Articles | Volume 14, issue 12
https://doi.org/10.5194/amt-14-7821-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-14-7821-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global evaluation of the precipitable-water-vapor product from MERSI-II (Medium Resolution Spectral Imager) on board the Fengyun-3D satellite
Wengang Zhang
Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China
Three Gorges National Climatic Station, Yichang 443099, China
Ling Wang
CORRESPONDING AUTHOR
National Satellite Meteorological Center, China Meteorological
Administration, Beijing 100081, China
Yang Yu
Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China
Guirong Xu
Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China
Xiuqing Hu
National Satellite Meteorological Center, China Meteorological
Administration, Beijing 100081, China
Zhikang Fu
Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China
Chunguang Cui
Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China
Related authors
No articles found.
Zhenhao Wu, Jian Shang, Chunguan Cui, Peng Zhang, Songyan Gu, Lin Chen, and Yunfei Fu
Earth Syst. Sci. Data, 17, 5137–5148, https://doi.org/10.5194/essd-17-5137-2025, https://doi.org/10.5194/essd-17-5137-2025, 2025
Short summary
Short summary
We have established a new dataset of rain cell precipitation parameters and visible-infrared and microwave signals by combining multi-instrument observation data from the Tropical Rainfall Measuring Mission (TRMM). The purpose of this dataset is to promote the three-dimensional studies of rain cell precipitation systems and to reveal the spatial and temporal variations in their scale, morphology, and intensity.
Yu Zheng, Huizheng Che, Yupeng Wang, Xiangao Xia, Xiuqing Hu, Xiaochun Zhang, Jun Zhu, Jibiao Zhu, Hujia Zhao, Lei Li, Ke Gui, and Xiaoye Zhang
Atmos. Meas. Tech., 15, 2139–2158, https://doi.org/10.5194/amt-15-2139-2022, https://doi.org/10.5194/amt-15-2139-2022, 2022
Short summary
Short summary
Ground-based observations of aerosols and aerosol data verification is important for satellite and climate model modification. Here we present an evaluation of aerosol microphysical, optical and radiative properties measured using a multiwavelength photometer with a highly integrated design and smart control performance. The validation of this product is discussed in detail using AERONET as a reference. This work contributes to reducing AOD uncertainties in China and combating climate change.
Yungang Wang, Liping Fu, Fang Jiang, Xiuqing Hu, Chengbao Liu, Xiaoxin Zhang, Jiawei Li, Zhipeng Ren, Fei He, Lingfeng Sun, Ling Sun, Zhongdong Yang, Peng Zhang, Jingsong Wang, and Tian Mao
Atmos. Meas. Tech., 15, 1577–1586, https://doi.org/10.5194/amt-15-1577-2022, https://doi.org/10.5194/amt-15-1577-2022, 2022
Short summary
Short summary
Far-ultraviolet (FUV) airglow radiation is particularly well suited for space-based remote sensing. The Ionospheric Photometer (IPM) instrument carried aboard the Feng Yun 3-D satellite measures the spectral radiance of the Earth FUV airglow. IPM is a tiny, highly sensitive, and robust remote sensing instrument. Initial results demonstrate that the performance of IPM meets the designed requirement and therefore can be used to study the thermosphere and ionosphere in the future.
Cited articles
Adeyemi, B. and Schulz, J.: Analysis of water vapor over nigeria using
radiosonde and satellite data, J. Appl. Meteor. Climatol, 51, 1855–1866,
https://doi.org/10.1175/JAMC-D-11-0119.1, 2012.
Alexandrov, M. D., Schmid, B., Turner, D. D., Cairns, B., Oinas, V., Lacis,
A. A., Gutman, S. I., Westwater, E. R., Smirnov, A., and Eilers J.: Columnar
water vapor retrievals from multifilter rotating shadow band radiometer
data, J. Geophys. Res.-Atmos., 114, D02306,
https://doi.org/10.1029/2008JD010543, 2009.
Alraddawi, D., Sarkissian, A., Keckhut, P., Bock, O., Noël, S., Bekki, S., Irbah, A., Meftah, M., and Claud, C.: Comparison of total water vapour content in the Arctic derived from GNSS, AIRS, MODIS and SCIAMACHY, Atmos. Meas. Tech., 11, 2949–2965, https://doi.org/10.5194/amt-11-2949-2018, 2018.
