance over leaf surfaces, Plant Cell
Environ., 22, 1043–1055, https://doi.org/10.1046/j.1365-3040.1999.00468.x,
1999. a
Kaimal, J. C. and Finnigan, J. J.: Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, USA, 289 pp., 1994. a
Kang, Y., Belušić, D., and Smith-Miles, K.: Detecting and Classifying
Events in Noisy Time Series, J. Atmos. Sci., 71,
1090–1104, https://doi.org/10.1175/JAS-D-13-0182.1, 2013. a, b
Kang, Y., Belušić, D., and Smith-Miles, K.: Classes of structures in
the stable atmospheric boundary layer, Q. J. Roy. Meteor. Soc., 141,
2057–2069, https://doi.org/10.1002/qj.2501, 2015. a, b, c, d
Katul, G. G., Schieldge, J., Hsieh, C.-I., and Vidakovic, B.: Skin temperature perturbations induced by surface layer turbulence above a grass surface, Water Resour. Res., 34, 1265–1274, https://doi.org/10.1029/98wr00293, 1998. a
Katurji, M. and Zawar-Reza, P.: Forward-Looking Infrared Cameras for
Micrometeorological Applications within Vineyards, Sensors, 16, 1518,
https://doi.org/10.3390/s16091518, 2016. a
Keller, C. A., Huwald, H., Vollmer, M. K., Wenger, A., Hill, M., Parlange, M. B., and Reimann, S.: Fiber optic distributed temperature sensing for the determination of the nocturnal atmospheric boundary layer height, Atmos. Meas. Tech., 4, 143–149, https://doi.org/10.5194/amt-4-143-2011, 2011. a
Kiese, R., Fersch, B., Baessler, C., Brosy, C., Butterbach-Bahl, K., Chwala,
C., Dannenmann, M., Fu, J., Gasche, R., Grote, R., Jahn, C., Klatt, J.,
Kunstmann, H., Mauder, M., Rödiger, T., Smiatek, G., Soltani, M.,
Steinbrecher, R., Völksch, I., Werhahn, J., Wolf, B., Zeeman, M., and
Schmid, H.: The TERENO Pre-Alpine Observatory: Integrating Meteorological,
Hydrological, and Biogeochemical Measurements and Modeling, Vadose Zone
J., 17, 180060, https://doi.org/10.2136/vzj2018.03.0060, 2018. a
Kline, S. J., Reynolds, W. C., Schraub, F. A., and Runstadler, P. W.: The
structure of turbulent boundary layers, J. Fluid Mech., 30,
741–773, https://doi.org/10.1017/s0022112067001740, 1967. a
Klosterhalfen, A., Graf, A., Brüggemann, N., Drüe, C., Esser, O., González-Dugo, M. P., Heinemann, G., Jacobs, C. M. J., Mauder, M., Moene, A. F., Ney, P., Pütz, T., Rebmann, C., Ramos Rodríguez, M., Scanlon, T. M., Schmidt, M., Steinbrecher, R., Thomas, C. K., Valler, V., Zeeman, M. J., and Vereecken, H.: Source partitioning of H2O and CO2 fluxes based on high-frequency eddy covariance data: a comparison between study sites, Biogeosciences, 16, 1111–1132, https://doi.org/10.5194/bg-16-1111-2019, 2019. a
Knauer, J., Zaehle, S., Medlyn, B. E., Reichstein, M., Williams, C. A.,
Migliavacca, M., Kauwe, M. G. D., Werner, C., Keitel, C., Kolari, P.,
Limousin, J.-M., and Linderson, M.-L.: Towards physiologically meaningful
water-use efficiency estimates from eddy covariance data, Glob. Change
Biol., 24, 694–710, https://doi.org/10.1111/gcb.13893, 2017. a
Kunz, M., Lavric, J. V., Gasche, R., Gerbig, C., Grant, R. H., Koch, F.-T., Schumacher, M., Wolf, B., and Zeeman, M.: Surface flux estimates derived from UAS-based mole fraction measurements by means of a nocturnal boundary layer budget approach, Atmos. Meas. Tech., 13, 1671–1692, https://doi.org/10.5194/amt-13-1671-2020, 2020. a
Kustas, W. and Anderson, M.: Advances in thermal infrared remote sensing for
land surface modeling, Agr. Forest Meteorol., 149, 2071–2081,
https://doi.org/10.1016/j.agrformet.2009.05.016, 2009. a
