Articles | Volume 15, issue 7
https://doi.org/10.5194/amt-15-2001-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-2001-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Formaldehyde and glyoxal measurement deploying a selected ion flow tube mass spectrometer (SIFT-MS)
Antonia G. Zogka
IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, CERI EE, 59000 Lille, France
Manolis N. Romanias
CORRESPONDING AUTHOR
IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, CERI EE, 59000 Lille, France
Frederic Thevenet
IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, CERI EE, 59000 Lille, France
Related authors
No articles found.
Francesco Battaglia, Paola Formenti, Chiara Giorio, Mathieu Cazaunau, Edouard Pangui, Antonin Bergé, Aline Gratien, Diana L. Pereira, Thomas Bertin, Joel F. de Brito, Manolis N. Romanias, Vincent Michoud, Clarissa Baldo, Servanne Chevaillier, Gael Noyalet, Philippe Decorse, Bénédicte Picquet-Varrault, and Jean-François Doussin
Atmos. Chem. Phys., 25, 12409–12431, https://doi.org/10.5194/acp-25-12409-2025, https://doi.org/10.5194/acp-25-12409-2025, 2025
Short summary
Short summary
This paper presents an experimental investigation of the interactions between glyoxal, an important volatile organic compound, and mineral dust particles of size and composition typical of natural conditions. We show that their interactions modify, in a definitive way, the concentrations of the gas phase and the surface properties of the dust, which could have important implications for the atmospheric composition and the Earth's climate.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Cited articles
Allani, A., Bedjanian, Y., Papanastasiou, D. K., and Romanias, M. N.: Reaction Rate Coefficient of OH Radicals with d9-Butanol as a Function of Temperature, ACS Omega, 6, 18123–18134,
https://doi.org/10.1021/acsomega.1c01942, 2021.
Atkinson, R.: Atmospheric Chemistry of VOCs and NOx, Atmos. Environ., 34, 2063–2101, https://doi.org/10.1016/S1352-2310(99)00460-4, 2000.
Ban-Weiss, G. A., McLaughlin, J. P., Harley, R. A., Kean, A. J., Grosjean,
E., and Grosjean, D.: Carbonyl and Nitrogen Dioxide Emissions From Gasoline-
and Diesel-Powered Motor Vehicles, Environ. Sci. Technol., 42, 3944–3950,
https://doi.org/10.1021/es8002487, 2008.
Bernstein, R. S., Stayner, L. T., Elliott, L. J., Kimbrough, R., Falk, H.,
and Blade, L. E. O.: Inhalation Exposure to Formaldehyde: An Overview of Its
Toxicology, Epidemiology, Monitoring, and Control, Am. Ind. Hyg, 45,
778–785, https://doi.org/10.1080/15298668491400601, 1984.
Bierbaum, V. M., Golde, M. F., and Kaufman, F.: Flowing Afterglow Studies of
Hydronium Ion Clustering Including Diffusion Effects, J. Chem. Phys., 65,
2715–2724, https://doi.org/10.1063/1.433415, 1976.
Bohme, D. K., Mackay, G. I., and Tanner, S. D.: An Experimental Study of the
Gas-Phase Kinetics of Reactions with Hydrated Hydronium(1+) Ions(n = 1–3) at 298 K, J. Am. Chem. Soc., 101, 3724–3730,
https://doi.org/10.1021/ja00508a003, 1979.
Bolden, R. C. and Twiddy, N. D.: A Flowing Afterglow Study of Water Vapour,
Faraday Discuss. Chem. Soc., 53, 192–200,
https://doi.org/10.1039/DC9725300192, 1972.
Caron, A., Redon, N., Thevenet, F., Hanoune, B., and Coddeville, P.:
Performances and limitations of electronic gas sensors to investigate an
indoor air quality event, Build. Environ., 107, 19–28,
https://doi.org/10.1016/j.buildenv.2016.07.006, 2016.
Caron, F., Guichard, R., Robert, L., Verriele, M., and Thevenet, F.:
Behaviour of individual VOCs in indoor environments: How ventilation affects
emission from materials, Atmos. Environ., 243, 117713,
https://doi.org/10.1016/j.atmosenv.2020.117713, 2020.
Catoire, V., Bernard, F., Mébarki, Y., Mellouki, A., Eyglunent, G.,
Daële, V., and Robert, C.: A Tunable Diode Laser Absorption Spectrometer
for Formaldehyde Atmospheric Measurements Validated by Simulation Chamber
Instrumentation, J. Environ. Sci., 24, 22–33,
https://doi.org/10.1016/S1001-0742(11)60726-2, 2012.