Antón, M., Loyola, D., Román, R., and Vömel, H.: Validation of GOME-2/MetOp-A total water vapour column using reference radiosonde data from the GRUAN network, Atmos. Meas. Tech., 8, 1135–1145, https://doi.org/10.5194/amt-8-1135-2015, 2015.
Bennartz, R. and Fischer, J.: Retrieval of columnar water vapour over land
from back-scattered solar radiation using the Medium Resolution Imaging
Spectrometer (MERIS), Remote Sens. Environ., 78, 274–283,
https://doi.org/10.1016/S0034-4257(01)00218-8, 2001.
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and
Ware, R. H.: GPS meteorology: Remote sensing of atmospheric water vapor
using the Global Positioning System, J. Geophys. Res.-Atmos., 97,
15787–15801, https://doi.org/10.1029/92JD01517, 1992.
Boukabara, S., Garrett, K., and Chen, W.: Global Coverage of Total
Precipitable Water Using a Microwave Variational Algorithm, IEEE T. Geosci.
Remote, 48, 3608–3621, https://doi.org/10.1109/TGRS.2010.2048035, 2010.
Che, H. Z., Gui, K., Chen, Q. L., Zheng, Y., Yu, J., Sun, T. Z., Zhang, X.
Y., and Shi, G. Y.: Calibration of the 936 nm water-vapor channel for the
China aerosol remote sensing NETwork (CARSNET) and the effect of the
retrieval water-vapor on aerosol optical property over Beijing, China,
Atmos. Pollut. Res., 7, 743–753,
https://doi.org/10.1016/j.apr.2016.04.003, 2016.
Chen, B. and Liu, Z.: Global water vapor variability and trend from the
latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde,
GPS, and microwave satellite, J. Geophys. Res.-Atmos., 121, 11442–11462,
https://doi.org/10.1002/2016JD024917, 2016.
Dessler, A. E. and Wong, S.: Estimates of the water vapor climate feedback
during El Niño–Southern Oscillation, J. Climate, 22, 6404–6412,
https://doi.org/10.1175/2009JCLI3052.1, 2009.
Durre, I., Williams Jr., C. N., Yin, X. G., and Vose, R. S.:
Radiosonde-based trends in precipitable water over the Northern Hemisphere:
An update, J. Geophys. Res.-Atmos., 114, D05112,
https://doi.org/10.1029/2008JD010989, 2009.
Durre, I., Yin, X., Vose, R. S., Applequist, S., and Arnfield, J.: Enhancing
the Data Coverage in the Integrated Global Radiosonde Archive, J. Atmos.
Ocean. Tech., 35, 1753–1770, https://doi.org/10.1175/JTECH-D-17-0223.1,
2018.
Gao, B. C. and Kaufman, Y. J.: Water vapor retrievals using Moderate
Resolution Imaging Spectroradiometer (MODIS) near-infrared channels, J.
Geophys. Res.-Atmos., 108, 4389, https://doi.org/10.1029/2002JD003023, 2003.
Held, I. M. and Soden, B. J.: Water vapor feedback and global warming, Annu.
Rev. Energy Environ., 25, 441–475,
https://doi.org/10.1146/annurev.energy.25.1.441, 2000.
Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer,
A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F.,
Jankowiak, I., and Smirnov, A.: AERONET – A federated instrument network and
data archive for aerosol characterization, Remote Sens. Environ., 66,
1–16, https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Ichoku, C., Chu, D. A., Mattoo, S., Kaufman, Y. J., Remer, L. A., Tanre, D., Slutsker, I., and Holben, B. N.: A spatio-temporal approach for global validation and analysis of MODIS aerosol products, Geophys. Res. Lett., 29, MOD1-1–MOD1-4, https://doi.org/10.1029/2001GL013206, 2002.
Kalakoski, N., Kujanpää, J., Sofieva, V., Tamminen, J., Grossi, M., and Valks, P.: Validation of GOME-2/Metop total column water vapour with ground-based and in situ measurements, Atmos. Meas. Tech., 9, 1533–1544, https://doi.org/10.5194/amt-9-1533-2016, 2016.
Kiehl, J. T. and Trenberth, K. E.: Earth's annual global mean energy budget,
B. Am. Meteorol. Soc., 78, 197–208,
https://doi.org/10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2,
1997.