Lapo, K., Freundorfer, A., Pfister, L., Schneider, J., Selker, J., and Thomas, C.: Distributed observations of wind direction using microstructures attached to actively heated fiber-optic cables, Atmos. Meas. Tech., 13, 1563–1573, https://doi.org/10.5194/amt-13-1563-2020, 2020. a
Lee, X., Massman, W., and Law, B. (Eds.): Handbook of Micrometeorology, Springer Netherlands, https://doi.org/10.1007/1-4020-2265-4, 2005. a
Li, D., Bou-Zeid, E., and De Bruin, H. A. R.: Monin–Obukhov Similarity
Functions for the Structure Parameters of Temperature and Humidity,
Bound.-Lay. Meteorol., 145, 45–67, https://doi.org/10.1007/s10546-011-9660-y,
2012. a
Mahrt, L.: The bulk aerodynamic formulation over heterogeneous surfaces,
Bound.-Lay. Meteorol., 78, 87–119, https://doi.org/10.1007/bf00122488, 1996. a
Mahrt, L.: Computing turbulent fluxes near the surface: Needed improvements,
Agr. Forest Meteorol., 150, 501–509,
https://doi.org/10.1016/j.agrformet.2010.01.015, 2010. a
Pasquill, F.: The Estimation of The Dispersion of Windborne Material, Met.
Mag., 90, 33–49, 1961. a
Pasquill, F. and Smith, F. B.: The physical and meteorological basis for the
estimation of the dispersion of windborne material, in: Proceedings of the
Second International Clean Air Congress, edited by: Englund, H. and Beery, W., Academic Press, 1067–1072, https://doi.org/10.1016/B978-0-12-239450-8.50190-8, 1971. a
Patton, E. G., Sullivan, P. P., Shaw, R. H., Finnigan, J. J., and Weil, J. C.: Atmospheric Stability Influences on Coupled Boundary Layer and Canopy
Turbulence, J. Atmos. Sci., 73, 1621–1647,
https://doi.org/10.1175/jas-d-15-0068.1, 2016. a
Paw U, K. T., Brunet, Y., Collineau, S., Shaw, R. H., Maitani, T., Qiu, J.,
and Hipps, L.: On coherent structures in turbulence above and within
agricultural plant canopies, Agr. Forest Meteorol., 61, 55–68,
https://doi.org/10.1016/0168-1923(92)90025-Y, 1992. a
Petrides, A. C., Huff, J., Arik, A., van de Giesen, N., Kennedy, A. M., Thomas, C. K., and Selker, J. S.: Shade estimation over streams using distributed temperature sensing, Water Resour. Res., 47, W07601,
https://doi.org/10.1029/2010WR009482, 2011. a
Plotly Technologies Inc.: Collaborative data science,
available at: https://plot.ly (last access: 14 April 2021), 2020. a
Poulos, G. S., Blumen, W., Fritts, D. C., Lundquist, J. K., Sun, J., Burns,
S. P., Nappo, C., Banta, R., Newsom, R., Cuxart, J., Terradellas, E.,
Balsley, B., and Jensen, M.: CASES-99: A Comprehensive Investigation of the
Stable Nocturnal Boundary Layer, B. Am. Meteorol. Soc., 83, 555–581, https://doi.org/10.1175/1520-0477(2002)083<0555:caciot>2.3.co;2,
2002. a
Raupach, M. R.: Anomalies in Flux-Gradient Relationships Over Forest,
Bound.-Lay. Meteorol., 16, 467–486, https://doi.org/10.1007/bf03335385, 1979. a
Raupach, M. R. and Finnigan, J. J.: Scale issues in boundary-layer meteorology: Surface energy balances in heterogeneous terrain, Hydrol. Process., 9, 589–612, https://doi.org/10.1002/hyp.3360090509, 1995. a
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria,
available at: https://www.R-project.org/, last access: 20 December 2018. a
Sarkar, D.: Lattice: Multivariate Data Visualization with R, Springer, New
York, USA, ISBN 978-0-387-75968-5, 2008. a
Sayde, C., Thomas, C. K., Wagner, J., and Selker, J.: High-resolution wind
speed measurements using actively heated fiber optics, Geophys. Res.