Coburn, S., Ortega, I., Thalman, R., Blomquist, B., Fairall, C. W., and Volkamer, R.: Measurements of diurnal variations and eddy covariance (EC) fluxes of glyoxal in the tropical marine boundary layer: description of the Fast LED-CE-DOAS instrument, Atmos. Meas. Tech., 7, 3579–3595, https://doi.org/10.5194/amt-7-3579-2014, 2014.
Crump, D. R., Squire, R. W., and Yu, C. W. F.: Sources and Concentrations of
Formaldehyde and Other Volatile Organic Compounds in the Indoor Air of Four
Newly Built Unoccupied Test Houses, Indoor Built Environ., 6, 45–55,
https://doi.org/10.1177/1420326x9700600106, 1997.
Feierabend, K. J., Zhu, L., Talukdar, R. K., and Burkholder, J. B.: Rate
Coefficients for the OH + HC(O)C(O)H (Glyoxal) Reaction between 210 and
390 K, J. Phys. Chem. A., 112, 73–82, https://doi.org/10.1021/jp0768571,
2008.
Fu, T.-M., Jacob, D. J., Wittrock, F., Burrows, J. P., Vrekoussis, M., and
Henze, D. K.: Global Budgets of Atmospheric Glyoxal and Methylglyoxal, and
Implications for Formation of Secondary Organic Aerosols, J. Geophys. Res.-Atmos., 113, D15303, https://doi.org/10.1029/2007JD009505, 2008.
Gómez Alvarez, E., Moreno, M. V., Gligorovski, S., Wortham, H., and
Cases, M. V.: Characterisation and Calibration of Active Sampling Solid
Phase Microextraction Applied to Sensitive Determination of Gaseous
Carbonyls, Talanta, 88, 252–258,
https://doi.org/10.1016/j.talanta.2011.10.039, 2012.
Grosjean, D., Grosjean, E., and Gertler, A. W.: On-Road Emissions of
Carbonyls from Light-Duty and Heavy-Duty Vehicles, Environ. Sci. Technol,
35, 45–53, https://doi.org/10.1021/es001326a, 2001.
Guimbaud, C., Catoire, V., Bergeat, A., Michel, E., Schoon, N., Amelynck,
C., Labonnette, D., and Poulet, G.: Kinetics of the reactions of acetone and
glyoxal with O2+ and NO+ ions and application to the detection of
oxygenated volatile organic compounds in the atmosphere by chemical
ionization mass spectrometry, I. J. Mass Spectrom., 263, 276–288,
https://doi.org/10.1016/j.ijms.2007.03.006, 2007.
Hansel, A., Singer, W., Wisthaler, A., Schwarzmann, M., and Lindinger, W.:
Energy Dependencies of the Proton Transfer Reactions H3O+ + CH2O ⇔ CH2OH+ + H2O, Int. J. Mass Spectrom. Ion Process, 167–168, 697–703, https://doi.org/10.1016/S0168-1176(97)00128-6, 1997.
Hays, M. D., Geron, C. D., Linna, K. J., Smith, N. D., and Schauer, J. J.:
Speciation of Gas-Phase and Fine Particle Emissions from Burning of Foliar
Fuels, Environ. Sci. Technol., 36, 2281–2295,
https://doi.org/10.1021/es0111683, 2002.
Inomata, S., Tanimoto, H., Kameyama, S., Tsunogai, U., Irie, H., Kanaya, Y., and Wang, Z.: Technical Note: Determination of formaldehyde mixing ratios in air with PTR-MS: laboratory experiments and field measurements, Atmos. Chem. Phys., 8, 273–284, https://doi.org/10.5194/acp-8-273-2008, 2008.
Kaiser, J., Wolfe, G. M., Bohn, B., Broch, S., Fuchs, H., Ganzeveld, L. N., Gomm, S., Häseler, R., Hofzumahaus, A., Holland, F., Jäger, J., Li, X., Lohse, I., Lu, K., Prévôt, A. S. H., Rohrer, F., Wegener, R., Wolf, R., Mentel, T. F., Kiendler-Scharr, A., Wahner, A., and Keutsch, F. N.: Evidence for an unidentified non-photochemical ground-level source of formaldehyde in the Po Valley with potential implications for ozone production, Atmos. Chem. Phys., 15, 1289–1298, https://doi.org/10.5194/acp-15-1289-2015, 2015.
Kean, A. J., Grosjean, E., Grosjean, D., and Harley, R. A.: On-Road
Measurement of Carbonyls in California Light-Duty Vehicle Emissions,
Environ. Sci. Technol, 35, 4198–4204, https://doi.org/10.1021/es010814v,
2001.