Li, Z. H., Muller, J. P., Cross, P., Albert, P., Hewison, T., Watson, R.,
Fischer, J., and Bennartz, R.: Validation of MERIS near IR water vapour
retrievals using MWR and GPS measurements, MERIS user workshop, ESA ESRIN, 10–13 November 2003, Frascati, Italy, 2003.
Liu, H. L., Tang, S. H., Zhang, S. L., and Hu, J. Y.: Evaluation of MODIS
water vapour products over China using radiosonde data, Int. J. Remote
Sens., 36, 680–690, https://doi.org/10.1080/01431161.2014.999884, 2015.
Liu, J. M., Liang, H., Sun, Z. A., and Zhou, X. J.: Validation of the
Moderate-Resolution Imaging Spectroradiometer precipitable water vapor
product using measurements from GPS on the Tibetan Plateau, J. Geophys. Res.-Atmos., 111, D14103, https://doi.org/10.1029/2005JD007028, 2006.
Liu, Z. Z., Wong, M. S., Nichola, J., and Chan, P. W.: A multi-sensor study
of water vapour from radiosonde, MODIS and AERONET: a case study of Hong
Kong, Int. J. Climatol., 33, 109–120, https://doi.org/10.1002/joc.3412,
2013.
Lu, N.: Biases and abrupt shifts of monthly precipitable water from Terra
MODIS, Remote Sens., 11, 1315, https://doi.org/10.3390/rs11111315, 2019.
Lu, N., Qin, J., Yang, K., Gao, Y., Xu, X. D., and Koike, T.: On the use of
GPS measurements for Moderate Resolution Imaging Spectrometer precipitable
water vapor evaluation over southern Tibet, J. Geophys. Res.-Atmos., 116,
D23117, https://doi.org/10.1029/2011JD016160, 2011.
Martins, V. S., Lyapustin A., Wang, Y. J., Giles, D. M., Smirnov, A.,
Slutsker, I., and Korkin, S.: Global validation of columnar water vapor
derived from EOS MODIS-MAIAC algorithm against the ground-based AERONET
observations, Atmos. Res., 225, 181–192,
https://doi.org/10.1016/j.atmosres.2019.04.005, 2019.
Meng, X. C., Cheng, J., and Liang, S. L.: Estimating land surface temperature
from Feng Yun-3C/MERSI data using a new land surface emissivity scheme,
Remote Sens., 9, 1247, https://doi.org/10.3390/rs9121247, 2017.
National Aeronautics and Space Administration (NASA): Global AERONET data, available at: https://aeronet.gsfc.nasa.gov/data_push/V3/AOD/AOD_Level20_All_Points_V3.tar.gz, last access: 11 October 2020.
National Centers for Environmental Information (NCEI): IGRA data, available at: ftp://ftp.ncdc.noaa.gov/pub/data/igra, last access: 5 July 2021.
National Satellite Meteorological Center (NSMC): MERSI-II PWV product, available at: http://satellite.nsmc.org.cn/PortalSite/Data/Satellite.aspx, last access: 5 July 2021.
Naumann, A. K. and Kiemle, C.: The vertical structure and spatial variability of lower-tropospheric water vapor and clouds in the trades, Atmos. Chem. Phys., 20, 6129–6145, https://doi.org/10.5194/acp-20-6129-2020, 2020.
Pérez-Ramírez, D., Whiteman, D. N., Smirnov, A., Lyamani, H.,
Holben, B. N., Pinker, R., Andrade, M., and Alados-Arboledas, L.: Evaluation
of AERONET precipitable water vapor versus microwave radiometry, GPS, and
radiosondes at ARM site, J. Geophys. Res.-Atmos., 119, 9596–9613,
https://doi.org/10.1002/2014JD021730, 2014.
Pérez-Ramírez, D., Smirnov, A., Pinker, R. T., Petrenko, M.,
Román, R., Chen, W., Ichoku, C., Noël, S., Abad, G. G., Lyamani, H.,
and Holben, B. N.: Precipitable water vapor over oceans from the Maritime
Aerosol Network: Evaluation of global models and satellite products under
clear sky conditions, Atmos. Res., 215, 294–304,
https://doi.org/10.1016/j.atmosres.2018.09.007, 2019.
