Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., and van den Bosch,
J.: MODTRAN6: a major upgrade of the MODTRAN radiative transfer code, in:
Algorithms and Technologies for Multispectral, Hyperspectral, and
Ultraspectral Imagery XX, edited by Velez-Reyes, M. and Kruse, F. A., Proc. SPIE, 9088, 113–119,
https://doi.org/10.1117/12.2050433, 2014.
a
FLIR Systems Inc.: Technical Data FLIR i3, FLIR Systems Inc., 27700 SW
Parkway Ave., Wilsonville, Oregon, USA, Technical Manual, 2012. a
Gradinarsky, L., Johansson, J., Bouma, H., Scherneck, H.-G., and Elgered, G.:
Climate monitoring using GPS, Phys. Chem. Earth Pt. A/B/C, 27, 335–340,
https://doi.org/10.1016/S1474-7065(02)00009-8, 2002.
a
Guan, J.-P., Yin, Y.-T., Zhang, L.-F., Wang, J.-N., and Zhang, M.-Y.:
Comparison Analysis of Total Precipitable Water of Satellite-Borne Microwave
Radiometer Retrievals and Island Radiosondes, Atmosphere, 10, 7,
https://doi.org/10.3390/atmos10070390, 2019.
a
Harbor Freight Tools: AMES Instruments Infrared Thermometer, Harbor Freight
Tools, 3491 Mission Oaks Blvd, Calabasas, California, USA, Technical Manual, 2017.
a,
b
Hogg, D. C., Guiraud, F. O., Snider, J. B., Decker, M. T., and Westwater,
E. R.: A Steerable Dual-Channel Microwave Radiometer for Measurement of Water
Vapor and Liquid in the Troposphere, J. Appl. Meteorol. Clim., 22,
789–806,
https://doi.org/10.1175/1520-0450(1983)022<0789:ASDCMR>2.0.CO;2, 1983.
a,
b
Holben, B., Eck, T., Slutsker, I., Tanré, D., Buis, J., Setzer, A., Vermote,
E., Reagan, J., Kaufman, Y., Nakajima, T., Lavenu, F., Jankowiak, I., and
Smirnov, A.: AERONET – A Federated Instrument Network and Data Archive for
Aerosol Characterization, Remote Sens. Environ., 66, 1–16,
https://doi.org/10.1016/S0034-4257(98)00031-5,
1998.
a,
b
Holben, B. N., Tanré, D., Smirnov, A., Eck, T. F., Slutsker, I., Abuhassan,
N., Newcomb, W. W., Schafer, J. S., Chatenet, B., Lavenu, F., Kaufman, Y. J.,
Castle, J. V., Setzer, A., Markham, B., Clark, D., Frouin, R., Halthore, R.,
Karneli, A., O'Neill, N. T., Pietras, C., Pinker, R. T., Voss, K., and
Zibordi, G.: An emerging ground-based aerosol climatology: Aerosol optical
depth from AERONET, J. Geophys. Res.-Atmos., 106,
12067–12097,
https://doi.org/10.1029/2001JD900014,
2001.
a
Li, Z., Muller, J.-P., and Cross, P.: Comparison of precipitable water vapor
derived from radiosonde, GPS, and Moderate-Resolution Imaging
Spectroradiometer measurements, J. Geophys. Res., 108, D20,
https://doi.org/10.1029/2003JD003372, 2003.
a
Liljegren, J. C.: Two-Chanel Microwave Radiometer for Observations of Total
Column Precipitable Water Vapor and Cloud Liquid Water Path, Pacific Northwest Lab., Richland, WA, USA, Tech. rep. PNL-SA-22773,
https://www.osti.gov/biblio/10128996 (last access: 1 March 2022), 1994.
a,
b
Marcus, S., Kim, J., Chin, T., Danielson, D., and Laber, J.: Influence of GPS
Precipitable Water Vapor Retrievals on Quantitative Precipitation Forecasting
in Southern California, J. Appl. Meteorol. Clim., 46, 1828–1839,
https://doi.org/10.1175/2007JAMC1502.1, 2007.
a
Maussion, F., Scherer, D., Mölg, T., Collier, E., Curio, J., and Finkelnburg,
R.: Precipitation Seasonality and Variability over the Tibetan Plateau as
Resolved by the High Asia Reanalysis, J. Climate, 27, 1910–1927,
https://doi.org/10.1175/JCLI-D-13-00282.1, 2014.
a
Mims, F. M., Chambers, L. H., and Brooks, D. R.: Measuring Total Column Water
Vapor by Pointing an Infrared Thermometer at the Sky, B. Am. Meteorol.
Soc., 92, 1311–1320,
https://doi.org/10.1175/2011bams3215.1, 2011.
a,
b,
c,
d,
e,
f,
g,
h,
i
Minschwaner, K., Varney, L., and Starke, V.: Effect of aerosols on surface UV
at Socorro, New Mexico: measurements based on global irradiances and a direct
sun photometer, in: Ultraviolet Ground- and Space-based Measurements, Models,
and Effects, edited by Slusser, J. R., Herman, J. R., and Gao, W., Proc. SPIE, 4482, 265–270,
https://doi.org/10.1117/12.452927, 2002.
a
Pérez-Ramírez, D., Whiteman, D. N., Smirnov, A., Lyamani, H., Holben, B. N.,
Pinker, R., Andrade, M., and Alados-Arboledas, L.: Evaluation of AERONET
precipitable water vapor versus microwave radiometry, GPS, and radiosondes at
ARM sites, J. Geophys. Res.-Atmos., 119, 9596–9613,
https://doi.org/10.1002/2014JD021730,
2014.