Lett., 42, 10064–10073, https://doi.org/10.1002/2015gl066729, 2015. a
Schilperoort, B., Coenders-Gerrits, M., Luxemburg, W., Jiménez Rodríguez, C., Cisneros Vaca, C., and Savenije, H.: Technical note: Using distributed temperature sensing for Bowen ratio evaporation measurements, Hydrol. Earth Syst. Sci., 22, 819–830, https://doi.org/10.5194/hess-22-819-2018, 2018. a
Schmid, H. P.: Source areas for scalars and scalar fluxes, Bound.-Lay.
Meteorol., 67, 293–318, https://doi.org/10.1007/bf00713146, 1994. a
Selker, J. S., Thévenaz, L., Huwald, H., Mallet, A., Luxemburg, W., van de Giesen, N., Stejskal, M., Zeman, J., Westhoff, M., and Parlange, M. B.: Distributed fiber-optic temperature sensing for hydrologic systems, Water Resour. Res., 42, W12202, https://doi.org/10.1029/2006WR005326, 2006. a
Shaw, R. H., Brunet, Y., Finnigan, J. J., and Raupach, M. R.: A wind tunnel
study of air flow in waving wheat: Two-point velocity statistics,
Bound.-Lay. Meteorol., 76, 349–376, https://doi.org/10.1007/bf00709238, 1995. a
Sun, J., Massman, W., and Grantz, D. A.: Aerodynamic Variables in the Bulk
Formulation of Turbulent Fluxes, Bound.-Lay. Meteorol., 91, 109–125,
https://doi.org/10.1023/a:1001838832436, 1999. a
Thomas, C., Kennedy, A., Selker, J., Moretti, A., Schroth, M., Smoot, A.,
Tufillaro, N., and Zeeman, M.: High-resolution fibre-optic temperature
sensing: a new tool to study the two-dimensional structure of atmospheric
surface-layer flow, Bound.-Lay. Meteorol., 142, 177–192,
https://doi.org/10.1007/s10546-011-9672-7, 2012. a, b
Tyler, S. W., Selker, J. S., Hausner, M. B., Hatch, C. E., Torgersen, T.,
Thodal, C. E., and Schladow, S. G.: Environmental temperature sensing using
Raman spectra DTS fiber-optic methods, Water Resour. Res., 45, W00D23,
https://doi.org/10.1029/2008WR007052, 2009. a
van Ramshorst, J. G. V., Coenders-Gerrits, M., Schilperoort, B., van de Wiel, B. J. H., Izett, J. G., Selker, J. S., Higgins, C. W., Savenije, H. H. G., and van de Giesen, N. C.: Revisiting wind speed measurements using actively heated fiber optics: a wind tunnel study, Atmos. Meas. Tech., 13, 5423–5439, https://doi.org/10.5194/amt-13-5423-2020, 2020. a
Vickers, D. and Mahrt, L.: The Cospectral Gap and Turbulent Flux Calculations, J. Atmos. Ocean. Tech., 20, 660–672,
https://doi.org/10.1175/1520-0426(2003)20<660:TCGATF>2.0.CO;2,
2003. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng,
Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors:
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,
Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Vollmer, M. and Möllmann, K.-P.: Infrared Thermal Imaging, Wiley-VCH Verlag
GmbH & Co. KGaA, https://doi.org/10.1002/9783527630868, 2010. a
Wang, X., Smith, K., and Hyndman, R.: Characteristic-Based Clustering for Time Series Data, Data Min. Knowl. Disc., 13, 335–364,
https://doi.org/10.1007/s10618-005-0039-x, 2006. a
Werle, P.: Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence, Appl. Phys. B, 102, 313–329, https://doi.org/10.1007/s00340-010-4165-9, 2010. a
Wickham, H., François, R., Henry, L., and Müller, K.: dplyr: A Grammar of
Data Manipulation, r package version 1.0.2, available at: https://CRAN.R-project.org/package=dplyr, last access: 17 December 2020. a
Williams, A. G. and Hacker, J. M.: The composite shape and structure of
coherent eddies in the convective boundary layer, Bound.-Lay. Meteorol.,
61, 213–245, https://doi.org/10.1007/bf02042933, 1992. a
Wolf, B., Chwala, C., Fersch, B., Garvelmann, J., Junkermann, W., Zeeman,
M. J., Angerer, A., Adler, B., Beck, C., Brosy, C., Brugger, P., Emeis, S.,
Dannenmann, M., Roo, F. D., Diaz-Pines, E., Haas, E., Hagen, M., Hajnsek, I.,
Jacobeit, J., Jagdhuber, T., Kalthoff, N., Kiese, R., Kunstmann, H., Kosak,