Prasad, A. K. and Singh, R. P.: Validation of MODIS Terra, AIRS, NCEP/DOE
AMIP-II Reanalysis-2, and AERONET Sun photometer derived integrated
precipitable water vapor using ground-based GPS receivers over India, J.
Geophys. Res.-Atmos., 114, D05107, https://doi.org/10.1029/2008JD011230,
2009.
Qin, J., Yang, K., Koike, T., Lu, H., Ma, Y. M., and Xu, X. D.: Evaluation of
AIRS precipitable water vapor against ground-based GPS measurements over the
Tibetan Plateau and its surroundings, J. Meteorol. Soc. Jpn., 90, 87–98,
https://doi.org/10.2151/jmsj.2012-C06, 2012.
Rakesh, V., Randhir, S., Pal, P. K., and Joshi, P. C.: Impacts of
satellite-observed winds and total precipitable water on WRF short-range
forecasts over the Indian region during the 2006 summer monsoon, Weather
Forecast., 24, 1706–1731, https://doi.org/10.1175/2009WAF2222242.1, 2009.
Román, R., Antón, M., Cachorro, V. E., Loyola, D., Ortiz de
Galisteo, J. P., de Frutos, A., and Romero-Campos, P. M.: Comparison of
total water vapor column from GOME-2 on MetOp-A against ground-based GPS
measurements at the Iberian Peninsula, Sci. Total Environ., 533, 317–328,
https://doi.org/10.1016/j.scitotenv.2015.06.124, 2015.
Sobrino, J. A., Juan, C. J., Cristian, M., and Guillem, S.: Evaluation of Terra/MODIS atmospheric profiles product (MOD07) over the Iberian Peninsula: a comparison with radiosonde stations, Int. J. Digit. Earth, 8, 1–13,
https://doi.org/10.1080/17538947.2014.936973, 2014.
Solbrig, J. E.: Thin cloud length scales using CALIPSO and CloudSat data,
MS thesis, Department of Atmospheric Sciences, Texas A&M University, San Antonio, Texas, USA, 62 pp., 2009.
Trenberth, K. E., Dai, A. G., Rasmussen, R. M., and Parsons, D. B.: The
changing character of precipitation, B. Am. Meteorol. Soc., 84,
1205–1218, https://doi.org/10.1175/BAMS-84-9-1205, 2003.
Turner, D. D., Lesht, B. M., Clough, S. A., Liljegren, J. C., Revercomb, H.
E., and Tobin, D. C.: Dry Bias and Variability in Vaisala RS80-H
Radiosondes: The ARM Experience, J. Atmos. Ocean. Tech., 20, 117–132,
https://doi.org/10.1175/1520-0426(2003)020<0117:DBAVIV>2.0.CO;2, 2003.
Van Malderen, R., Brenot, H., Pottiaux, E., Beirle, S., Hermans, C., De Mazière, M., Wagner, T., De Backer, H., and Bruyninx, C.: A multi-site intercomparison of integrated water vapour observations for climate change analysis, Atmos. Meas. Tech., 7, 2487–2512, https://doi.org/10.5194/amt-7-2487-2014, 2014.
Vaquero-Martínez, J., Antón, M., Ortiz de Galisteo, J. P.,
Cachorro, V. E., Costa, M. J., Román, R., and Bennouna, Y. S.:
Validation of MODIS integrated water vapor product against reference GPS
data at the Iberian Peninsula, Int. J. Appl. Earth Obs., 63, 214–221,
https://doi.org/10.1016/j.jag.2017.07.008, 2017.
Wang, L., Hu, X. Q., Xu, N., and Chen, L.: Water vapor retrievals from
near-infrared channels of the advanced Medium Resolution Spectral Imager
instrument onboard the Fengyun-3D satellite, Adv. Atmos. Sci., 38, 1351–1366, https://doi.org/10.1007/s00376-020-0174-8, 2021.
Wang, J. H., Zhang, L. Y., Dai, A. G., Hove, T. V., and Baelen, J. V.: A
near-global, 2-hourly data set of atmospheric precipitable water from
ground-based GPS measurements, J. Geophys. Res.-Atmos., 112, D11107,
https://doi.org/10.1029/2006JD007529, 2007.
Wang, J. H., Dai, A. G., and Mears, C.: Global water vapor trend from1988 to
2011 and its diurnal asymmetry based on GPS, radiosonde, and microwave
satellite measurements, J. Climate, 29, 5205–5222,
https://doi.org/10.1175/JCLI-D-15-0485.1, 2016.