Kefauver, S. C., Filella, I., and Peñuelas, J.: Remote Sensing of
Atmospheric Biogenic Volatile Organic Compounds (BVOCs) via Satellite-Based
Formaldehyde Vertical Column Assessments, Int. J. Remote Sens., 35,
7519–7542, https://doi.org/10.1080/01431161.2014.968690, 2014.
Kim, K.-H., Jahan, S. A., and Lee, J.-T.: Exposure to Formaldehyde and Its
Potential Human Health Hazards, J. Environ. Sci. Health C, 29, 277–299,
https://doi.org/10.1080/10590501.2011.629972, 2011.
Koch, D. M., Khieu, N. H., and Peslherbe, G. H.: Ab Initio Studies of the
Glyoxal Unimolecular Dissociation Pathways, J. Phys. Chem. A., 105,
3598–3604, https://doi.org/10.1021/jp0039013, 2001.
Lacko, M., Piel, F., Mauracher, A., and Španěl, P.: Chemical
Ionization of Glyoxal and Formaldehyde with H3O+ Ions using
SIFT-MS Under Variable System Humidity, Phys. Chem. Chem. Phys., 22,
10170–10178, https://doi.org/10.1039/D0CP00297F, 2020.
Langer, S., Bekö, G., Bloom, E., Widheden, A., and Ekberg, L.: Indoor
air quality in passive and conventional new houses in Sweden, Build.
Environ., 93, 92–100, https://doi.org/10.1016/j.buildenv.2015.02.004, 2015.
Lee, M., Heikes, B. G., Jacob, D. J., Sachse, G., and Anderson, B.: Hydrogen
Peroxide, Organic Hydroperoxide, and Formaldehyde as Primary Pollutants from
Biomass Burning, J. Geophys. Res.-Atmos., 102, 1301–1309,
https://doi.org/10.1029/96JD01709, 1997.
Li, Z., Schwier, A. N., Sareen, N., and McNeill, V. F.: Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products, Atmos. Chem. Phys., 11, 11617–11629, https://doi.org/10.5194/acp-11-11617-2011, 2011.
Liggio, J., Li, S.-M., and McLaren, R.: Reactive Uptake of Glyoxal by
Particulate Matter, J. Geophys. Res.-Atmos., 110, D10304,
https://doi.org/10.1029/2004JD005113, 2005.
Liu, J., Li, X., Yang, Y., Wang, H., Wu, Y., Lu, X., Chen, M., Hu, J., Fan, X., Zeng, L., and Zhang, Y.: An IBBCEAS system for atmospheric measurements of glyoxal and methylglyoxal in the presence of high NO2 concentrations, Atmos. Meas. Tech., 12, 4439–4453, https://doi.org/10.5194/amt-12-4439-2019, 2019.
Liu, W., Zhang, J., Zhang, L., Turpin, B. J., Weisel, C. P., Morandi, M. T.,
Stock, T. H., Colome, S., and Korn, L. R.: Estimating contributions of
indoor and outdoor sources to indoor carbonyl concentrations in three urban
areas of the United States, Atmos. Environ., 40, 2202–2214,
https://doi.org/10.1016/j.atmosenv.2005.12.005, 2006.
Lu, X.-W., Jiang, L.-X., Liu, J., Yang, Y., Liu, Q.-Y., Ren, Y., Li, X., and
He, S.-G.: Sensitive Detection of Gas-Phase Glyoxal by Electron Attachment
Reaction Ionization Mass Spectrometry, Anal. Chem., 91, 12688–12695,
https://doi.org/10.1021/acs.analchem.9b02029, 2019.
Luecken, D. J., Hutzell, W. T., Strum, M. L., and Pouliot, G. A.: Regional
Sources of Atmospheric Formaldehyde and Acetaldehyde, and Implications for
Atmospheric Modeling, Atmos. Environ., 47, 477–490,
https://doi.org/10.1016/j.atmosenv.2011.10.005, 2012.
Mahajan, A. S., Prados-Roman, C., Hay, T. D., Lampel, J., Pöhler, D.,
Groâmann, K., Tschritter, J., Frieß, U., Platt, U., Johnston, P.,
Kreher, K., Wittrock, F., Burrows, J. P., Plane, J. M. C., and Saiz-Lopez,
A.: Glyoxal Observations in the Global Marine Boundary Layer, J. Geophys.
Res.-Atmos., 119, 6160–6169, https://doi.org/10.1002/2013JD021388, 2014.