a
Raj, P. E., Devara, P. C. S., Maheskumar, R. S., Pandithurai, G., Dani, K. K.,
Saha, S. K., Sonbawne, S. M., and Tiwari, Y. K.: Results of Sun
Photometer – Derived Precipitable Water Content over a Tropical Indian
Station, J. Appl. Meteorol. Clim., 43, 1452–1459,
https://doi.org/10.1175/jam2149.1, 2004.
a,
b,
c,
d,
e
Randel, D. L., Vonder Haar, T. H., Ringerud, M. A., Stephens, G. L., Greenwald,
T. J., and Combs, C. L.: A New Global Water Vapor Dataset, B. Am.
Meteorol. Soc., 77, 1233–1246,
https://doi.org/10.1175/1520-0477(1996)077<1233:ANGWVD>2.0.CO;2, 1996.
a
Robles, M. C., Amos, H. M., Dodson, J. B., Bouwman, J., Rogerson, T., Bombosch,
A., Farmer, L., Burdick, A., Taylor, J., and Chambers, L. H.: Clouds around
the World: How a Simple Citizen Science Data Challenge Became a Worldwide
Success, B. Am. Meterol. Soc., 101, E1201–E1213,
https://doi.org/10.1175/BAMS-D-19-0295.1, 2020.
a
Salby, M. L.: Fundamentals of atmospheric physics, International Geophysics Series, 61, Elsevier, ISBN 0126151601, 1996. a
Schmit, T. J., Griffith, P., Gunshor, M. M., Daniels, J. M., Goodman, S. J.,
and Lebair, W. J.: A Closer Look at the ABI on the GOES-R Series, B. Am. Meterol. Soc., 98, 681–698,
https://doi.org/10.1175/BAMS-D-15-00230.1, 2017.
a
Schmit, T. J., Lindstrom, S. S., Gerth, J. J., and Gunshor, M. M.: Applications
of the 16 spectral bands on the Advanced Baseline Imager (ABI), J.
Oper. Meteorol., 6, 33–46,
https://doi.org/10.15191/nwajom.2018.0604, 2018.
a
Smith, S. and Toumi, R.: Measuring Cloud Cover and Brightness Temperature with
a Ground-Based Thermal Infrared Camera, J. Appl. Meteorol. Clim.., 47,
683–693,
https://doi.org/10.1175/2007JAMC1615.1, 2008.
a
Stephens, G. L.: Remote sensing of the lower atmosphere: an introduction,
Oxford University Press, ISBN 0195081889, 1994. a
Thomason, L. W.: Extinction of Near Infrared Solar Radiation as a Means for
Remote Determination of Atmospheric Water Vapor, PhD thesis, The University
of Arizona,
https://osti.gov/biblio/10128996 (last access: 1 March 2022), 1985.
a,
b
Thome, K. J., Herman, B. M., and Reagan, J. A.: Determination of Precipitable
Water from Solar Transmission, J. Appl. Meteorol. Clim., 31, 157–165,
https://doi.org/10.1175/1520-0450(1992)031<0157:dopwfs>2.0.co;2, 1992.
a,
b
Turner, D. D.: Arctic Mixed-Phase Cloud Properties from AERI Lidar
Observations: Algorithm and Results from SHEBA, J. Appl.
Meteorol. Clim., 44, 427–444,
https://doi.org/10.1175/JAM2208.1,
2005.
a
Wang, J., Zhang, L., Dai, A., Van Hove, T., and Van Baelen, J.: A near-global,
2-hourly data set of atmospheric precipitable water from ground-based GPS
measurements, J. Geophys. Res.-Atmos., 112, D11107,
https://doi.org/10.1029/2006JD007529, 2007.
a,
b
Wang, R., Fu, Y., Xian, T., Chen, F., Yuan, R., Li, R., and Liu, G.:
Evaluation of Atmospheric Precipitable Water Characteristics and Trends in
Mainland China from 1995 to 2012, J. Climate, 30, 8673–8688,
https://doi.org/10.1175/JCLI-D-16-0433.1, 2017.
a
Ware, R., Fulker, D., Stein, S., Anderson, D. N., Avery, S., Clark, R.,
Droegemeier, K., Kuettner, J., Minster, J., and Sorooshian, S.: SuomiNet: A
Real-Time National GPS Network for Atmospheric Research and Education,
B. Am. Meteorol. Soc., 81, 677–694, 2000. a
Yang, L. and Smith, J.: Sensitivity of Extreme Rainfall to Atmospheric Moisture
Content in the Arid/Semiarid Southwestern United States: Implications for
Probable Maximum Precipitation Estimates, J. Geophys. Res.-Atmos.,
123, 1638–1656,
https://doi.org/10.1002/2017JD027850, 2018.
a
Zhao, P., Li, Y., Guo, X., Xu, X., Liu, Y., Tang, S., Xiao, W., Shi, C., Ma,
Y., Yu, X., Liu, H., Jia, L., Chen, Y., Liu, Y., Li, J., Luo, D., Cao, Y.,
Zheng, X., Chen, J., Xiao, A., Yuan, F., Chen, D., Pang, Y., Hu, Z., Zhang,
S., Dong, L., Hu, J., Han, S., and Zhou, X.: The Tibetan Plateau
Surface-Atmosphere Coupling System and Its Weather and Climate Effects: The
Third Tibetan Plateau Atmospheric Science Experiment, J.
Meteorol. Res., 33, 375–399,
https://doi.org/10.1007/s13351-019-8602-3, 2019.
a