Wang, S. M., Xu, T. H., Nie, W. F., Jiang, C. H., Yang, Y. G., Fang, Z. L.,
Li, M. W., and Zhang Z.: Evaluation of precipitable water vapor from five
reanalysis products with ground-based GNSS observations, Remote Sens.,
12, 1817, https://doi.org/10.3390/rs12111817, 2020.
Westwater, E. R.: The accuracy of water vapor and cloud liquid determination
by dual-frequency ground-based microwave radiometry, Radio Sci., 13,
677–685, https://doi.org/10.1029/RS013i004p00677, 1978.
Wu, R. H., Zhang, P., Xu, N., Hu, X. Q., Chen, L., Zhang, L., and Yang, Z.
D.: FY-3D MERSI on-orbit radiometric calibration from the lunar view,
Sensors, 20, 4690, https://doi.org/10.3390/s20174690, 2020.
Wu, Z., Liu, Y., Liu, Y., Wang, J., He, X., Xu, W., Ge, M., and Schuh, H.: Validating HY-2A CMR precipitable water vapor using ground-based and shipborne GNSS observations, Atmos. Meas. Tech., 13, 4963–4972, https://doi.org/10.5194/amt-13-4963-2020, 2020.
Xu, N., Niu, X. H., Hu, X. Q., Wang, X. H., Wu, R. H., Chen, S. S., Chen,
L., Sun, L., Ding, L., Yang, Z. D., and Zhang, P.: Prelaunch calibration and
radiometric performance of the advanced MERSI II on FengYun-3D, IEEE T.
Geosci. Remote, 56, 4866–4875, https://doi.org/10.1109/TGRS.2018.2841827,
2018.
Yang, Z. D., Zhang, P, Gu, S. Y.,Hu, X. Q.,Tang, S. H.,Yang, L. K., Xu, N.,
Zhen, Z. J., Wang L., Wu, Q., Dou, F. L., Liu, R. X., Wu, X., Zhu, L.,
Zhang, L. Y., Wang, S. J., Sun, Y. Q., and Bai, W. H.: Capability of
Fengyun-3D satellite in earth system observation, J. Meteorol. Res.-PRC.,
33, 1113–1130, https://doi.org/10.1007/s13351-019-9063-4, 2019.
Zhang, F. Z., Barriot, J.-P., Xu, G. C., and Yeh, T.-K.: Metrology
assessment of the accuracy of precipitable water vapor estimates from GPS
data acquisition in tropical areas: the Tahiti case, Remote Sens., 10,
758, https://doi.org/10.3390/rs10050758, 2018.
Zhang, J. Q., Chen, H. B., Li, Z. Q., Fan, X. H., Peng, L., Yu, Y., and
Cribb, M.: Analysis of cloud layer structure in Shouxian, China using RS92
radiosonde aided by 95 GHz cloud radar, J. Geophys. Res.-Atmos., 115,
D00K30, https://doi.org/10.1029/2010JD014030, 2010.
Zhang, W.: data-wengang20211109, Zenodo [data set], https://doi.org/10.5281/zenodo.5656797, 2021.
Zhang, W. G., Xu, G. R., Wan, R., He, W. H., and Feng, G. L.: Analysis of
the characteristic of liquid water and water vapor detected by ground-based
microwave radiometer, Torrential Rain and Disasters, 34, 367–374, 2015 (in Chinese with English abstract).
Zhao, T. B., Dai, A. G., and Wang, J. H.: Trends in tropo-spheric humidity
from 1970 to 2008 over China from a homogenized radiosonde dataset, J.
Climate, 25, 4549–4567, https://doi.org/10.1175/jcli-d-11-00557.1, 2012.
Short summary
Global precipitable water vapor (PWV) derived from MERSI-II (Medium Resolution Spectral Imager) is compared with PWV from the Integrated Global Radiosonde Archive (IGRA). Our results show a good agreement between PWV from MERSI-II and IGRA and that MERSI-II PWV is slightly underestimated on the whole, especially in summer. The bias between MERSI-II and IGRA grows with a larger spatial distance between the footprint of the satellite and the IGRA station, as well as increasing PWV.
Global precipitable water vapor (PWV) derived from MERSI-II (Medium Resolution Spectral Imager)...