Michel, E., Schoon, N., Amelynck, C., Guimbaud, C., Catoire, V., and Arijs,
E.: A Selected Ion Flow Tube Study of the Reactions of H3O+,
NO+ and O with Methyl Vinyl Ketone and Some Atmospherically
Important Aldehydes, Int. J. Mass Spectrom., 244, 50–59,
https://doi.org/10.1016/j.ijms.2005.04.005, 2005.
Midey, A. J., Arnold, S. T., and Viggiano, A. A.: Reactions of
H3O+(H2O)n with Formaldehyde and Acetaldehyde, J. Phys. Chem.
A., 104, 2706–2709, https://doi.org/10.1021/jp993797t, 2000.
Myriokefalitakis, S., Vrekoussis, M., Tsigaridis, K., Wittrock, F., Richter, A., Brühl, C., Volkamer, R., Burrows, J. P., and Kanakidou, M.: The influence of natural and anthropogenic secondary sources on the glyoxal global distribution, Atmos. Chem. Phys., 8, 4965–4981, https://doi.org/10.5194/acp-8-4965-2008, 2008.
Osseiran, N., Romanias, M. N., Gaudion, V., Angelaki, M. E., Papadimitriou,
V. C., Tomas, A., Coddeville, P., and Thevenet, F.: Development and
Validation of a Thermally Regulated Atmospheric Simulation Chamber
(THALAMOS): A Versatile Tool to Simulate Atmospheric Processes, J. Environ.
Sci., 95, 141–154, https://doi.org/10.1016/j.jes.2020.03.036, 2020.
Rossignol, S., Aregahegn, K. Z., Tinel, L., Fine, L., Nozière, B., and
George, C.: Glyoxal Induced Atmospheric Photosensitized Chemistry Leading to
Organic Aerosol Growth, Environ. Sci. Technol., 48, 3218–3227,
https://doi.org/10.1021/es405581g, 2014.
Saito, K., Kakumoto, T., and Murakami, I.: Thermal Unimolecular
Decomposition of Glyoxal, J. Phys. Chem., 88, 1182–1187,
https://doi.org/10.1021/j150650a033, 1984.
Salter, R. J., Blitz, M. A., Heard, D. E., Kovács, T., Pilling, M. J.,
Rickard, A. R., and Seakins, P. W.: Quantum yields for the photolysis of
glyoxal below 350 nm and parameterisations for its photolysis rate in the
troposphere, Phys. Chem. Chem. Phys., 15, 4984–4994,
https://doi.org/10.1039/C3CP43597K, 2013.
Salthammer, T.: Formaldehyde Sources, Formaldehyde Concentrations and Air
Exchange Rates in European Housings, Build. Environ., 150, 219–232,
https://doi.org/10.1016/j.buildenv.2018.12.042, 2019.
Sinreich, R., Coburn, S., Dix, B., and Volkamer, R.: Ship-based detection of glyoxal over the remote tropical Pacific Ocean, Atmos. Chem. Phys., 10, 11359–11371, https://doi.org/10.5194/acp-10-11359-2010, 2010.
Smith, D. and Adams, N. G.: The Selected Ion Flow Tube (Sift): Studies of
Ion-Neutral Reactions, in: Adv. At. Mol. Phys., edited by: Bates, D. and
Bederson, B., Academic Press, 1–49, https://doi.org/10.1016/S0065-2199(08)60229-8, 1988.
Smith, D. and Španěl, P.: Selected Ion Flow Tube Mass Spectrometry
(SIFT-MS) for On-line Trace Gas Analysis, Mass Spectrom. Rev., 24, 661–700,
https://doi.org/10.1002/mas.20033, 2005.
Španěl, P. and Smith, D.: Selected Ion Flow Tube: a Technique for
Quantitative Trace Gas Analysis of Air and Breath, Med. Biol. Eng. Comput.,
34, 409–419, https://doi.org/10.1007/BF02523843, 1996.
Španěl, P. and Smith, D.: Quantitative Selected Ion Flow Tube Mass
Spectrometry: The Influence of Ionic Diffusion and Mass Discrimination, J.
Am. Soc. Mass Spectrom., 12, 863–872, https://doi.org/10.1016/S1044-0305(01)00253-7, 2001.
Stönner, C., Derstroff, B., Klüpfel, T., Crowley, J. N., and
Williams, J.: Glyoxal Measurement with a Proton Transfer Reaction Time of
Flight Mass Spectrometer (PTR-TOF-MS): Characterization and Calibration, J.
Mass Spectrom., 52, 30–35, https://doi.org/10.1002/jms.3893, 2017.