O., Krieg, R., Malchow, C., Mauder, M., Merz, R., Notarnicola, C., Philipp,
A., Reif, W., Reineke, S., Rödiger, T., Ruehr, N., Schäfer, K., Schrön,
M., Senatore, A., Shupe, H., Völksch, I., Wanninger, C., Zacharias, S., and
Schmid, H. P.: The SCALEX Campaign: Scale-Crossing Land Surface
and Boundary Layer Processes in the TERENO-preAlpine Observatory,
B. Am. Meteorol. Soc., 98, 1217–1234,
https://doi.org/10.1175/BAMS-D-15-00277.1, 2017. a
Wolz, K.: Räumlich verteilte Temperaturmessungen in der Mikrometeorologie,
Bachelor's thesis, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany, 2016. a
Woodward, J.: Estimating the flammable mass of a vapor cloud, Center for
Chemical Process Safety of the American Institute of Chemical Engineers, New
York, USA, 1998. a
Zacharias, S., Bogena, H., Samaniego, L., Mauder, M., Fuss, R., Pütz, T.,
Frenzel, M., Schwank, M., Baessler, C., Butterbach-Bahl, K., Bens, O., Borg,
E., Brauer, A., Dietrich, P., Hajnsek, I., Helle, G., Kiese, R., Kunstmann,
H., Klotz, S., Munch, J. C., Papen, H., Priesack, E., Schmid, H. P.,
Steinbrecher, R., Rosenbaum, U., Teutsch, G., and Vereecken, H.: A Network
of Terrestrial Environmental Observatories in Germany, Vadose Zone
J., 10, 955–973, https://doi.org/10.2136/vzj2010.0139, 2011. a
Zeeman, M.: Meteorology, environment and surface flux data for grassland sites in Germany, Zenodo [data set], https://doi.org/10.5281/zenodo.4267888, 2020a. a
Zeeman, M.: Management and plant physiology data for grassland sites in Germany, Zenodo [data set], https://doi.org/10.5281/zenodo.4267811, 2020b. a
Zeeman, M.: Turbulence Interactions: animation of high-resolution observations of wind and temperature near the surface, TIB [video], https://doi.org/10.5446/50229, 2020c. a
Zeeman, M.: ScaleX GitLab: code and data documentation dedicated to the ScaleX campaings, KIT-Campus Alpin [code], available at: https://gitlab.imk-ifu.kit.edu/scalex/ (last access: 15 January 2021), 2020d. a
Zeeman, M.: Temperature and wind field data for Fendt, Germany, Zenodo [data set], https://doi.org/10.5281/zenodo.4061242, 2021. a
Zeeman, M. J., Selker, J. S., and Thomas, C. K.: Near-Surface Motion in the
Nocturnal, Stable Boundary Layer Observed with Fibre-Optic Distributed
Temperature Sensing, Bound.-Lay. Meteorol., 154, 189–205,
https://doi.org/10.1007/s10546-014-9972-9, 2015. a, b, c, d
Zeeman, M. J., Mauder, M., Steinbrecher, R., Heidbach, K., Eckart, E., and
Schmid, H. P.: Reduced snow cover affects productivity of upland temperate
grasslands, Agr. Forest Meteorol., 232, 514–526,
https://doi.org/10.1016/j.agrformet.2016.09.002, 2017. a
Zeeman, M. J., Shupe, H., Baessler, C., and Ruehr, N. K.: Productivity and
vegetation structure of three differently managed temperate grasslands,
Agr. Ecosyst. Environ., 270-271, 129–148,
https://doi.org/10.1016/j.agee.2018.10.003, 2019. a
Zhao, P., Hammerle, A., Zeeman, M., and Wohlfahrt, G.: On the calculation of
daytime CO2 fluxes measured by automated closed transparent
chambers, Agr. Forest Meteorol., 263, 267–275,
https://doi.org/10.1016/j.agrformet.2018.08.022, 2018. a
Short summary
Understanding turbulence near the surface is important for many applications. In this work, methods for observing and analysing temperature structures in a near-surface volume were explored. Experiments were conducted to identify modes of organised motion. These help explain interactions between the vegetation and the atmosphere that are not currently well understood. Techniques used include fibre-optic sensing, thermal infrared imaging, signal decomposition, and machine learning.
Understanding turbulence near the surface is important for many applications. In this work,...