Articles | Volume 15, issue 5
https://doi.org/10.5194/amt-15-1563-2022
https://doi.org/10.5194/amt-15-1563-2022
Research article
 | 
18 Mar 2022
Research article |  | 18 Mar 2022

Atmospheric precipitable water vapor and its correlation with clear-sky infrared temperature observations

Vicki Kelsey, Spencer Riley, and Kenneth Minschwaner

Related authors

Orphaned oil and gas well methane emission rates quantified using Gaussian plume inversions of ambient observations
Emily Follansbee, James E. Lee, Mohit L. Dubey, Jonathan F. Dooley, Curtis Shuck, Ken Minschwaner, Andre Santos, Sebastien C. Biraud, and Manvendra K. Dubey
Atmos. Meas. Tech., 18, 4527–4542, https://doi.org/10.5194/amt-18-4527-2025,https://doi.org/10.5194/amt-18-4527-2025, 2025
Short summary
A new aerial approach for quantifying and attributing methane emissions: implementation and validation
Jonathan F. Dooley, Kenneth Minschwaner, Manvendra K. Dubey, Sahar H. El Abbadi, Evan D. Sherwin, Aaron G. Meyer, Emily Follansbee, and James E. Lee
Atmos. Meas. Tech., 17, 5091–5111, https://doi.org/10.5194/amt-17-5091-2024,https://doi.org/10.5194/amt-17-5091-2024, 2024
Short summary

Cited articles

Anderson, G. P., Clough, S. A., Kneizys, F. X., Chetwynd, J. H., and Shettle, E. P.: AFGL atmospheric constituent profiles (0–120 km), Air Force Phillips Lab., Hansom Air Force Base, Mass., Tech. rep. AFGL-TR-86-0110, https://apps.dtic.mil/sti/pdfs/ADA175173.pdf (last access: 1 March 2022), 1986. a
Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., and van den Bosch, J.: MODTRAN6: a major upgrade of the MODTRAN radiative transfer code, in: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, edited by Velez-Reyes, M. and Kruse, F. A., Proc. SPIE, 9088, 113–119, https://doi.org/10.1117/12.2050433, 2014. a
Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R. A., Rocken, C., and Ware, R. H.: GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water, J. Appl. Meteorol. Clim., 33, 379–386, https://doi.org/10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2, 1994. a
Burroughs, W. J.: The Water Dimer: A Meteorologically Important Molecular Species, Weather, 34, 233–237, https://doi.org/10.1002/j.1477-8696.1979.tb05335.x, 1979. a
Chen, B., Dai, W., Liu, Z., Wu, L., Kuang, C., and Ao, M.: Constructing a precipitable water vapor map from regional GNSS network observations without collocated meteorological data for weather forecasting, Atmos. Meas. Tech., 11, 5153–5166, https://doi.org/10.5194/amt-11-5153-2018, 2018. a
Download
Short summary
In the interior western USA there are distances of hundreds of kilometers between weather balloon launch sites for weather forecasting. Satellite coverage can also be sparse or with poor resolution. Using infrared thermometers, clear-sky temperatures were collected and compared with data from weather balloons. A correlation between clear-sky temperatures and precipitable water measurements from weather balloons was found. This means that citizen scientists can collect data.
Share