Thalman, R., Baeza-Romero, M. T., Ball, S. M., Borrás, E., Daniels, M. J. S., Goodall, I. C. A., Henry, S. B., Karl, T., Keutsch, F. N., Kim, S., Mak, J., Monks, P. S., Muñoz, A., Orlando, J., Peppe, S., Rickard, A. R., Ródenas, M., Sánchez, P., Seco, R., Su, L., Tyndall, G., Vázquez, M., Vera, T., Waxman, E., and Volkamer, R.: Instrument intercomparison of glyoxal, methyl glyoxal and NO2 under simulated atmospheric conditions, Atmos. Meas. Tech., 8, 1835–1862, https://doi.org/10.5194/amt-8-1835-2015, 2015.
Thevenet, F., Verriele, M., Harb, P., Thlaijeh, S., Brun, R., Nicolas, M.,
and Angulo-Milhem, S.: The indoor fate of terpenes: Quantification of the
limonene uptake by materials, Build. Environ., 188, 107433,
https://doi.org/10.1016/j.buildenv.2020.107433, 2021.
Vlasenko, A., Macdonald, A. M., Sjostedt, S. J., and Abbatt, J. P. D.: Formaldehyde measurements by Proton transfer reaction – Mass Spectrometry (PTR-MS): correction for humidity effects, Atmos. Meas. Tech., 3, 1055–1062, https://doi.org/10.5194/amt-3-1055-2010, 2010.
Volkamer, R., Spietz, P., Burrows, J., and Platt, U.: High-Resolution
Absorption Cross-Section of Glyoxal in the UV–vis and IR Spectral Ranges,
J. Photochem. Photobiol. A, 172, 35–46,
https://doi.org/10.1016/j.jphotochem.2004.11.011, 2005.
Volkamer, R., San Martini, F., Molina, L. T., Salcedo, D., Jimenez, J. L.,
and Molina, M. J.: A Missing Sink for Gas-Phase Glyoxal in Mexico City:
Formation of Secondary Organic Aerosol, Geophys. Res. Lett, 34, L19807,
https://doi.org/10.1029/2007GL030752, 2007.
Warneke, C., Veres, P., Holloway, J. S., Stutz, J., Tsai, C., Alvarez, S., Rappenglueck, B., Fehsenfeld, F. C., Graus, M., Gilman, J. B., and de Gouw, J. A.: Airborne formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-comparison and initial results, Atmos. Meas. Tech., 4, 2345–2358, https://doi.org/10.5194/amt-4-2345-2011, 2011.
Winkowski, M. and Stacewicz, T.: Optical Detection of Formaldehyde in Air in
the 3.6 µm Range, Biomed. Opt. Express, 11, 7019–7031,
https://doi.org/10.1364/BOE.405384, 2020.
Wisthaler, A., Apel, E. C., Bossmeyer, J., Hansel, A., Junkermann, W., Koppmann, R., Meier, R., Müller, K., Solomon, S. J., Steinbrecher, R., Tillmann, R., and Brauers, T.: Technical Note: Intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR, Atmos. Chem. Phys., 8, 2189–2200, https://doi.org/10.5194/acp-8-2189-2008, 2008.
Wróblewski, T., Ziemczonek, L., Alhasan, A. M., and Karwasz, G. P.: Ab
Initio and Density Functional Theory Calculations of Proton Affinities for
Volatile Organic Compounds, Eur. Phys. J. Spec. Top., 144, 191–195,
https://doi.org/10.1140/epjst/e2007-00126-7, 2007.
Xiao, Y., Jacob, D. J., and Turquety, S.: Atmospheric Acetylene and its
Relationship with CO as an Indicator of Air Mass Age, J. Geophys. Res.-Atmos., 112, D12305, https://doi.org/10.1029/2006JD008268, 2007.
Yuan, B., Koss, A. R., Warneke, C., Coggon, M., Sekimoto, K., and de Gouw,
J. A.: Proton-Transfer-Reaction Mass Spectrometry: Applications in
Atmospheric Sciences, Chem. Rev., 117, 13187–13229,
https://doi.org/10.1021/acs.chemrev.7b00325, 2017.
Short summary
We emphasize the application of SIFT-MS to detect two important atmospheric pollutants, i.e., formaldehyde (FM) and glyoxal (GL). FM and GL are secondary products formed by volatile organic compound oxidation in indoor and outdoor environments and play a key role in air quality and climate. We show that SIFT-MS is able to monitor these species selectively and in real time, overcoming the limitations of other, classical analytical techniques used to monitor these species in the atmosphere.
We emphasize the application of SIFT-MS to detect two important atmospheric pollutants, i.e.,...