Articles | Volume 15, issue 8
https://doi.org/10.5194/amt-15-2579-2022
https://doi.org/10.5194/amt-15-2579-2022
Research article
 | 
28 Apr 2022
Research article |  | 28 Apr 2022

Regularized inversion of aerosol hygroscopic growth factor probability density function: application to humidity-controlled fast integrated mobility spectrometer measurements

Jiaoshi Zhang, Yang Wang, Steven Spielman, Susanne Hering, and Jian Wang

Related authors

Examining the vertical heterogeneity of aerosols over the Southern Great Plains
Yang Wang, Chanakya Bagya Ramesh, Scott E. Giangrande, Jerome Fast, Xianda Gong, Jiaoshi Zhang, Ahmet Tolga Odabasi, Marcus Vinicius Batista Oliveira, Alyssa Matthews, Fan Mei, John E. Shilling, Jason Tomlinson, Die Wang, and Jian Wang
Atmos. Chem. Phys., 23, 15671–15691, https://doi.org/10.5194/acp-23-15671-2023,https://doi.org/10.5194/acp-23-15671-2023, 2023
Short summary
New particle formation in the tropical free troposphere during CAMP2Ex: statistics and impact of emission sources, convective activity, and synoptic conditions
Qian Xiao, Jiaoshi Zhang, Yang Wang, Luke D. Ziemba, Ewan Crosbie, Edward L. Winstead, Claire E. Robinson, Joshua P. DiGangi, Glenn S. Diskin, Jeffrey S. Reid, K. Sebastian Schmidt, Armin Sorooshian, Miguel Ricardo A. Hilario, Sarah Woods, Paul Lawson, Snorre A. Stamnes, and Jian Wang
Atmos. Chem. Phys., 23, 9853–9871, https://doi.org/10.5194/acp-23-9853-2023,https://doi.org/10.5194/acp-23-9853-2023, 2023
Short summary
Atmospheric nanoparticles hygroscopic growth measurement by a combined surface plasmon resonance microscope and hygroscopic tandem differential mobility analyzer
Zhibo Xie, Jiaoshi Zhang, Huaqiao Gui, Yang Liu, Bo Yang, Haosheng Dai, Hang Xiao, Douguo Zhang, Da-Ren Chen, and Jianguo Liu
Atmos. Chem. Phys., 23, 2079–2088, https://doi.org/10.5194/acp-23-2079-2023,https://doi.org/10.5194/acp-23-2079-2023, 2023
Short summary
Technical note: Real-time diagnosis of the hygroscopic growth micro-dynamics of nanoparticles with Fourier transform infrared spectroscopy
Xiuli Wei, Haosheng Dai, Huaqiao Gui, Jiaoshi Zhang, Yin Cheng, Jie Wang, Yixin Yang, Youwen Sun, and Jianguo Liu
Atmos. Chem. Phys., 22, 3097–3109, https://doi.org/10.5194/acp-22-3097-2022,https://doi.org/10.5194/acp-22-3097-2022, 2022
Short summary
Rapid measurement of RH-dependent aerosol hygroscopic growth using a humidity-controlled fast integrated mobility spectrometer (HFIMS)
Jiaoshi Zhang, Steven Spielman, Yang Wang, Guangjie Zheng, Xianda Gong, Susanne Hering, and Jian Wang
Atmos. Meas. Tech., 14, 5625–5635, https://doi.org/10.5194/amt-14-5625-2021,https://doi.org/10.5194/amt-14-5625-2021, 2021
Short summary

Related subject area

Subject: Aerosols | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Inversion Algorithm of Black Carbon Mixing State Based on Machine Learning
Zeyuan Tian, Jiandong Wang, Jiaping Wang, Chao Liu, Jinbo Wang, Zhouyang Zhang, Yuzhi Jin, Sunan Shen, Bin Wang, Wei Nie, Xin Huang, and Aijun Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-2496,https://doi.org/10.5194/egusphere-2024-2496, 2024
Short summary
Spatial analysis of PM2.5 using a concentration similarity index applied to air quality sensor networks
Rósín Byrne, John C. Wenger, and Stig Hellebust
Atmos. Meas. Tech., 17, 5129–5146, https://doi.org/10.5194/amt-17-5129-2024,https://doi.org/10.5194/amt-17-5129-2024, 2024
Short summary
Performance Evaluation of Atmotube Pro sensors for Air Quality Measurements
Aishah Shittu, Kirsty Pringle, Stephen Arnold, Richard Pope, Ailish Graham, Carly Reddington, Richard Rigby, and James McQuaid
EGUsphere, https://doi.org/10.5194/egusphere-2024-1685,https://doi.org/10.5194/egusphere-2024-1685, 2024
Short summary
A novel probabilistic source apportionment approach: Bayesian auto-correlated matrix factorization
Anton Rusanen, Anton Björklund, Manousos I. Manousakas, Jianhui Jiang, Markku T. Kulmala, Kai Puolamäki, and Kaspar R. Daellenbach
Atmos. Meas. Tech., 17, 1251–1277, https://doi.org/10.5194/amt-17-1251-2024,https://doi.org/10.5194/amt-17-1251-2024, 2024
Short summary
Towards a hygroscopic growth calibration for low-cost PM2.5 sensors
Milan Y. Patel, Pietro F. Vannucci, Jinsol Kim, William M. Berelson, and Ronald C. Cohen
Atmos. Meas. Tech., 17, 1051–1060, https://doi.org/10.5194/amt-17-1051-2024,https://doi.org/10.5194/amt-17-1051-2024, 2024
Short summary

Cited articles

Collins, D. R., Flagan, R. C., and Seinfeld, J. H.: Improved Inversion of Scanning DMA Data, Aerosol Sci. Tech., 36, 1–9, https://doi.org/10.1080/027868202753339032, 2002. 
Colton, D. L. and Kress, R.: Inverse acoustic and electromagnetic scattering theory, Springer, https://doi.org/10.1007/978-1-4614-4942-3, 1998. 
Gysel, M., Crosier, J., Topping, D. O., Whitehead, J. D., Bower, K. N., Cubison, M. J., Williams, P. I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–6144, https://doi.org/0.5194/acp-7-6131-2007, 2007. 
Gysel, M., McFiggans, G. B., and Coe, H.: Inversion of tandem differential mobility analyser (TDMA) measurements, J. Aerosol Sci., 40, 134–151, https://doi.org/10.1016/j.jaerosci.2008.07.013, 2009. 
Hanke, M. and Raus, T.: A General Heuristic for Choosing the Regularization Parameter in Ill-Posed Problems, SIAM J. Sci. Comput., 17, 956–972, https://doi.org/10.1137/0917062, 1996. 
Download
Short summary
New nonparametric, regularized methods are developed to invert the growth factor probability density function (GF-PDF) from humidity-controlled fast integrated mobility spectrometer measurements. These algorithms are computationally efficient, require no prior assumptions of the GF-PDF distribution, and reduce the error in inverted GF-PDF. They can be applied to humidified tandem differential mobility analyzer data. Among all algorithms, Twomey’s method retrieves GF-PDF with the smallest error.